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Abstract PSPACE bounds for rank-1 modal logics (those axiomati-

sable by formulae whose nesting depth of modalities equals

For lack of general algorithmic methods that apply to one) in a systematic way. Although limited to rank 1, our
wide classes of logics, establishing a complexity bound for approach covers numerous relevant and non-trivial exam-
a given modal logic is often a laborious task. The present ples. E.g., our results recover knowt$PA CE bounds for
work is a step towards a general theory of the complex- standard modal logics such &S and also for a range of
ity of modal logics. Our main result is that all rank-1 non-normal modal logics such as graded modal logic [31]
logics enjoy a shallow model property and thus are, un- and coalition logic [23]. Moreover, our method goes be-
der mild assumptions on the format of their axiomatization, yond re-proving known results in a uniform fashion: we ob-
in PSPACE. This leads not only to a unified derivation tain a previously unknow#®SPA CE-bound for probabilis-
of (known) tightPSPACE-bounds for a number of log- tic modal logic [17, 13], with rational probabilities coded
ics including K, coalition logic, and graded modal logic in binary. These logics are far from exotic: graded modal
(and to a new algorithm in the latter case), but also to a logic plays a role e.g. in decision support and knowledge
previously unknown tighPSPACE-bound for probabilis- representation [33, 19], and probabilistic modal logic has
tic modal logic, with rational probabilities coded in binar appeared in connection with model checking [17] and in
This generality is made possible by a coalgebraic seman-modelling economic behaviour [13].

tics, which conveniently abstracts from the details of &giv The key to the generality is to parametrise the theory over
model class and thus allows covering a broad range of 10g- the type of systems defining the semantics, using coalge-
ics in a uniform way. braic methods. Coalgebra conveniently abstracts from the
details of a concrete class of models by encoding it as an
endofunctor on the category of sets. As specific instances,
1. Intoduction one obtains e.g. Kripke frames, (monotone) neighbourhood
frames [12], game frames [23], probabilistic transitiossy

Modal logics are attractive from a computational point of €Ms and automata [24, 3], weighted automata, linear au-
view, as they often combine expressiveness with decidabil-©omata [6], and multigraphs [9]. Despite the broad range

ity. For many modal logics not involving dynamic features, Of Systems covered by the coalgebraic approach, a substan-
satisfiability is known to be iPSPACE. This is typically ~ tial body of concepts and non-trivial results has emerged,
proved for one logic at a time, e.g. by modifications of the €ncompassing e.g. generic notions of bisimilarity and-coin
witness algorithm for the modal logi&” [4], but also us- d_uct|0n [2], corecursion [32], dual_|ty, and ultr_afllter ext
ing markedly different methods such as in the constraint- Sions [15]. Coalgebraic modal logic features in actual spec
basedPSPACE-algorithm for graded modal logic [31]. A ification languages such as the object oriented specifitatio
first glimpse of a generalisable method was given in [34], /anguage CCSL [26] and&@CAsL [18].
where various epistemic logics, equipped with a neigh-  The coalgebraic study of computational aspects of modal
borhood frame semantics, were shown to beMR and logic was initiated in [30], where the finite model property
PSPACE, respectively (with theK axiom being respon-  and associate& EXPTIME-bounds were proved. Here,
sible for PSPACE-hardness; recent work [11] shows that we push this further by proving a coalgebraic shallow model
negative introspection brings the complexity back down to property. Our PSPACE-algorithm traverses a shallow
NP). Nevertheless, there is to date no generally applica- model, stripping off one layer of modalities in every step.
ble theorem that allows establishidty PA CE-bounds for This requires converting the axiomatisation of a givendogi
large classes of modal logics in a uniform way. into a set of logical rules that obeys a specific closure condi
Here, we generalise the methods of [34] to obtain tion, and a general construction to perform this conversion



is provided. The algorithm runs iRSPACE, provided the  one-step rule, is stricter than ‘formula of ramkin that it
induced set of rules has a polynomial bound on matchings,disallows non-trivial subformulae of rartk

which is the case for all examples we are aware of. The satisfaction relatiofh=¢ between states of a T-
coalgebraC = (X,¢) and L(A)-formulae is defined in-
2. Coalgebraic Modal Logic ductively, with the usual clauses for the boolean operation

The clause for the modal operafotf is
We briefly recapitulate the basics of the coalgebraic in- z o [No <= &(z) € Ae([¢] o)

terpretation of modal logic. where[¢] . = {z € X | = |=c ¢}. We drop the subscripts

Definition 2.1. [27] Let T : Set — Set be a functor, re- ~ C whenC'is clear from the context. _
ferred to as theignature functorwhereSet is the category From a coalgebraic perspective, the logit&\) have
of sets. AT-coalgebrad = (X,¢) is a pair (X, ¢) where pleasant properties. Behaviourally equivalent states (i.

X is a set (ofstated and¢ : X — T'X is a function called  states identified by some pair of morphisms) have the same
thetransitionfunction. theory [22], and we can — in cagéis accessible — always

find enough (polyadic) modal operators to distinguish non-
We view coalgebras as generalised transition systems:equivalent states [29]. In the interest of readability, we r
the transition function delivers a structured set of sueces strict our attention to unary modalities for the purpose of
sors and observations for a state. Mutatis mutandis, we carthis work. However, we remark that our treatment extends
in fact allowT" to take proper classes as values, as we neverto the polyadic case in a straightforward manner. Our main
iterate’7” or otherwise assume th@tX is a set; details are interest is in the (locaBatisfiability problenfor £(A):
left implicit. This allows us to treat more examples, in par-

ticular Pauly’s coalition logic (Example 2.5.7 below). Definition 2.4. An L(A)-formula ¢ is satisfiableif there

exist al’-coalgebraC and a state: in C such thatr =¢ ¢.

Assumption 2.2. We can assume w.l.0.g. thatpreserves For a more detailed discussion of global and local conse-
injective maps [1]. For convenience of notation, we Will 4 ence and weak and strong completeness in a coalgebraic
in fact sometimes assume tHAKX' C T in caseX C context see [30]. Many modal logics (including probabilis-
Y. Moreover, we assume w._I.o.g. thBtis non-trivial, i.e. tic modal logic and graded modal logic) fail to be compact
TX =0 = X =0 (otherwise'X = 0 forall X). and hence do not admit finitasgronglycomplete proof sys-
tems. The following examples show that the coalgebraic

Modal logic in the form considered here has been in- ,
approach subsumes a large class of modal logics.

troduced as a specification logic for coalgebraically mod-
elled reactive systems in [22], generalising previous re- Example 2.5.[22, 8, 30]
sults [14, 25, 16, 20]. The coalgebraic semantics is based on 1. Let P be the covariant powerset functor. Then

predicate liftings, which abstract from the concrete ipter »
; . . coalgebras are graphs, thought of as transition systems or
tation of modal operators in the same way that the signature.

functor abstracts from a concrete class of models. indeed Kripke frames. The predicate liftingiefined by
. - . Ax(A)={BeP(X)|BCA
Definition 2.3. A predicate liftingfor a functor? is a nat- x()=A{ (X1 }
ural transformatior\ : 2 — 2 o T°P, where2 denotes the  gives rise to the standard box modalify= [A]. This trans-
contravariant powerset functSet®” — Set. lates verbatim to the finitely branching case, captured by th
(accessible) finite powerset functBy, .

2. Coalgebras for the functa¥ = 2 o 2°P (composi-
tion of the contravariant powerset functor with itself) are
neighbourhood frames, the canonical semantic domain of
non-normal logics [7]. The coalgebraic semantics induced
by the predicate lifting\ defined by

Ax(A)={ae NX)|Aea}

A coalgebraic semantics for a modal logic consists of a
signature functor and an assignment of a predicate lifting t
every modal operator; we write] for a modal operator that
is interpreted using the lifting. Thus, a sef\ of predicate
liftings for T' determines the syntax of a modal lodl¢A ).
Formulaep, i) € L(A) are defined by the grammar

pu=Lonv]-¢ |, is just the neighbourhood semantics foe= [)].
where )\ ranges over\. Disjunctionse V v, truth T, and 3. Similarly, coalgebras for the subfunctor df given
other boolean operations are defined as usual. réhk by the upwards closed subsets28f are monotone neigh-
of a formula is its maximal nesting depth of modal oper- bourhood frames [12]. Putting = [)\], with X defined as
ators; note however that the notion @nk-1 axiomem- above, gives the standard interpretation of ffienodality
ployed in [21, 8, 15, 30], replaced below by the notion of of monotone modal logic.



4. It is straightforward to extend a given coalgebraic
modal logic forT with a setU of propositional symbols
This is captured by passing to the funclotX = TX x
P(U) and extending the set of predicate liftings by the lift-
ingsA%, a € U, defined by

A (A)={(,B)eTX xP(U) | a € B}.

whereN = {1,...,n} is a fixed set ofagents Thus, the
elements ofl' X arestrategic gamesvith set X of states,
i.e. tuples consisting of nonempty sefisof strategiesfor

all agents;, and anoutcome functiof[ [ S;) — X. Then,
aT-coalgebra is ame framg23]. Subsets” C N are
called coalitions We denote the_se]f[iec S; by S¢, and
for oc € Sc,06 € Sg, whereC = N — C, (o¢,05)

Since)? is independent of its argument, the induced modal denotes the obvious element P, ,; S;. The modalities

‘operator’ can be written as just the propositional symiol
with the expected meaning.

5. Thefinite multiset(or bag functor B maps a sefX
to the set of maps : X — N with finite support. The ac-
tion on morphismg : X — Y is given byBf : BX —
BY,b— Ay.> -, b(z). Coalgebras foB5 are directed
graphs withiN-weighted edges, often referred to msilti-
graphs[9], and provide a coalgebraic semantics doaded
modal logic(GML): One defines a set of predicate liftings
{\* | ke N} by

Ny (A) = {b: X = N e B(X) | X,eqbla) > k}.

The arising modal operators are precisely the modakties
of GML [9], i.e. z E Q¢ iff ¢ holds for more thark suc-
cessor states af, taking into account multiplicities. (GML

[C] of coalition logic are captured d§] = [\“] by the
predicate liftings\, given by

AG(A) ={(S1,..., 80, f) € TX |
doc € Sc.VU@ S SC" f(Uc,O’C«) S A}

Intuitively, [C]¢ means that coalitio’ can forcep.

All the above examples can be canonically extended to
systems that process inputs from a kbl passing from the
signature functof to the functorT!. Similarly, output of
elements 0O is modelled by extending the functérto the
assignmenX — O x T'X. We refer to [8] for a detailed
account of the induced logics.

is more standardly interpreted over Kripke frames, where 3. Proof Systems For Coalgebraic Modal Logic

Or¢ reads ‘there are more tha@nsuccessors satisfying.

Both interpretations induce the same notion of satisfiabil-

ity [30].) Note that{ is monotone, but fails to be normal
unlessk = 0. (Recall that a diamond-like operatgris
calledmonotonédf it satisfies((a Ab) — Oa, andnormalif

it satisfies®(a vV b) — Qa Vv Ob). A non-monotone variation
of GML arises when negative multiplicities are admitted.

6. Thefinite distribution functorD, maps a sefX to
the set of probability distributions ol with finite support.
Coalgebras for the functdf = D, x P(U), whereU is
a set of propositional symbols, are probabilistic transiti
systems (also callggrobabilistic type spaced 3]) with fi-
nite branching degree.

The natural predicate liftings fof' are the propositional
symbols (Item 4 above) and the liftingg defined by

N(A) = {P € D,X | PA > p},

wherep € [0, 1] N Q. This yields the modalitied, = [A?]
of probabilistic modal logic (PML)17, 13], whereL,¢
reads ¢ holds in the next step with probability at least

(In general [13], probabilistic type spaces can have arbi-

trary branching degree, but since PML has the finite mode
property, this has no bearing on satisfiability.) PML is non-
normal L,(a VvV b) — Lya V Lyb is not valid forp > 0).

7. A coalgebraic semantics faoalition logic [23] is
given by the class-valued signature functodefined by

TX ={(S1,.., S, f) |0 #S; € Set, f: [] 8i — X}

i€EN

Our decision procedure for rank-1 logics relies on a com-
plete axiomatisation in a certain format. Deduction for
modal logics with coalgebraic semantics has been consid-
ered in [21, 8, 15, 30]. It has been shown that every modal
logic over coalgebras can be axiomatised in rdnks-

ing either rankt axioms or rules leading from rank to
rank 1 [30], essentially because functors, as opposed to
comonads, only encode the one-step behaviour of systems.
Here, we focus on rules. The crucial ingredients for the
shallow model construction and the ensuiR§PACE al-
gorithm are novel notions akesolution closureand strict
one-step completenesbrule sets.

For the remainder of the paper, we assume given a func-
tor 7" and a sef\ of predicate liftings fofl". We recall a few
basic notions from propositional logic, as well as notation
for coalgebraic modal logic introduced in [21, 8]:

Definition 3.1. We denote the set of propositional formulae
over a sefl” by Prop(V'). Here, we regares andA as the
basic connectives, with all other connectives defined in the
|standard way. Aiteral overV is either an element of

or the negation of such an element. We use variab#ds.

to denote either nothing of, so that a literal ovel” has

the general fornka, a € V. A clauseis a finite, possibly
empty, disjunction of literals. The set of all clauses oVer

is denoted byCl(V). Although we regard clauses as for-
mulae rather than sets of literals, we shall sometimes use
terminology such as ‘a literal is contained in a clause’ or



‘a clause contains another’, with the obvious meaning. We set closed under propositional entailment and the rules in

denote byUp(V') the sef{[Aja | A € A,a € V}.

If the elements o/ are, or have an interpretation as, sub-
sets of a given seX, then¢ € Prop(V') can be interpreted
as a subsdw] , of X; wewriteX = ¢if [¢] , = X. Sim-
ilarly, if @ € V isinterpreted as a subsétof X, then we in-
terpret{\Ja € Up(V) as the subsdf\|a] = Ax(A4) of TX.
This can be iterated, leading to interpretatidpn$ C 7'X
of ¢ € Up(Prop(V)) etc.

In case the elements af are formulae inL(A), we
also regard propositional formulae ovEras formulae in
L(A). We sometimes explicitly designaieas consisting of
propositional variablespropositional variables retain their
status across further applicationsié$ andProp (e.g. if
is a set of propositional variables, th&hand notProp(V)
is the set of propositional variables faip(Prop(V))).
Given a setl, an L-substitutionis a substitutiors of the
propositional variables by elements bf for a formula¢
overV, we call o an L-instanceof ¢. If L C P(X) for
someX, then we also refer te as anL-valuation

Definition 3.2. A (one-step) ruleR over a sef’” of propo-
sitional variables is a rules/v, where¢ € Prop(V)
andy € Cl(Up(V)). We silently identify rules unded-
equivalence. The rul® is soundif, whenevergo is valid
foranL(A)-substitutiors, thenyo is valid. MoreoverR is
one-step sound for each setX and eachP(X)-valuation
7, X E ¢r impliesTX = ¢r.

Out hitherto informal use of the termank-1 logic for-
mally meansaxiomatisable by one-step rulésquivalently
by rank-1-axioms [30]). The class of rankiogics includes

many interesting cases (Example 3.17), but excludes logic

whose axiomatisation needs nested modalities,%lg.

Remark 3.3. We can always assume that every proposi-
tional variablea appearing in the premisg of a one-step

rule appears also in the conclusion: otherwise, we can elim-

inatea by passing fromp to ¢[T /a] V ¢[-L/a].

Proposition 3.4. Every one-step sound rule is sound.

The converse holds under additional assumptions [29];

note however that the obviously sound rulé L is one-step
sound iff T = @ (as is the case e.g. for PML).

A given setR of one-step sound rules induces a proof
system forL(A) as follows.

Definition 3.5. Let R¢ denote the set of rules obtained by
extendingR with thecongruence rule

a<—b

©) Aa — [Mb

(This rule of course implies a rule where is replaced
by <, which however does not fit the format for one-
step rules.) The set aferivableformulae is the smallest

Re, with propositional variables instantiated to formulae
in L(A).

It is easy to see that this proof system is sound. Com-
pleteness requires ‘enough’ rules in the following sense.

Definition 3.6. The setR is (strictly) one-step complete
if, for each setX and each finitel c P(X), whenever
TX E x for x € Cl(Up(2)), theny is (strictly) derivable
i.e. x is propositionally entailed by clausés-, whereg /v

is in R andr is aProp(2)-valuation (arRi-valuation) such
thatX |= ¢r.

The distinctive feature oftrict one-step completeness is
that strict derivation precludes intermediate reasonivey o
Up(Prop(2()). This plays a central role in the shallow
model construction to be presented in Section 4.

Remark 3.7. It is easy to see that in the definition of one-
step completeness, it does not matter whether elements of
Prop(2l) are regarded as formulae or as subset of

Lemma and Definition 3.8. If R is strictly one-step com-
plete, then for each seX, each¢ € Prop(Up(V)),
and eachP(X)-valuation such thatTX = ¢, ¢ is
strictly congruence derivablé.e. propositionally entailed
by clauses)o, whereg/v is in R¢ (Definition 3.5) ands
is a V-substitution such thaX’ = ¢or.

Remark 3.9. Itis implicitly shown in [30] that the set of all
one-step sound rules is always strictly one-step complete
and that the proof system induced by a one-step complete

Set of rules isveakly completd.e. proves all valid formu-

Proposition 3.10. A setR of one-step rules is (strictly)
one-step complete iff for afinite setsX and all subsets
2 C PX that generateP(X) as a boolean algebray
is (strictly) derivable underR whenever’'’X | x for

x € Cli(Up(2)).

Strictly one-step complete sets of rules are generally more
complicated than one-step complete sets of rules or ax-
ioms [21, 30]. In our terminology, part of the effort of [34]
and [23] is devoted to finding strictly one-step complets set
of rules. We now develop a systematic procedure for turning
one-step complete rule sets into strictly one-step coraplet
ones. For the following, recall that given clausesnd
containing literalsz and —a, respectively, aesolventof ¢
and (at a) is obtained by removing and —a from the
clauseg V 1. A setd of clauses is calledesolution closed

if, for ¢, € ®, all resolvents ofp andy are in®.

Definition 3.11. A set R of one-step rules igesolu-
tion closedif it satisfies the following requirement. Let
R1, R2 € R,whereR; = ¢1 /11 andRy = ¢2 /2. We can



assume thaR; and R, have disjoint sets of propositional Lemma 3.16. An element: € X belongs to the interpreta-
variables. LefA]a be inv, and let-[A]b be iny, forsome  tionof) ., r;a; > k under aP (X )-valuationo iff

A € A, so that we have a resolvepitof 1) andq[a/b] at

[Aa. ThenR is required to contain a rul® = ¢/ such > rilga (@) >k,

that ¢ is propositionally entailed by; A ¢2[a/b]; in this il

caseR is called aresolveniof R, andRe. wherel, : X — {0,1} is the characteristic function of

Remark 3.12. One can construct resolution closed sets by ACX.

itera}ted addition of missing resoIvepts. Here, an obvious |, 4 examples, the resolution process, applied to known
choice for a resolvenb/y as above is to take as¢; A one-step complete rule sets, can be kept under control; by

¢2[a/b], with a eliminated according to Remark 3.3dfis  Theorem 3.15, the resulting rule sets are strictly one-step
not contained iny; itis clear thatp; A¢a[a/b] /1) is one-step complete.

sound ifR; and R, are one-step sound.
Example 3.17. 1. The empty set of rules is one-

Remark 3.13. One should not confuse the terminology in-  step complete for neighbourhood frame semantics (Exam-
troduced above with existing resolution-based approachesyje 2.5.2). This set is trivially resolution closed.

to decision procedures for modal logic (e.g. [10]), which

: . . ; 2. (Monotone modal logic) The one-step rule
rely on translating modal logic into first-order logic.

a—b
Lemma 3.14. Let V' be a set of propositional variables, let (M) =———
. Oa — Ob
1 € CI(V), and let® C CI(V) be resolution closed. Then )
® propositionally entailsy iff ) contains a clause . is one-step complete for monotone neighbourhood frame

semantics (Example 2.5.2), and clearly resolution closed.

Theorem 3.15. If R is one-step complete and resolution 3. (Standard modal logi&) The one-step rules
closed, therR is strictly one-step complete.
a ahNb—c

Proof. (Sketch) Letl C PX, and lety € Cl(Up(2()) such Oa TaAh — e
thatT X |= ~. By one-step completenessijs proposition-

ally entailed by the set of clauses are one-step complete for Kripke semantics (Exam-

ple 2.5.1), i.e. for the modal logi& [21]. The resolution
U = {0 | /1) € R,o aProp(2)-valuation X = ¢o}. closureR of these rules consists of the rules

Resolution closedness ® implies that¥ is resolution M
closed. By Lemma 3.14, it follows that contains, and Ni=y Ba; — b

hence is propositionally entailed by, a clauge in ¥, for all n € N (here, strict one-step completeness is also
where necessarily(v) € 2l for variablesv of . O easily seen directly).

In summary, strictly one-step complete rule sets can be con- 4. (Coalition logic) In Lemma 6.1 of [23], the follow-
structed by resolving the rules of a one-step complete ax-iNg et of one-step rules for coalition logic (Example 2)5.7
iomatisation against each other. Below, we give exampleshumbered as in loc. cit., is implicit:

of strictly one-step complete systems obtained in this way. V™ —a a aVvb

In order to simplify the presentation for the case of graded (1) =t C - (2) C (3) 0lav N

modal logic and probabilistic modal logic, we use the fol- Vizy ~[Cia [Cla [O]a v [N]

lowing notation. If¢; is a formulay; € Z forall i € I, and () Nizyai —b
k € Z, we abbreviate A, [Cilai — [UCiJb
ridi >k = . })7 wheren > 0, and rules (1) and (4) are subject to the side
; ¢ T(Qd (J/E\J & J‘\é/J & condition that theC; are pairwise disjoint. This set of
rules extends the axiomatisation of coalition logic, which
wherer(J) = > .. ; ;. Moreover, ifr € Z — {0} and¢ is one easily proves to be one-step complete given the results
a formula, then we put of [23]. The rules are moreover ‘nearly’ resolution closed
(full resolution closure is not needed in [23] due to a slight
sgn(r)p = o r>0 different notion of closed rule sets). Resolving rule (4)wi
¢ r<0. rules (2) and (3), one obtains the rule schema

Ni_ja; — bV \/;n:1 ¢
Ni=1[Cila; — [D]b v VL [N]e;

The formula),_; r;a; > k translates into the arithmetic of
characteristic functions as suggested by the notation:

(4)



wherem, n > 0, subject to the side condition that theare
pairwise disjoint subsets dP; this subsumes rules (2)—(4)

Definition 4.1. A setX of formulae is callecclosedif it
is closed under subformulae and unaermalised nega-

above. The set consisting of the rules (1) and (4’) is easily tion ~, where~ ¢ is defined to be) in caseyp is of the form

seen to be resolution closed.

5. (Graded modal logic) Using Proposition 3.10, one
shows directly that the one-step rules

b— Vis,a
Osm kb — Vit Okai
N 1<ij<n (2bi V 2bj)

i#j
/\?:1(17.7' — a)
/\?21 Ok; b5 — Ora
wherem > 0, n > 1, are one-step complete for GML

(W) Or+1a — Ora (A1)

(A2)

(=1 (kj+1)=k+1),

—p, and—¢ otherwise. The smallest closed set containing a
given formulagp is denoted:(¢). A subsetH of ¥ is called
aX-Hintikka setif L ¢ H and,forp Ay € X, 0 Ay € H
iff , € H,and,for-¢p € ¥, -¢p € Hiff ¢ ¢ H.

For a formulay € Prop(V') and aX-substitutions, we
define satisfaction ofo in H (H |= xo) inductively by

HE (x1Ax2)o <= HExiocandH = a0

H = (-x)o 1= H X0
HE ao i< o(a) e H
HW L

(Example 2.5.5). All these rules are subsumed by the rule This is well-defined becaudé is Hintikka.

schema

iy @i — 2?21 bj 20
/\?:1 01,05 — Vity Ok ai’
wheren, m > 0 andn + m > 1, subject to the side condi-
tion3 7, (l;+1) > 1+37%, k;. Soundness of this rule is
seen analogously as for similar rules in probabilistic Moda

(@)

logic [13]. Itis easy to see that the rule schema is closed

under resolution.

6. (Probabilistic modal logic) By reformulating the one-
step complete set of axioms for probabilistic modal logic

Lemma 4.2. Let ¥ be closed, lef be aX-Hintikka set,
and let¢, v € Prop(V). ThenH | ¢ Vo iff H = ¢ or
H = 9.

Lemma 4.3(Soundness of propositional reasoning for Hin-
tikka sets) Let X be closed, and leff be aX-Hintikka
set. Letp, v € Prop(V), and leto be aX-substitution. If
H E ¢o and¢ propositionally entails), thenH | vo.

The following result generalises Propositions 3.2, 3.5,
3.8, 3.13, and 3.16 (but not 3.10 and 3.18, which concern

given in [8] as one-step rules and subsequently applying res logics outside rank) of [34] and Lemma 6.1 of [23].

olution, one obtains the rules
iy ai =i by >k
/\?:1 Lg;b; — Vlil Lp.a;’

wherem,n > 0, m+n > 1, andk € Z, subject to the side
condition

(Pr)

D — 21 4 < k, and
if m=0then —377_, ¢; <k.

Theorem 4.4. Let R be strictly one-step complete. Then
¢ € L(A) is satisfiable iffp € H for some Hintikka set
H C X(¢) such that, for every clause = \/|_, & [\i]p;
overX(¢) with H [~ p andforeachrule)/ \/;; (¢;[Ai]a;)

in R¢, the formula—y[p; /a;];=1,... » is satisfiable.

.....

Proof. ‘Only if": Take H to be the intersection 0E(¢)
with the theory of a state satisfying

‘If": For each formulag = —[pi/aili=1,...» @s in the
statement, there exists a coalgebta = (X,,¢,) and a

This rule schema subsumes the axiomatisation in loc. cit.statex,, in C, such that, |=¢, x; we can assume that the
and hence is one-step complete. Using Lemma 3.16, oneX, are pairwise disjoint. Define the setsandp by

can show directly thatPy) is one-step sound in the same
way as for the axiomatisation in [8]. Moreover, it is easy to

see that the rule schema is resolution closed: the required

resolvent of an instance ¢#;) and an instance qfP,) is
obtained as an instance @®;;).

4. The Shallow Model Construction

We now present the announced generic shallow model con-
struction, which is based on strictly one-step complete ax-

iomatisations. The construction is performed along with th
proof of a recursive characterisation of satisfiable foraeul

which generalises results from [34] (where the use of ax-

iomatisations is implicit in certain lemmas).

X ={zo}uJX, and p=4,uJllc,,
X

X

wherez is a fresh elemeny € X(¢), andA4, = {zo} if

p € H, A, = () otherwise. We define a coalgebra structure
£onX as follows. Forz € X,, we puté{(zr) = & (x) €
TX, C TX (cf. Assumption 2.2). Then fdi\|p € X(¢),

() €M = z o, [Ap, 1)

because by naturality\p) N T'X, = A(pN Xy) = Alp] o -
Moreover, we will show that there existgz¢) € TY C
TX,whereY is the set of alk:,,, such that fofA]p € £(9),

E(wo) € Mo = Npe H. )



By structural induction, (1) and (2) then imply

rlcop <= v, pforze X,,and
oo p &= pEH

forall p € 2(¢). In particularzy = ¢, and we are done.

It remains to prove thag(z) satisfying (2) exists. As-
sume the contrary. Let” be the set of propositional vari-
ablesb,, where[A\]p € X(¢) for someX. Letd €
Cl(Up(V)) consist of the literals-[A]b, for [\]p € H and
[Ab, for =[A]p € H. By assumption]'Y = 67, where
¥ is the P(Y)-valuation takingb, to pNY = {z, |
zy e, p}. By Lemma 3.8, it follows that is strictly
congruence derivable from thogec Prop(V') such that
Y = ¢rY.

From the derivation o, it now follows thatH £ 6o,
whereo is the ¥(¢)-substitution taking, to p (note that
6o is a propositional formula over atong]p € X(¢)),
by Lemma 4.2 a contradiction to the construction fof
by Lemma 4.3, the propositional steps are sound @Ver
it remains to be shown that if the derivation 6fuses
aruleR = ¢/ V. (e[\i]a;) in Re, instantiated for a
V-substitutionn, then the conclusion ofno is satisfied
over H. Assume the contrary. By Lemma 4.2, it fol-
lows thate;[A;]o(n(a;)) ¢ H for all i. By construc-
tion, we havexr, |=c, x for x = —¢no. But since
Rn appears in the derivation ¢ Y = ¢nr¥ and hence
xy € [¢Ym7X], whererX is the’P(X, )-valuation taking,
to [plc, - Since[ynr] = [ymo]. . we have arrived at a
contradiction. O

As a corollary to the above proof, we obtain that coalgebraic
modal logic has the shallow model property. The formula-
tion of this property requires the following notion.

Definition 4.5. A supporting Kripke frameof a T-
coalgebra( X, ¢) is a Kripke frame(X, R) such that for
eachr € X,

&(x) eT{y| xRy} C TX.

As clauses suffice for satisfiability checking, we obtain

Corollary 4.6 (Shallow model property)Every satisfiable
L(A)-formula ¢ is satisfiable in ashallow modeli.e. in
a T-coalgebra(X, ¢) that has a supporting Kripke frame
which consists of a tree of depth at most the rank aihd
of branching degree at mo&t, wheren is the number of
subformulae o®, and possibly an additiondinal statex,
i.e. forall x, x Rz+, andz+ Rx impliesz = x .

(The stater+ may arise from the rule_/ L, cf. Sect. 3.)

5. A Generic PSPACE Algorithm

The shallow model result (Theorem 4.4) will be exploited
to design a decision procedure in the spirit of [34]. Since
resolution closed rule sets are in general infinite, this re-
quires ensuring that we never need to instantiate literals i
the conclusions of rules with identical formulae: othemyis
an infinite number of rules could match a single given clause
over a Hintikka set. This is formally captured as follows.

Definition 5.1. We call a clause ovef. reducedif all its

literals are distinct. Anl.-instancepo /¢o of arule¢/y €

R is reducedif the clauseyo is reduced. FinallyR is

closed under reductioif for every V-instancego /o of

aruleg/vy overV in R, there exists a reducdd-instance
¢'a’ /Yo’ of aruleg’ /¢y’ € R such thatpo andi)’c’ are
propositionally equivalent and anglo’ is propositionally
entailed bygo.

l.e. a rule set is reduced if every instance of a rule that
duplicates literals in the conclusion can be replaced by a
reduced instance of a different rule. Not all the rule sets
discussed in Example 3.17 satisfy this property, but they
can easily be extended to reduction closed sets: just add a
rule ¢’ /4’ for every rule¢/¢ overV in R and everyV -
substitutiono, where¢’ is some suitably chosen proposi-
tional equivalent ofpo and+)’ is obtained fromyo by re-
moving duplicate literals. It is clear that the new rules re-
main one-step sound. Note that there is no need to preserve
closure under resolution when passing to a reduced rule set,
as Theorem 4.4 requires only strict one-step completeness,
which is preserved under extending the rule set.

Example 5.2. 1. The strictly one-step complete rule
sets of Examples 3.17.1-4 (including monotone modal
logic, K, and coalition logic) are easily seen to be closed
under reduction, essentially because in all relevant rule
schemas, the premise is a clause of the same general for-
mat as the conclusion.

2. (Graded modal logic) The rule scheti@@) of Exam-
ple 3.17.5 fails to be closed under reduction, as duplicat-
ing literals in the conclusion substantially affects bdib t
premise and the side condition. We can cl¢68 under
reduction as described above; this results in the rule sahem

> i Titi = 0
Viey sgn(ri) O, ai’
wheren > 1 andry,...,r, € Z — {0}, subject to the side
conditiony”, _ori(ki +1) > 1+, _oriki.
3. (Probabilistic modal logic) The rule scher(g;) of

Example 3.17.6 fails to be closed under reduction. Closure
under reduction as described above leads to the rule schema

Yo ria; >k

Vlgign sgn(ri) Ly, a;

(@)

(Pr)



wheren > 1 andrq, ..
condition

.,rn € Z — {0}, subject to the side

Z?:l TiDi < ka and
if Vi.r; <0 thenZ;‘:l rip; < k.

As instances of the congruence rule never contain dupli-
cate literals, we have the following trivial fact.

Lemma 5.3. If R is closed under reduction, then sdRg-.
Thus the following is immediate from Theorem 4.4.

Corollary 5.4. Let R be strictly one-step complete and
closed under reduction. Thep € L(A) is satisfiable iff
¢ € H for some Hintikka seff C X(¢) such that, for
everyreducedclausep = \/i_, €[\;]p; over £(¢) with
H [~ p and for each ruley/ \/!_; (€;[A\i]a;) in Re, the
formula—)[p;/a;)i=1.... n is satisfiable.

.....

In the implementation of the algorithm suggested by Corol-

Example 5.7. For the rules of Examples 3.17 and 5.2, we
just take the parameters of a rule as its code in the obvious
way. E.g. the code of an instance (@) as displayed in
Example 5.2.3 consists of, &, ther;, and thep,;. The size

of the code is determined by the sizes of these nhumbers plus
separating letters, say, (1+size(a;))+>_(1+size(p;))+
size(n)+ size(k)+1. Note that not all such codes represent
instances of ;).

The following decision procedure on an alternating Turing
machine generalises the algorithms in [34], given a syrictl
one-step complete and reduction closedet

Algorithm 5.8. (Decide satisfiability ofs € £(A))

1. (Initialise) Construct the séi(¢).

2. (Existential) Guess a Hintikka séf C X(¢) with
¢ H.

3. (Universal) Guess a reduced clause# p € X(¢)
with H [~ p and anR ¢-matching[R] of p.

4. (Existential) Guess a clausefrom the conjunctive

lary 5.4, we need to pass around matches of rules with givennormal form (CNF) of the premise ok and recursively

clauses. Since rules, in particular their premises, aregen

ally too large to pass around directly, we assume that ev-
ery rule (i.e. every instance of a rule scheme) is given by a
code i.e. a string over some alphabet which identifies the

check that-y[p] is satisfiable.

The algorithm succeeds if all possible choices at steps
markeduniversallead to successful termination, and for

rule; when rules appear as data, they are always represente@ll Steps markeexistentia) there exists a choice leading

by their code. Moreover, we assume that propositional vari-
ablesa; in rules are uniformly represented by indices that
point to literalse;[\;]a; of the conclusion.

Definition 5.5. We say that a ruleR € R matchesa re-
duced clause = /", ;[\i]¢; if the conclusion ofR is

of the form \/?:1 €;[\iJa;. By the above variable conven-
_____ » Of a conjuncty of
the premise of: can be computed in polynomial time from
1 andp; we denote the result by[p]. Two matching rules
areequivalentf their premises are propositionally equiva-
lent; equivalence classéR] are calledR-matchings The

code ofR is also acodefor [R].
We fix some size measures for complexity purposes:

Definition 5.6. The size size(a) of an integera is
[logs(la| + 1)], where[r] = min{z € Z | z > r} as
usual. The sizeize(p) of a rational numbep = a/b, with

a, b relatively prime, isl + size(a) + size(b). Thesize|¢|

of a formula¢ overV is defined by counting for each
propositional variable, boolean operator, or modal ofmerat
and additionally the size of each index of a modal operator.

to successful termination.

Correctness of the algorithm is guaranteed by Corol-
lary 5.4. Note that the algorithm terminates successfully i
Step 3 if there are no rules matching clauses @yemn par-
ticular, the algorithm terminates either in Step 2 orin S3ep
if ¢ has rank). We emphasise that in Step 3, it suffices to
guess one code for each matching.

The crucial requirement for the effectivity of Algo-
rithm 5.8 is that Steps 3 and 4 can be performed in poly-
nomial time, i.e. by suitable nondeterministic polynomial
time multivalued functions (NPMV) [5]. We recall that a
function f : ¥* — P(A*), whereX andA are alphabets,
is NPMV iff

1. there exists a polynomial such thatly| < p(]z|) for
ally € f(z), where| - | denotes size, and

2. the grapH(z,y) | y € f(z)} of fisin NP.

Thus, the following conditions guarantee that Algorithi@ 5.
has polynomial running time:

Definition 5.9. A set R of rules is called PSPACE-
tractableif there exists a polynomigh such that allR-

(In the examples, indices are either numbers, with sizes asmatchings of a reduced claugever £(A) have a code of

above, or subsets dfl, ..., n}, assumed to be of size)

In particular, indices of graded or probabilistic modal ope
ators are coded in binary.

size at mosp(|p|), and it can be decided iNP

1. whether a given code is the code of some rutRjn
2. whether a rule matches a given reduced clause; and



3. whether a clause belongs to the CNF of the premiseThe logic of neighbourhood frames and monotone modal

of a given rule.

Theorem 5.10(Space Complexity)LetR be strictly one-
step complete, closed under reduction, aR4dPACE-
tractable. Then the satisfiability problem fal(A) is in
PSPACE.

Remark 5.11. A more careful analysis of Algorithm 5.8
reveals that it suffices for the decision problems in Defini-
tion 5.9 to be inPH, the polynomial time hierarchy. In our
examples, however, the complexity is in fdetrather than
NP. We expect that this situation is typical, with the cru-
cial condition for PSPA CE-tractability being the polyno-
mial bound orfiR-matchings. We are not aware of any natu-
ral examples of intractable rule sets (contrived examples a
easy to construct, e.g. by using hard side conditions).

The next lemma, which follows directly from size esti-
mates in linear integer programming [28], is crucial for es-
tablishing PSPA CE-tractability in the examples. Follow-
ing usual practice, we take trgze |WW| of a rational in-
equalityW = (31| wiz; op ug), op € {<,<,>,>},to
bel+n+ Y1, size(u;).

Lemma 5.12. There exists a polynomial such that for
every rational linear inequalityl’ and every solution
ro,...,rn € Z of W, there exists a solutior{,, ..., r), € Z
of W such thatsize(r}) < p(|W]) for all 4, and the formu-
lae >"" , ria; > ro and." | ria; > r{, are proposition-
ally equivalent.

logic are of lesser interest here, as the corresponding moda
logics are inNP [34]. We briefly comment on the algo-
rithms and bounds for the other cases.

1. For the modal logicK (Example 3.17.3), Algo-
rithm 5.8 is essentially the witness algorithm [34, 4], with
reduced clauses violated By corresponding talemands

2. For coalition logic (Example 3.17.4), we arrive, due
to minor differences of the rule sets, at a slight variant of
Pauly’s PSPA CE-algorithm [23].

3. For graded modal logic, we obtain a new algorithm
which confirms the knownPSPACE bound [31]. One
might claim that the new algorithm is not only nicely em-
bedded into a unified framework, but also conceptually sim-
pler than the constraint-based algorithm of [31] (which-cor
rects an erroneous algorithm previously given elsewhere).

4. For probabilistic modal logic, we obtain a new algo-
rithm which yields a previously unknowRSPA CE-bound
(to our knowledge, the best previously published bound for
PML is EXPTIME [30]). The bound is tight, as PML con-
tains thePSPA CE-complete logick D as a fragment (em-
bedded by mappingl to L,).

6. Conclusion

Generalising results of [34], we have shown that coalge-
braic modal logic has the shallow model property, and we
have presented a genetSPACE algorithm for satisfia-

We now illustrate how Theorem 5.10 allows us to establish Pility based on depth-first exploration of shallow models.

PSPACE bounds for many modal logics in a uniform way.
In particular, we obtain a new (tigh#)SPACE bound for
probabilistic modal logic.

Example 5.13.Conditions 1 and 2 of Definition 5.9 are im-

mediate for all the rule sets of Example 3.17 — the decision
problems in question involve no more than checking com-
putationally harmless side conditions in the case of Con-

dition 1 (disjointness and containment of finite sets, lmea
inequalities), and comparing clauses of polynomial (irt,fac
linear) size in the case of Condition 2. Moreover, Condi-

tion 3 is immediate in those cases where the premises of

We have thus

e reproduced thavitness algorithrior K [4]

e obtained a slight variant of the know?SPACFE algo-
rithm for coalition logic [23]

e obtained a newPSPACE algorithm for graded modal
logic, recovering the know®SPA CE bound [31]

e obtained a novelPSPACE bound for probabilistic
modal logic [17, 13].

In all these cases, the bound obtained is tight.
The crucial prerequisite for the generic algorithm is an

rules are just single clauses. This leaves only GML and axiomatisation by so-called one-step rules (going fronkran

PML; but the definition OfZiel r;a; > k is already in

0 to rank1) obeying two closedness conditions: closedness

CNF, and checking whether a given clause belongs to thisunder resolution and under removal of duplicate literats. |

CNF is clearly inP.

It remains to establish the polynomial bound on the
matchings. For GML and PML, this is guaranteed by
Lemma 5.12. In all other cases, every reduced clause

the examples, it has not only turned out that is it feasible
to keep this closure process under control, but also that the
axiomatisations obtained have pleasingly compact prasent
tions — often, one ends up with a single rule schema. Nev-

matches at most one rule, whose code has size linear in thertheless, it remains desirable to prov@8PACE bound

size ofp.
We thus have obtaineHSPA CE-tractability and hence
decidability in PSPACE for all logics in Example 3.17.

relying on purely semantic conditions such as the ones ap-
pearing in [30]; this is the subject of further research, as
is the extension of the theory beyond rank 1 by means of



comonads and the treatment of iteration, possibly using au-[16] A. Kurz. Specifying coalgebras with modal logi€heoret.
tomata theoretic methods [35, 36].
Ongoing work indicates that every modal logic can be [17]

equipped with a coalgebraic semantics, provided it is ax-

iomatisable in rank and satisfies the congruence rule. This

means in particular that the method employed here applies

(18]

to every such modal logic, i.e. one obtains a purely syrtacti [19]

criterion (tractability of a certain closure of the axiorisat

tion) for rank41 modal logics to be ilPSPACE.
Acknowledgementd he authors wish to thank Alexan-
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the rule leading to final states, and the Department of Com-
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