
Sequent Systems for Lewis’ Conditional Logics⋆

Björn Lellmann and Dirk Pattinson

Department of Computing, Imperial College London, UK

Abstract. We present unlabelled cut-free sequent calculi for Lewis’ conditional
logic V and extensions, in both the languages with the entrenchmentconnective
and the strong conditional. The calculi give rise to Pspace-decision procedures,
also in the language with the weak conditional. Furthermore, they are used to
prove the Craig interpolation property for all the logics under consideration, and
yield a Pspace-decision procedure for a recently considered hybrid version ofV.

1 Introduction

Although the use of conditional logics in artificial intelligence and automated reasoning
has a long tradition (e.g. [6]), there has been slow progressin the development of proof
systems for these logics. Even today, we still see conditional logics for which no proof
systems of optimal complexity have been found. In general, the development of proof
systems follows two main approaches: one can derive labelled tableau systems from
the semantics [14, 8] or convert a Hilbert-style axiomatisation to an unlabelled sequent
system which is then saturated to guarantee cut-elimination [15, 17, 10].

Although proof systems for some of the more prominent logicshave been developed
quite early on [2, 9, 4, 1], the systematic exploration of systems with optimal complexity
has attracted interest only recently. In particular, thereare no complexity-optimal proof
systems for an important class of logics, those that are interpreted oversphere models,
originally proposed by Lewis [11]. These logics can be characterised using different
connectives: theentrenchment connective4, thestrong conditional�, and theweak
conditional�. While these connectives are interdefinable, the translations in general
yield an exponential blow-up, and thus complexity results do not necessarily carry over.

Although the logics in the weak conditional language have long been known to
be decidable in polynomial space [3], the best proof systemsfor this language so far
only yield acoNExptime upper bound [8]. For the entrenchment connective, there are
systems for the logicsVC andVCS, which implicitly yield a Pspace upper bound [2, 4],
but no systematic treatment has been given yet, a gap that this paper now closes.

Our main results are the following: we present complexity-optimal unlabelled se-
quent calculi for the logicsV,VN,VT,VW andVC in the entrenchment and strong
conditional language. With the exception of the calculus for VC in the entrenchment
language these seem to be new. Cut elimination for our calculi follows from the more
general approach ofcut elimination by saturation, and yields purely syntactical decision
procedures of optimal Pspace complexity. A Pspace decision procedure for the logics in
the weak conditional language is established by means of translation. As an application,
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we establish the Craig interpolation property for all logics considered (in any connec-
tive), which we believe is also a new result. Our second application yields a previously
unknown Pspace result for a hybrid version ofV� recently considered in [16].

2 Preliminaries

For n ∈ {0, 1, 2, . . . } we write [n] for {1, . . . , n}. Throughout,V denotes a denumerable
set of propositional variables, writtenp, q, . . . and we use bold facep, q, . . . to de-
note finite sequences of propositional variables. We fix a setΛ of modal operators with
associated arities (later, we will specialiseΛ to consist of just one binary conditional op-
erator). The set ofΛ-formulaeis defined byF (Λ) ∋ A, B,A1, . . . ,An ::= ⊥ | p | A∧ B |
A∨B | A→ B | ♥(A1, . . . ,An) for p ∈ V and♥ ∈ Λwith arity n, with remaining connec-
tives defined as usual. We writeΛ(S) = {♥(A1, . . . ,An) | ♥ ∈ Λ n-ary,A1, . . . ,An ∈ S}
for the set of formulae constructed fromS using a single connective inΛ andvar (A) for
the set of propositional variables occurring in the formulaA. Uniform substitution of all
propositional variables in a formulaA using a substitutionσ : V → F (Λ) is denoted by
Aσ. A Λ-logic, or justlogic is a setL ⊆ F (Λ) that contains all propositional tautologies
and is closed under uniform substitution, modus ponens and the congruence rule: from
Ai ↔ Bi for i = 1, . . . , n infer ♥(A1, . . . ,An) ↔ ♥(B1, . . . , Bn) for everyn-ary modality
♥ ∈ Λ. We think of logics as given semantically as the set of universally valid formulae
on some class of models and write|=L A for A ∈ L. The setS(F) of sequentsoverF
consists of tuples of multisetsΓ, ∆ of formulae inF, writtenΓ ⇒ ∆. The multiset union
of two multisetsΓ and∆ is writtenΓ, ∆ and we identify formulae with singleton multi-
sets. Substitution extends to both multisets of formulae and sequents in the obvious way
(perserving multiplicity), e.g. (A1,A2 ⇒ B)σ = A1σ,A2σ ⇒ Bσ. We use the system
G3cp of [18] with axiomsΓ,A ⇒ ∆,A (whereA ranges over the set of formulae) as
basis for all systems that extend classical propositional logic and denote its proof rules
by G. We adopt the standard structural rules

Γ ⇒ ∆

Σ, Γ ⇒ ∆, Π
W,
Γ,A,A⇒ ∆
Γ,A⇒ ∆ ConL,

Γ ⇒ ∆,A,A
Γ ⇒ ∆,A ConR,

Γ ⇒ ∆,A Σ,A⇒ Π
Γ, Σ ⇒ ∆, Π

Cut

and write|=L Γ ⇒ ∆ if L is a logic and|=L
∨

Γ →
∧

∆.

3 Conditional Logics: Calculi and Main Results

We consider the conditional logicsV,VN,VT,VW andVC [11, 13] in the languages
of (binary)entrenchment4 and (binary)weakandstrong conditionals� and�. We
read entrenchmentA 4 B as ’A is at least as plausible asB’ and adopt Lewis’sphere
semantics: a sphere modelis a tripleI = (I , ($i)i∈I , π) where I is a set (of worlds),
each $i ⊆ P(I ) is asystem of spheres, i.e. a family of nested subsets ofI closed under
unions and nonempty intersections, andπ : V → P(I ) is a valuation. We think of $i as
providing a measure of comparative similarity, which provides the truth condition

I, i |= A 4 B ⇐⇒ for all spheresS ∈ $i ( S ∩ ~B� , ∅ only if S ∩ ~A� , ∅ )
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(CP)
⊢ B→ (A1 ∨ · · · ∨ An)

⊢ (A1 4 B) ∨ · · · ∨ (An 4 B)
(n ≥ 1)

(TR) ((A 4 B) ∧ (B 4 C))→ (A 4 C)

(CN) (A 4 B) ∨ (B 4 A)

(N) ¬(⊥ 4 ⊤)

(T) (⊥ 4 ¬A)→ A

(W) ((⊥ 4 ¬A) ∨ ¬(¬A 4 ⊤))→ A

(C) ((A 4 ⊤) ∧ (⊤ 4 A))→ A

HV4 : CP,TR,CN HVN4 : HV,N HVT4 : HV,T HVW4 : HV,W HVC4 : HV,C

Fig. 1. Hilbert axiomatisation of theV-logics as smallest logics closed under rules/axioms

where~A� = {i ∈ I | i |= A} is the truth set of a formulaA, together with the standard
clauses for propositional variables and boolean connectives. Thestrong conditional op-
erator� can be defined in terms of entrenchment by (A � B) ↔ ¬((A ∧ ¬B) 4
(A∧ B)). Over a sphere model,A� B asserts thatA∧ B is more possible or plausible
thanA∧ ¬B. This leads to the interpretation

I, i |= A� B ⇐⇒ for some sphereS ∈ $i ( S ∩ ~A� , ∅ butS ∩ ~A∧ ¬B� = ∅ ) .

Similarly, the weak conditional� can be expressed in terms of entrenchment by
(A � B) ↔ ((⊥ 4 A) ∨ ¬((A ∧ ¬B) 4 (A ∧ B))) where the only difference is that
a weak conditionalA� B is also accepted if the conditional antecedentA is consid-
ered impossible, i.e. false in every sphere for the current world.

If A is a formula andC is a class of sphere models, thenA is universally validonC
if I, i |= A for all I = (I , ($i)i∈I , π) ∈ C and all i ∈ I . We writeV∗ for the logic of all
sphere models, i.e. the set of all formulae that are universally valid in all sphere models
in the language of the binary connective∗ ∈ {4,�,�}. We consider the following
extensions [11, page 120] ofV∗ determined by the following additional conditions on
sphere modelsI = (I , ($i)i∈I , π), understood as universally quantified over alli ∈ I :

– The logicVN∗ is determined by allnormalsphere models, i.e. those with
⋃

$i , ∅

– The logicVT∗ is determined by alltotally reflexivesphere models, i.e.i ∈
⋃

$i

– The logicVW∗ is the logic of allweakly centeredsphere models, i.e. those for
which there isS ∈ $i with S , ∅ andi ∈ S′ whenever∅ , S′ ∈ $i

– The logicVC∗ is the logic of allcenteredsphere models, i.e. those with{i} ∈ $i.

Those logics are known [11, pages 124–130] to enjoy a sound and complete axiomati-
sation in a Hilbert calculus with rules and axioms summarised in Figure 1. By reducing
the decision problem for standard modal logicsK,D,T to the decision problems for the
corresponding conditional logics [11, p.137] using the translations♦A ↔ ¬(⊥ 4 A)
and♦A↔ (A� ⊤) and♦A↔ ¬(A� ⊥) all the logics are easily seen to be Pspace-
hard. Our main contribution are new, cut-free sequent calculi for the logics above that
enable backwards proof search in polynomial space. Our calculi contain the standard
rules for the propositional connectives together with the rules summarised in Figure
2. Intuitively, rulesR1,2 andR2,0 guarantee derivability of the axioms (TR) and (CN),
while the rulesRn,0 cover the rules of (CP). The remaining rules ofRV4 are needed to
guarantee saturation (see Section 5), and additional rulesfor the other logics correspond
to additional axioms. The rule sets for� are constructed by translation.
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{ Bk⇒ A1, . . . ,An,D1, . . . ,Dm | k ≤ n } ∪ { Ck ⇒ A1, . . . ,An,D1, . . . ,Dk−1 | k ≤ m }
Γ, (C1 4 D1), . . . , (Cm 4 Dm)⇒ ∆, (A1 4 B1), . . . , (An 4 Bn)

Rn,m

A⇒ ⇒ B
Γ, (A 4 B)⇒ ∆

RN
A⇒ Γ ⇒ ∆, B
Γ, (A 4 B)⇒ ∆

RT

{ Ck ⇒ A1, . . . , An,D1, . . . ,Dk−1 | k ≤ m } Γ ⇒ ∆,A1, . . . ,An,D1, . . . ,Dm

Γ, (C1 4 D1), . . . , (Cm 4 Dm)⇒ ∆, (A1 4 B1), . . . , (An 4 Bn)
Wn,m

Γ ⇒ ∆,A
Γ ⇒ ∆, (A 4 B)

RC1
Γ,A⇒ ∆ Γ ⇒ ∆, B

Γ, (A 4 B)⇒ ∆
RC2

{

Ck, {Bi | i ∈ I } ⇒ {Ai | i < I }, {C j | j ∈ J}, {D j | k > j < J} | k ≤ m, I ⊆ [n], J ⊆ [k− 1]
}

∪
{

Ak, Bk, { Bi | i ∈ I } ⇒ { Ai | i < I }, {C j | j ∈ J}, {D j | j < J} | k ≤ n, I ⊆ [n], J ⊆ [m]
}

Γ, (A1� B1), . . . , (An� Bn)⇒ ∆, (C1 � D1), . . . , (Cm� Dm)
R′n,m

⇒ A ⇒ B
Γ ⇒ ∆, (A� B)

R′N
Γ ⇒ ∆,A A⇒ B
Γ ⇒ ∆, (A� B)

R′T

{

Ck, {Bi | i ∈ I } ⇒ {Ai | i < I }, {C j | j ∈ J}, {D j | k > j < J} | k ≤ m, I ⊆ [n], J ⊆ [k− 1]
}

∪
{

Γ, {Bi | i ∈ I } ⇒ {Ai | i < I }, {C j | j ∈ J}, {D j | j < J} | I ⊆ [n], J ⊆ [m]
}

Γ, (A1� B1), . . . , (An� Bn)⇒ ∆, (C1� D1), . . . , (Cm� Dm)
W′

n,m

Γ ⇒ ∆,A Γ, B⇒ ∆
Γ, (A� B)⇒ ∆

R′C1
Γ ⇒ ∆,A Γ ⇒ ∆, B
Γ ⇒ ∆, (A� B)

R′C2

RV4 = {Rn,m | n ≥ 1,m≥ 0}
RVN4 = RV ∪ {RN}

RVT4 = RV ∪ {RT}

RVW4 = RVT ∪ {Wn,m | n ≥ 1,m≥ 0}
RVC4 = RV ∪ {RC1,RC2}

RV� = {R′n,m | n ≥ 1,m≥ 0}
RVN� = RV� ∪ {R

′
N}

RVT� = RV� ∪ {R
′
T}

RVW� = RVT� ∪ {W
′
n,m | n ≥ 1,m≥ 0}

RVC� = RV� ∪ {R
′
C1,R

′
C2}

Fig. 2. The rules and rule sets.

As usual, we call a formulaprincipal in a rule if it appears in the conclusion of the
rule but not in any premiss. A premiss of a rule iscontextualif it inherits the context
(written Γ ⇒ ∆ in Figure 2) from the conclusion. That is, the right hand premiss of
RT and the premisses of bothRC1 andRC2 are contextual premisses of the respective
rules. IfR is one of the rule sets of Figure 2, we writeR∗ for the rule set that arises
by adding the principal formulae of each rule to each of its contextual premisses and
refer toR∗ as themodificationof R. For example, the right (contextual) premiss of the
rule RT then becomesΓ, (A 4 B) ⇒ ∆, B whereas the left (non-contextual) premiss of
RT remains unchanged. We write⊢R Γ ⇒ ∆ in caseΓ ⇒ ∆ is derivable using rules
in R, and⊢R∗ for derivability using the modification ofR. We denote use of additional
rules by juxtaposition, e.g.GRConCut denotes derivability where Cut and Contraction
(both on the left and on the right) may be used in addition to rules in G andR. The
remainder of the paper establishes our main contributions,the first being soundness and
completeness of the corresponding rules in presence of contraction (see Sections 4,5,6).

Theorem 1 (Soundness and Completeness).If ∗ ∈ {4,�} andL is one of the logics
V∗,VN∗,VT∗,VW∗,VC∗ then⊢GRLCon Γ ⇒ ∆ if and only if |=L Γ ⇒ ∆.
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The primary purpose of the modifications of the rules in Figure 2 is to achieve admis-
sibility of contraction between principal formulae and those in the context. It is easy to
see that this does not change the set of derivable sequents (Sections 5,6).

Proposition 2 (Elimination of Contraction). If ∗ ∈ {4,�} andL is one of the logics
V∗,VN∗,VT∗,VW∗,VC∗ then⊢(GRL)∗ Γ ⇒ ∆ if and only if⊢GRLCon Γ ⇒ ∆.

This already implies that cut elimination holds for all logics formulated in terms of
entrenchment and strong conditional. The calculi are complexity optimal (Sections 5,6):

Theorem 3 (Complexity). If ∗ ∈ {4,�} andL is one of the logicsV∗,VN∗,VT∗,
VW∗,VC∗, then derivability in(GRL)∗ is decidable inPspace using backwards proof
search. If∗ =�, thenL is decidable inPspace by translating to�.

As an immediate application, the calculi above allow us to establish, for the first time,
that all logics considered here have the Craig interpolation property (Section 7).

Theorem 4 (Craig Interpolation). If ∗ ∈ {4,�,�} and L is one of the logics
V∗,VN∗,VT∗,VW∗,VC∗, thenL has the Craig interpolation property.

We prove the above theorems and give precise definitions in the following sections.

4 Soundness and Completeness of The Entrenchment Rules

We first consider the rules in the entrenchment language. Thecorresponding results for
the rules for the strong implication will be established in Section 6.

Theorem 5. For L ∈ {V4,VN4,VT4,VW4,VC4} the rules inRL are sound forL.

Proof. We proceed by induction on the derivations and refer to [4] for RVC4 .
ForRV4 : Suppose the last applied rule wasRn,m, with conclusion (C1 4 D1), . . . , (Cm 4

Dm) ⇒ (A1 4 B1), . . . , (An 4 Bn) and premisses as given in Figure 2, and suppose all
the premisses are valid. LetI = (I , ($i)i∈I , π) be a sphere model andi ∈ I . Suppose
i ∈ ~Ck 4 Dk� for all k ∈ [m] and that for ak ∈ [n] we havei < ~Aℓ 4 Bℓ� for all
ℓ ∈ [n], ℓ , k. ChooseS ∈ $i and j ∈ S ∩ ~Bk�. Since|=V4 Bk→

∨

ℓ∈[m] Dℓ ∨
∨

ℓ∈[n] Aℓ
we havej ∈

⋃

ℓ∈[n]~Aℓ� ∪
⋃

ℓ∈[m]~Dℓ�. Thus eitherj ∈
⋃

ℓ∈[n]~Aℓ� or j ∈ ~Dℓ� for a
ℓ ∈ [m]. In the latter case, sincei ∈ ~Cℓ 4 Dℓ� we find a j2 ∈ S ∩ ~Cℓ�, and since
|=V4 Cℓ →

∨

ℓ′<ℓ Dℓ′ ∨
∨

ℓ′∈[n] Aℓ′ we have j2 ∈
⋃

ℓ′<ℓ~Dℓ′� ∪
⋃

ℓ′∈[n]~Aℓ′�. Continu-
ing like this we find aj′ ∈ I with j′ ∈ S ∩

⋃

ℓ∈[n]~Aℓ�. Now if j′ < ~Ak� there is a
ℓ , k with j′ ∈ ~Aℓ�. But sincei < ~Aℓ 4 Bℓ� there is anS′ ∈ $i with S′ $ S and
S′∩~Bℓ� , ∅ = S′∩~Aℓ�. As above we get aj′′ ∈ S′∩

⋃

t∈[n]~At� = S′∩
⋃

t∈[n],t,ℓ~At�.
Repeating the argument we finally get anS′′ ∈ $i with ∅ , S′′∩

⋃

ℓ∈[n]~Aℓ� = S′′∩~Ak�,
and since by constructionS′′ ⊆ S we havei ∈ ~Ak 4 Bk�.

For RVN4 : Assume|=VN4 ¬A and|=VN4 B, letI be a normal sphere model, i.e., for
all i ∈ I we have

⋃

$i , ∅, and leti ∈ I . Since
⋃

$i , ∅ there is aj ∈ S ∈ $i . But then
j ∈ ~B� and for allt ∈ S we havet < ~A�. Thusi < ~A 4 B�.

ForRVT4 : Suppose|=VT4 ¬A and|=VT4
∧

Γ →
∨

∆∨B, and letI be totally reflexive,
i.e., for all i ∈ I we havei ∈

⋃

$i . Then for anyi ∈ I we have eitheri ∈ ~B� and are
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done, or we can choose aS ∈ $i with i ∈ S. But we know thatj < ~A� for all j ∈ S,
and thus we geti < ~A 4 B�.

ForRVW4 : Similar toV4. Let |=VW4 Γ ⇒ D1, . . . ,Dm,A1, . . . ,An, ∆ and|=VW4 Ck ⇒

D1, . . . ,Dk−1,A1, . . . ,An for all k ∈ [m], and suppose thatI is weakly centered, i.e., for
all i ∈ I there is anS ∈ $i with S , ∅ and for allS ∈ $i with S , ∅ we havei ∈ S. Then
for i ∈ I we have eitheri <

⋃

ℓ∈[m]~Dℓ� ∪
⋃

ℓ∈[n]~Aℓ� and are done; or we havei ∈ ~Aℓ�
for a ℓ ∈ [n] and are done; or we havei ∈ ~Dk� for a k ∈ [m]. In the latter case we take
S ∈ $i with S , ∅. Then i ∈ S. If i < ~Ck 4 Dk� we are done; otherwise there is a
i1 ∈ S∩Ck. Since|=VW4 Ck →

∨

ℓ<k Dℓ∨
∨

ℓ∈[n] Aℓ we havei1 ∈
⋃

ℓ<k~Dℓ�∪
⋃

ℓ∈[n]~Aℓ�.
Repeating the argument yields aj ∈ S ∩

⋃

ℓ∈[n]~Aℓ�. Choosek1 with j ∈ ~Ak1�. If
i < ~Ak1 4 Bk1�, then there is aS′ $ S with S′ ∩ ~Ak1� = ∅ andS′ ∩ ~Bk1� , ∅.
As above we get aj2 ∈ S′ ∩

⋃

ℓ∈[n]~Aℓ� = S′ ∩
⋃

ℓ,k1
~Aℓ�. Repeating the argument

again we successively eliminate theAℓ’s and get ak′ ∈ [n] such that for allS ∈ $i with
S ∩ ~Bk′� , ∅ we haveS ∩ ~Ak′� , ∅. But this meansi ∈ ~Ak′ 4 Bk′�. �

Next we establish completeness of the sequent systems with the cut rule. Cut-free com-
pleteness follows from the generic cut elimination result of the next section. Since all
our systems include the congruence rule and thus are closed under uniform substitution,
it suffices to show that all the rules and axioms of the Hilbert-stylecharacterisationHL
of a given logicL from Figure 1 are derivable in the corresponding sequent system with
cut. Since the Hilbert-systems are complete [11], this establishes the result.

Theorem 6 (Completeness).For L ∈ {V4,VN4,VT4,VW4,VC4} the sequent system
GRLConWCut is complete with respect toL.

Proof. Showing that the rules and axioms ofHV4,HVN4 andHVT4 can be derived
in the corresponding sequent system is easy. ForHVW4 note that adding the axiom
(W) is equivalent to adding the axioms (T) and (¬A 4 ⊤) ∨ A, where the latter is easily
derived usingW1,0. ForHVC4, usingRC2 we get (A 4 ⊤)→ A and thus (C). �

5 Cut Elimination for the Entrenchment Rules

Our approach towards proving cut elimination for the sequent systems of the previous
section is based on a general method for the construction of cut-free calculi:cut elim-
ination by saturation. We call a set of (sequent) rulessaturatedif it is closed under
the operations of cut and contraction, introduced below. Cut elimination by saturation
elevates both cut and contraction from the level ofproof rulesto the level ofoperations
on proof rules, i.e. constructions that allow us to derive new proof rules while preserv-
ing soundness. Cut closure holds if for any two given rules, performing a cut on the
conclusions and collecting the premisses of both rules results in a (cut-free) derivable
rule (after eliminating variables that no longer occur in the conclusion) and contraction
closure stipulates that the result of identifying literalsin the conclusion of a rule gives
a rule already present in the rule set. Assuming saturation cut elimination holds, ev-
ery cut can be replaced by a derivable rule, reducing level orrank of the cuts. The key
ingredient in sequent systems for non-iterative logics is the concept of ashallow rule,
introduced in previous work [10]. Intuitively, a shallow rule adds one layer of modalities
in the conclusion, while its premisses may or may not propagate the context.
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Definition 7. A shallow ruleis a tripleR = (Pn; Pc;Σ ⇒ Π) wherePn ⊆ S(V) and
Pc ⊆ S(V) are finite sets of sequents (thenon-contextualandcontextualpremisses,
respectively) andΣ ⇒ Π ∈ S(Λ(V)) are theprincipal formulaesubject to the following
variable restriction: every variablep ∈ Vmay occur at most once inΣ ⇒ Π and occurs
in the premisses iff it occurs in the principal formulae. Aninstanceof a shallow rule

{Υσ⇒ Ωσ | Υ ⇒ Ω ∈ Pn} ∪ {Γ,Θσ⇒ ∆, Ξσ | Θ⇒ Ξ ∈ Pc}

Γ, Σσ⇒ ∆, Πσ

is given by a contextΓ ⇒ ∆ and a substitutionσ : V → F (Λ). We often annotate the
contextual premisses with the context (usuallyΓ ⇒ ∆) if no confusion can arise.

Remark 8. The variable restriction on the principal formulae is for technical conve-
nience and not restrictive, as a duplicate occurrence of a variable p is avoided by re-
placing it by a fresh variableq and adding non-contextual premissesp⇒ q andq⇒ p.

Example 9. The rules of classical propositional logic such asΓ⇒∆,A Γ⇒∆,B
Γ⇒∆,A∧B (∧R) and

all of our rules for conditional logics in Figure 2 are shallow. All premisses in∧R and
RC2 are contextual, while all premisses inRn,m andRN are non-contextual. RuleRT has
both a contextual and a non-contextual premiss.

A setR of shallow rules induces a sequent system in the standard way.

Definition and Convention 10. Whenever we speak about aset of shallow rulesR
we assume thatR is closed under injective renaming of propositional variables. Let
R be a set of shallow rules andS ⊆ S(F (Λ)) a set of sequents. A sequentΓ ⇒ ∆
is R-derivable from S, in symbolsS ⊢R Γ ⇒ ∆, if it is an element of the least set
S ⊢R containingS and closed under the axiom rules

Γ,A⇒∆,A and thecongruence rules
A1⇒B1 B1⇒A1 ... An⇒Bn Bn⇒An

Γ,♥(A1,...,An)⇒∆,♥(B1,...,Bn)
and all instances of rules inR. We writeS ⊢RR′ for

S ⊢R∪R′ and simply⊢R for ∅ ⊢R. The rule setR′ isR-admissibleif ⊢RR′⊆⊢R. Derivations
are defined as usual [18] and a (not necessarily shallow) ruleR = P1 . . .Pn/C with
premissesP1, . . . ,Pn and conclusionC isR-derivableif {P1, . . . ,Pn} ⊢R C.

Lemma 11 (Admissibility of Weakening).⊢R Γ ⇒ ∆ whenever⊢RW Γ ⇒ ∆.

The proof is standard. For admissibility of Contraction andCut, the rule set needs to be
closed under the operations ofrule contractionandcut between rulesdescribed next.

Definition 12 (Cut as an Operation on Proof Rules).If (On,Oc) are sets of sequents
(that we think of as non-contextual and contextual premisses, respectively) andp is a
variable, then thep-elimination on On and Oc is the pair (On,Oc)⊖ p := (O′n,O

′
c) where

O′n = {Γ, Σ ⇒ ∆, Π | 〈Γ, p⇒ ∆;Σ ⇒ Π, p〉 ∈ On ×On} ∪ {Γ ⇒ ∆ ∈ On | p < Γ, ∆}

O′c = {Γ, Σ ⇒ ∆, Π | 〈Γ, p⇒ ∆;Σ ⇒ Π, p〉 ∈ (On ∪Oc)2 \ (On ×On)}

∪ {Γ ⇒ ∆ ∈ Oc | p < Γ ∪ ∆}

and we write (On,Oc) ⊖ p1, . . . , pn for the repeated application of variable elimination.
If R = (Pn; Pc;Σ ⇒ Π,♥p) andR′ = (P′n; P′c;♥p, Σ′ ⇒ Π ′) are shallow rules, thecut
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of R and R′ on ♥p is the shallow rulecut(R,R′,♥p) = (Qn; Qc;Σ, Σ′ ⇒ Π,Π ′) where
(Qn,Qc) = (Pn ∪ P′n,Pc ∪ P′c) ⊖ p. A setR of shallow rules iscut closedif for any
R,R′ ∈ R with principal formulaeΓ ⇒ ∆,♥p and♥p, Γ′ ⇒ ∆′ the rulecut(R,R′,♥p) is
RWCon-derivable.

That is, the cut betweenR andR′ is a (shallow) rule, whose principal formulae arise
by applying cut to the principal formulae ofRandR′ and whose premisses are the pre-
misses of bothR andR′ with superfluous variables eliminated by variable elimination,
i.e. cuts on the variables that no longer appear in the conclusion. Note that a premiss is
contextual in the cut between two rules if at least one step inthe variable elimination
process did involve a contextual premiss. Cut closed rule sets are simply closed un-
der performing cuts between rules. Also note that in presence of the rules for classical
propositional logic the constructed rules are derivable using the old rules and Cut, since
we can reconstruct the cut formulae for the premisses using the rules fromG:

Lemma 13 ([10]).For shallow rules R1,R2 with principal formulaeΣ ⇒ Π,♥p and
♥p, Σ′ ⇒ Π ′ the rulecut(R1,R2,♥p) is GR1R2Cut-derivable.

A similar construction applies to contraction:

Definition 14 (Contraction as Operation on Proof Rules).If S is a set of sequents
andp = (p1, . . . , pn) andq = (q1, . . . , qn) aren-tuples of variables, thenS[q← p] is the
result of replacing every occurrence ofqi in a sequent inS by pi for all i = 1, . . . , n and
contracting duplicate instances ofp1, . . . , pn. LetR= (Pn; Pc;Γ,♥p,♥q⇒ ∆) be a shal-
low rule. Theleft contraction of R on♥p and♥q is the shallow ruleConL(R,♥p,♥q) =
(Pn[q ← p]; Pc[q ← p]); Γ,♥p ⇒ ∆). The right contractionConR(R,♥p,♥q) is de-
fined dually. A rule setR is contraction closedif for every rule R ∈ R the rules
ConL(R,♥p,♥q) andConR(R,♥p,♥q) can be simulated by applications of Weakening
and Contraction, followed by at most one application of a ruleR′ ∈ R and Weakening.

Saturated rule sets combine both properties.

Definition 15. A set of shallow rules issaturatedif it is both cut and contraction closed.

Theorem 16. For L ∈ {V4,VN4,VT4,VW4,VC4} the rule setGRL is saturated.

Proof (Sketch).It is easy to see that the rules ofG are saturated. Since cuts between
propositional and conditional rules on principal formulaeof both rules are impossible
we thus only need to consider the rule setsRL. For cut closure ofRV4 it can be seen that
cuts between two rulesRn,m andRk,ℓ are subsumed by the ruleRn+k−1,m+ℓ−1. Contraction
closure is evident. The setsRVN4 andRVT4 are cut- and contraction closed, since cuts
between a ruleRn,m andRN or RT are subsumed by the ruleRn−1,m. Cut- and contraction
closure ofRVW4 follows sinceRV4 is cut closed and since cuts betweenRn,m or Wn,m

andWk,ℓ are subsumed byWn+k−1,m+ℓ−1. ForRVC4 note that cuts betweenRn,m andRC1

or RC2 can be replaced by a number of applications ofRC2 andRC1. �

Saturation enables a general cut elimination theorem following [5]: (multi-)cuts on con-
text formulae are propagated upwards in the proof trees, and(multi-)cuts on principal
formulae can be eliminated using cut and contraction closure.
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Theorem 17 (Generic Cut Elimination). Let R be a saturated set of shallow rules.
ThenCut is admissible inRCon, i.e.⊢RCon Γ ⇒ ∆ whenever⊢RConCut Γ ⇒ ∆.

Proof. Similar to [10, Prop. 21].

Corollary 18. For L ∈ {V4,VN4,VT4,VW4,VC4} GRLCon has cut elimination.

Note that contraction closure only allows to eliminate Contraction onprincipal formu-
lae, but not on a principal formula and a context formula. Nevertheless, after establish-
ing cut elimination, admissibility of Contraction and a generic Pspace complexity result
are obtained in the modification of the rule set, where in a standard move the principal
formulae are copied into the contextual premisses.

Definition 19 (Modified Instances).A modified instance

{Υσ⇒ Ωσ | Υ ⇒ Ω ∈ Pn} ∪ {Γ, Σσ,Θσ⇒ ∆, Ξσ,Πσ | Θ⇒ Ξ ∈ Pc}

Γ, Σσ⇒ ∆, Πσ

of a shallow rule (Pn; Pc;Σ ⇒ ∆) is given by a substitutionσ and a (context) sequent
Γ ⇒ ∆. For themodificationR∗ of R the notion ofR∗-admissibility andR∗-derivability
are as forR using modified instances of rules inR instead of instances.

The purpose of modified instances is the elimination of Contraction, where Contrac-
tion between context and principal formulae is absorbed by moving principal formu-
lae upwards in the context. Moving to modified instances, e.g. the (standard) instance
Γ,Θ⇒∆,Ξ Υ⇒Ω

Γ,♥A⇒∆,♣B is replaced by the modified instanceΓ,♥A,Θ⇒∆,♣B,Ξ, Υ⇒Ω

Γ,♥A⇒∆,♣B . We can now
apply the following result from [10] fortractablerule sets, i.e., sets where codes of the
rules can be computed in space polynomial in the length of theconclusion and where
the premisses can be computed in space polynomial in the codeof the rule. It can easily
be checked that all of the rule sets in Figure 2 as well as the rules ofG are tractable.

Theorem 20. If R is saturated, then⊢RConCut = ⊢RCon = ⊢R∗Con = ⊢R∗ . In particular,Con
isR∗-admissible. IfR is also tractable, then backwards proof search inR∗ is in Pspace.

Corollary 21. For L ∈ {V4,VN4,VT4,VW4,VC4} we have|=L= ⊢(GRL)∗ and back-
wards proof search in(GRL)∗ is in Pspace.

Remark 22. Theorems 17 and 20 remain valid for languages that do not contain all
Boolean connectives. As the propositional rules are shallow, they can be absorbed into
the general treatment and it is easy to see that, for every Boolean connective, adding the
corresponding left and right rules preserves saturation.

6 Strong And Weak Conditional Implication

For the systems in the language with the strong conditional our strategy for proving
soundness and completeness is slightly different.

Theorem 23. ForL ∈ {V�,VN�,VT�,VW�,VC�} the sequent systemGRLConCut
is sound and complete forL.
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Proof. Since the strong conditional is defined in terms of entrenchment by the transla-
tion (A� B)↔ ¬((A∧ ¬B) 4 (A∧ B)) from [11], we get the translation rules

A⇒ C A,D⇒ C⇒ A,D B⇒ C B⇒ D C,D ⇒ B
Γ, (A 4 B), (C� D)⇒ ∆

Rt1

A⇒ C A,D⇒ C⇒ A,D B⇒ C B⇒ D C,D ⇒ B
Γ ⇒ ∆, (A 4 B), (C� D)

Rt2

which together are equivalent to the translation axiom. Therule setsRV� ,RVN� ,RVT� ,
RVW� andRVC� arise from the rule sets for the entrenchment connective by cutting
every literal of every rule with the appropriate translation rule. The resulting rules have
the translation built in which gives completeness and soundness (using Lemma 13).�

Since cuts between the translation rules are subsumed by congruence and since the
entrenchment rules are saturated, saturation for these rule sets is not unexpected.

Theorem 24. For L ∈ {V�,VN�,VT�,VW�,VC�} the rule setGRL is satu-
rated and thusGRLCon has cut elimination. HenceL is decidable inPspace.

Proof. Cut closure is seen analogous to the entrenchment case. E.g.for RV� a cut
between rulesR′n,m andR′k,ℓ is subsumed by the ruleR′n+k−1,m+ℓ−1. Note that for some of
the premisses of the latter rule we need to cut three of the original premisses and apply
Contraction. Contraction closure is straightforward. �

Unfortunately, this technique does not work not work for Lewis’ weak conditional�,
since the translations of� into4 or� are more subtle. Nevertheless, since the trans-
lation (A� B)↔ ((⊥ 4 A)∨¬((A∧¬B) 4 (A∧ B))) of� into4 from [11, p.26,53]
increases the number of subformulae only by a constant factor, we may represent for-
mulae as directed acyclic graphs instead of trees, to obtaina purely syntactical Pspace
decision procedure of optimal complexity for these logics in the language with�.

Theorem 25. The logicsV�,VN�,VT�,VW�,VC� are decidable inPspace.

Proof. Since the important measure for the backwards proof search procedure from [10]
is the nesting depth of connectives and not the size of the formulae, careful inspection
of the proofs together with the fact that the translation is linear for the representation of
formulae by directed acyclic graphs yields the result. �

7 Applications

Interpolation. The sequent systems presented above enable us to establish Theorem 4
(Craig interpolation) for all logics considered in this paper in a standard way. A logic
L has the(Craig) interpolation property(CIP) if whenever|=L A → B, then there is
an interpolant I satisfying thevariable conditionvar (I ) ⊆ var (A) ∩ var (B) such that
|=L A→ I and|=L I → B. We use split sequents [18] to establish the CIP, the intuition
being that whenever we split a provable sequent into two, we can find an interpolant:



Sequent Systems for Lewis’ Conditional Logics 11

Definition 26 (split sequent).An expressionΓ1 | Γ2 ⇒ ∆1 | ∆2 is a split sequent,
if Γ1, Γ2 ⇒ ∆1, ∆2 is a sequent, and we say thatΓ1 | Γ2 ⇒ ∆1 | ∆2 is a splitting of
Γ1, Γ2 ⇒ ∆1, ∆2. A formula I is an interpolant in RL for the split sequentΓ1 | Γ2 ⇒

∆1 | ∆2 if it satisfies thevariable conditionvar (I ) ⊆ var (Γ1⇒ ∆1)∩ var (Γ2⇒ ∆2) and
⊢RL Γ1 ⇒ ∆1, I and⊢RL I , Γ2 ⇒ ∆2. A sequentΓ ⇒ ∆ admits interpolationin RL if all
its splittings have an interpolant inRL. A shallow ruleR supports interpolationin RL
if whenever all its premisses admit interpolation inRL, then so does its conclusion.

It is routine to prove the following lemma by induction.

Lemma 27. If GRL is a sound and complete set of shallow rules for a logicL and all
the rules inGRL support interpolation inGRL, thenL has the interpolation property.

Theorem 28. V4 has the Craig interpolation property.

Proof. We need to show that the rules inGRV4 support interpolation. For the proposi-
tional rules this is standard [18]. ForRn,m we construct an interpolant for a splitting of
the conclusion from interpolants of the corresponding splittings of the premisses. First,
consider the ruleR2,m and the splittingΓ1 | Γ2⇒ ∆1 | ∆2 of its conclusion given by

{(Ci 4 Di) | i ∈ [m], i odd} | {(Ci 4 Di) | i ∈ [n], i even} ⇒ (A1 4 B1) | (A2 4 B2) .

For k ∈ [m] let Ik be the interpolant for the corresponding splitting of the premiss
Ck ⇒ {Dℓ | ℓ < k},A1,A2 and fork ∈ {1, 2} let Jk be the one for the corresponding
splitting of the premissBk⇒ {Dℓ | ℓ ∈ [m]},A1,A2. For every oddk ∈ [m] we introduce

Xk =
∨

ℓ≤k,ℓ odd

Iℓ Yk =















¬Ik+1 ∨ ¬J2 k = max{ℓ ∈ [m] | ℓodd}

¬Ik+1 otherwise
Zk = J1∨

∨

ℓ∈[m], ℓ>k, ℓ odd

Iℓ

Vk = (Xk 4 Yk) Wk = (Yk 4 Zk) I =
∧

k∈[m], k odd

(¬Wk ∨ Vk) .

Claim 1: For every oddk ∈ [m] we have⊢RV4 Γ1,Wk ⇒ ∆1,Vk. The idea is to
insertWk instead of (Ck+1 4 Dk+1) andVk instead of (A2 4 B2) into the rule pattern.
Then using the definitions ofWk andVk together with applications of Weakening it is
straightforward to check thatR2, |{ℓ∈[m]|ℓ odd}|+1 can be applied.

Claim 2: For every partition (F,S) of {k ∈ [m] | k odd} we have⊢RV4 Γ2, {Vk | k ∈
F} ⇒ ∆2, {Wk | k ∈ S}. The idea is to insert theVk instead of the (Ck 4 Dk), and theWk

as positive literals instead of (A1 4 B1). Then again it is straightforward to check that
we have all the necessary premisses for an application ofR|S|+1, |F|+|{ℓ∈[m]|ℓ even}|.

By propositional reasoning, both claims give⊢RV4 Γ1 ⇒ ∆1, I and⊢RV4 I , Γ2 ⇒ ∆2

and the interpolantI satisfies the variable condition, since all its constituents satisfy it.
For the general case consider the splittingΓ1 | Γ2 ⇒ ∆1 | ∆2 of the conclusion, and

write I ′k for the interpolant for the corresponding splitting of the premissCk ⇒ {Dℓ | ℓ <
k}, {Aℓ | ℓ ∈ [n]} andJ′k for the one for the premissBk ⇒ {Aℓ | ℓ ∈ [n]}, {Dℓ | ℓ ∈ [m]}.
In the construction of the interpolant above we replaceJ1 by

∨

(Aℓ4Bℓ)∈∆1
J′
ℓ

and¬J2

by
∨

(Aℓ4Bℓ)∈∆2
¬J′
ℓ
. The formulaeIℓ in Xk andZk are replaced by

∨

j∈Tℓ I ′j whereTℓ is
the ℓ-th block of consecutive indicesj with (C j 4 D j) ∈ Γ1. The formulae¬Ik+1 in
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Yk are replaced by
∨

j∈Sk
¬I ′j whereSk is thek-th block of consecutive indicesj with

(C j 4 D j) ∈ Γ2. Then in the proofs of the claims the formulaeWk andVk are inserted
instead of the blocks{(Cℓ 4 Dℓ) | ℓ ∈ Tk} and{(Cℓ 4 Dℓ) | ℓ ∈ Sk}. �

Corollary 29. VT4,VN4,VW4,VC4 have the CIP.

Proof. ForVT4,VN4 andVC4 this is immediate since the additional axioms trivially
support interpolation. For the rulesWn,m of RVW4 we only need to modify the proof
for the rulesRn,m by replacing the interpolantsJ1, J2 in the construction ofI by the
interpolantJ of the contextual premiss and its negation. �

Corollary 30. For ∗ ∈ {�,�} the logicsV∗,VT∗,VN∗,VW∗,VC∗ have the CIP.

Proof. By translating the formulaA→ B into the entrenchment language, and translat-
ing the interpolant back into the original language. Since both translations are identity
on propositional variables the variable condition holds, and we obtain an interpolant
since translating back and forth yields logically equivalent formulae. �

Hybrid conditional logic. In [16] a hybridisation of conditional logicV� is proposed
to extend Lewis’ interpretation of� in terms ofcontextually definite descriptions.
Worlds in a sphere model represent things or individuals, the sphere systems give de-
grees of salience, and a formula likePig � Grunting is interpreted as “The (most
salient) pig is grunting”.Nominals iare introduced as names for specific individuals
together with the satisfaction operators @i A stating thatA is true for individuali.

Following [12] the sequent system forV� can easily be turned into a sequent sys-
tem for the hybrid logicVHC(@) in the language of the strong conditional. Sphere mod-
els are captured coalgebraically as coalgebras for the functor Sp with Sp(X) = {$ ∈
PP(X) | $ a system of spheres} andSp( f ) the double direct image off . The correct
semantics for� is then given by the predicate lifting~��X(A, B) = {$ ∈ Sp(X) |
∃S ∈ $ s.t. (S∩ A , ∅ andS∩ A∩ Bc = ∅)}. Our proof of soundness and completeness
for RV� overV� can be adapted to show that the rules are indeed one-step sound
and cut-free complete with respect to the coalgebraic semantics. By [12] this induces
a sequent system which is sound and complete with respect toVHC(@). In particular,
backwards proof search in this system can be implemented in polynomial space.

Theorem 31. Hybrid conditional logicVHC(@) is decidable inPspace.

8 Conclusion

We presented the first unlabelled sequent systems for the conditional logicsV,VN,VT
andVW in the entrenchment and strong conditional languages and for VC in the strong
conditional language. Since these systems have cut elimination and (after a slight mod-
ification) admissibility of contraction, backwards proof search can be implemented in
polynomial space, giving the first purely syntactical Pspace decision procedures for
these logics. Furthermore, translating the weak conditional into our systems gives to
our knowledge the first purely syntactical Pspace decision procedures for the logics in
the weak conditional language. All the algorithms are of optimal complexity. Moreover,
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we used our calculi to show that all the logics mentioned havethe Craig interpolation
property, and to give a Pspace decision procedure for the hybrid version ofV�.

Related Work.Our calculus forVC4 is the sequent version of the tableau calculus
in [4, 2], but we also systematically cover weaker logics anddifferent languages. The
calculi in [8] for the weak conditional language are labelled and thus conceptually more
involved, and not complexity optimal. In [1] a system forV� involving second degree
sequents is given, but it is not used for deciding the logic. The complexity results in
[3] are obtained via small model theorems which complementsour purely syntactical
treatment. Calculi for the flat fragments of conditional logics corresponding to logics of
the KLM framework are given in [7].

References
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