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Abstract. We present unlabelled cut-free sequent calculi for Lewasiditional
logic V and extensions, in both the languages with the entrenchcoamtective
and the strong conditional. The calculi give rise &raAee-decision procedures,
also in the language with the weak conditional. Furthermtrey are used to
prove the Craig interpolation property for all the logicgden consideration, and
yield a Rrace-decision procedure for a recently considered hybrid versf V.

1 Introduction

Although the use of conditional logics in artificial intglénce and automated reasoning
has a long tradition (e.g. [6]), there has been slow prodretbee development of proof
systems for these logics. Even today, we still see conditilmgics for which no proof
systems of optimal complexity have been found. In gendnal development of proof
systems follows two main approaches: one can derive lab&dleleau systems from
the semantics [14, 8] or convert a Hilbert-style axiomaitisato an unlabelled sequent
system which is then saturated to guarantee cut-elimin§iis, 17, 10].

Although proof systems for some of the more prominent lojage been developed
quite early on[2, 9, 4, 1], the systematic exploration otegss with optimal complexity
has attracted interest only recently. In particular, tlegeeno complexity-optimal proof
systems for an important class of logics, those that aregreged ovesphere models
originally proposed by Lewis [11]. These logics can be cbimdsed using dierent
connectives: thentrenchment connectiwg the strong conditionabb=, and theweak
conditionalo—. While these connectives are interdefinable, the traosiatin general
yield an exponential blow-up, and thus complexity resulteidt necessarily carry over.

Although the logics in the weak conditional language haveglbeen known to
be decidable in polynomial space [3], the best proof systemthis language so far
only yield acoNExptive upper bound [8]. For the entrenchment connective, there are
systems for the logic8C andVCS, which implicitly yield a Reace upper bound [2, 4],
but no systematic treatment has been given yet, a gap tsggdper now closes.

Our main results are the following: we present complexipyoal unlabelled se-
quent calculi for the logic¥, VN, VT, VW and VC in the entrenchment and strong
conditional language. With the exception of the calculus¥@ in the entrenchment
language these seem to be new. Cut elimination for our ddtdidws from the more
general approach @it elimination by saturatiorand yields purely syntactical decision
procedures of optimaldeace complexity. A Reace decision procedure for the logics in
the weak conditional language is established by meansraflation. As an application,
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we establish the Craig interpolation property for all Ieg@onsidered (in any connec-
tive), which we believe is also a new result. Our second appitin yields a previously
unknown Reack result for a hybrid version o¥ o, recently considered in [16].

2 Preliminaries

Forne {0,1,2,...} we write [n] for {1,...,n}. Throughout{V denotes a denumerable
set of propositional variables, writtem g,... and we use bold face, q,... to de-
note finite sequences of propositional variables. We fix al sgtmodal operators with
associated arities (later, we will specialiséo consist of just one binary conditional op-
erator). The set afl-formulaeis defined byF(A) > A, B, Ay,....,A ==L | p|AAB]
AVB| A — B|9(Ay,...,Ay) for pe Vando e A with arity n, with remaining connec-
tives defined as usual. We writdS) = {O(As,...,An) | © € An-ary,Ay,..., A € S}
for the set of formulae constructed frd®rusing a single connective imandvar (A) for
the set of propositional variables occurring in the forml&niform substitution of all
propositional variables in a formukausing a substitution- : V — ¥ (A) is denoted by
Ao A A-logic, or justlogicis a setL C F(A) that contains all propositional tautologies
and is closed under uniform substitution, modus ponenstenddngruence rule: from
A o Bifori=1,...,ninfero(Ag,...,An) © 9(By,..., By) for everyn-ary modality

© € A. We think of logics as given semantically as the set of usizly valid formulae
on some class of models and writg: Afor A € L. The setS(F) of sequent®verF
consists of tuples of multisefs 4 of formulae inF, writtenI” = 4. The multiset union
of two multisets/” and4 is written I', 4 and we identify formulae with singleton multi-
sets. Substitution extends to both multisets of formulakssguents in the obvious way
(perserving multiplicity), e.g.Aq, A2 = B)o = Ajo, Ao = Bo. We use the system
G3cp of [18] with axiomsI, A = 4, A (whereA ranges over the set of formulae) as
basis for all systems that extend classical propositi@mgitiand denote its proof rules
by G. We adopt the standard structural rules

I =4 F,A,A=>AC L F=>A,A,AC R I'=s>4A X A=11
ST=41" TA=sa " T=S4A VO 2= A1

Cut

and write, I’ = A if Lisalogicand=, \/ T — A 4.

3 Conditional Logics: Calculi and Main Results

We consider the conditional logiés, VN, VT, VW and VC [11,13] in the languages
of (binary)entrenchmenk and (binaryweakandstrong conditionalg— ando=. We
read entrenchmem§ < B as 'Ais at least as plausible & and adopt Lewis'sphere
semanticsa sphere modeis a tripleZ = (I, ($)ic, r) wherel is a set (of worlds),
each $C P(I) is asystem of spherese. a family of nested subsets btlosed under
unions and nonempty intersections, and’V — #(l) is a valuation. We think of $as
providing a measure of comparative similarity, which pd®s the truth condition

I,iEA<B < forallsphereS e $ (SN[B]#0onlyif SN[A] #0)



Sequent Systems for Lewis’ Conditional Logics 3

FBo (ALV .- VA) (N) —~(L<71
P A< vam< MY (< aa
(TR) (A<B)A(B<C)) - (A<C) W) (L<-A)V-(-A<T) > A
(CN) (A<B)Vv(Bx<A) (C) (AST)A(T<A)>A
HV.:CPTR,CN HVN.:HV,N HVT.:HV,T HVW.:HV,W HVC.:HV,C

Fig. 1. Hilbert axiomatisation of th&-logics as smallest logics closed under riaggms

where[[A] = {i € | | i A} is the truth set of a formula, together with the standard
clauses for propositional variables and boolean conresttivhestrong conditional op-
erator o= can be defined in terms of entrenchment By B) « —((A A =B) <
(A A B)). Over a sphere model o= B asserts thah A B is more possible or plausible
thanA A —B. This leads to the interpretation

I,iEAo> B — forsomespher8 € $ (SN[A] #0butSN[AA-B]=0).

Similarly, the weak conditionali» can be expressed in terms of entrenchment by
(A B) & ((L < AV =((AA=B) < (AA B))) where the only dference is that
a weak conditional o— B is also accepted if the conditional anteced&iig consid-
ered impossible, i.e. false in every sphere for the curremtdy

If Ais a formula and is a class of sphere models, th&iis universally validonC
if 7,i E Aforall I = (I, ($)ia,n) € C and alli € . We writeV, for the logic of all
sphere models, i.e. the set of all formulae that are uniltgnglid in all sphere models
in the language of the binary connectives {<, 0=, 0—}. We consider the following
extensions [11, page 120] &f. determined by the following additional conditions on
sphere modelg = (I, ($)ic, 7), understood as universally quantified over alll:

— The logicVN., is determined by athormalsphere models, i.e. those with$; # 0

— The logicVT. is determined by aliotally reflexivesphere models, i.¢.c | $;

— The logic VW, is the logic of allweakly centeredphere models, i.e. those for
which there isS € $ with S # 0 andi € S’ wheneve # S’ € $

— The logicVC., is the logic of allcenteredsphere models, i.e. those wiith € $;.

Those logics are known [11, pages 124-130] to enjoy a soutd@mplete axiomati-
sation in a Hilbert calculus with rules and axioms summariad-igure 1. By reducing
the decision problem for standard modal logicD, T to the decision problems for the
corresponding conditional logics [11, p.137] using the$tationsoA < (L < A)
andoA « (Ao= T) andoA « —(A o— 1) all the logics are easily seen to beekRe-
hard. Our main contribution are new, cut-free sequent tidtmuthe logics above that
enable backwards proof search in polynomial space. Ouulcalentain the standard
rules for the propositional connectives together with thies summarised in Figure
2. Intuitively, rulesRy , andR; guarantee derivability of the axiom$ R) and CN),
while the rulesk,o cover the rules of¢P). The remaining rules oRy_ are needed to
guarantee saturation (see Section 5), and additionalfi#ise other logics correspond
to additional axioms. The rule sets foe are constructed by translation.
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{Bk=>A1,...,An,D1,...,Dm|ksn} U {Cszl,...,An,Dl,...,Dk_llkS m}
I‘,(Cl < Dl) ..... (Cm< Dm) :>A,(A1 < Bl) ..... (An < Bn)

,m

A= :>BRN A= F:>A,BR

I, (A<B)=4 I,(A<B)=4 T

{(Ck=A1...,A,Dy,....,Da ksm) I'=4A,....ADy...Dn
I,(C1<Di),...,(Cn<Dp) = 4, (A< By).....,(A < Byp) o

I = 4,A I'A= 4 I = 4,B

I=A(A<B & LA<B=4 &

{C.{Biliel}={Ali¢l}L{Cjlje I} {Djlk>jegdksm I c[n],Jc[k-1]}
U{AB{Biliel}={Aligl L {Ci|jeIL{Djlj¢ Hlk<nlc[n,Ic[m}
I‘,(A]_D:) B]_) ..... (An 0= Bn):>A,(C1 0= D]_) ..... (CmD:> Dm)

= A = B I'=>4,A A= B
F=>A,(AD=>B)R\‘ I'=4,(Ac= B) Ry
[CiiBilicl} = (A1i¢IL{C|jedliD; k>j¢dksm I cn], Ic[k-1]}
U{LBiliel}={(ATi¢IL{CiljeIL{Djlj¢ Il cn,Ic[m}
I‘,(A]_D:) B]_) ..... (AnD:> Bn) :>A,(C1D:> Dl) ..... (CmD:> Dm)

,m

W

nm

I = 4,A I'B=4 I = 4,A I = 4,B
I(Ao= B)= 4 Rt I'=A4,(Ac> B) Rez
Rv. ={RamIn=1m=0} Rve, ={RymIn=1,m>0}
Ry = Ry U (Ry} R = Rves UIRY)
Ryr. = Ry U{Rr} Ryre, = Ry, U{RL}
Rywe = Ryt U{Wam [N>1m>0  Ryw,, = Ry, YW In21m>0}
Rye. = Ry U{Re1, Rea} Ryce = Rue VIR, RS

Fig. 2. The rules and rule sets.

As usual, we call a formulprincipal in a rule if it appears in the conclusion of the
rule but not in any premiss. A premiss of a rulecentextualif it inherits the context
(written I = 4 in Figure 2) from the conclusion. That is, the right hand pesnof
Rr and the premisses of bof:, andRc, are contextual premisses of the respective
rules. If R is one of the rule sets of Figure 2, we wri for the rule set that arises
by adding the principal formulae of each rule to each of itstegtual premisses and
refer toR* as themodificationof R. For example, the right (contextual) premiss of the
rule Ry then becomes, (A < B) = 4, B whereas the left (non-contextual) premiss of
Rr remains unchanged. We writgy I’ = 4 in casel’ = 4 is derivable using rules
in R, andrg- for derivability using the modification dR. We denote use of additional
rules by juxtaposition, e.@3RConCut denotes derivability where Cut and Contraction
(both on the left and on the right) may be used in addition tesin G andR. The
remainder of the paper establishes our main contributtbedijrst being soundness and
completeness of the corresponding rules in presence afaation (see Sections 4,5,6).

Theorem 1 (Soundness and Completeness$« € {<, 0=} and L is one of the logics
V., VN,, VT,, VW,, VC, thentggr,con I’ = 4 ifand only ife, I = 4.
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The primary purpose of the modifications of the rules in Fég2iis to achieve admis-
sibility of contraction between principal formulae ands$badn the context. It is easy to
see that this does not change the set of derivable sequentios 5,6).

Proposition 2 (Elimination of Contraction). If = € {<,0=} and L is one of the logics
V., VN,, VT,, VW,, VC, thenr g, I = 4 if and only if-ggr,con I' = 4.

This already implies that cut elimination holds for all logiformulated in terms of
entrenchment and strong conditional. The calculi are cerifyloptimal (Sections 5,6):

Theorem 3 (Complexity).If « € {<,0=} and L is one of the logics/., VN,, VT,,
VW., VC,, then derivability in(GR,)* is decidable inPspace using backwards proof
search. If« = 0—, then L is decidable inPspace by translating too=.

As an immediate application, the calculi above allow us taldish, for the first time,
that all logics considered here have the Craig interpatgtioperty (Section 7).

Theorem 4 (Craig Interpolation). If + € {<,0=,0-} and L is one of the logics
V., VN,, VT,, VW,, VC,, thenL has the Craig interpolation property.

We prove the above theorems and give precise definition®ifotlowing sections.

4 Soundness and Completeness of The Entrenchment Rules

We first consider the rules in the entrenchment languagec®iresponding results for
the rules for the strong implication will be established @cton 6.

Theorem 5. For £ € {V, VN, VT, VW, VC.} the rules inR, are sound forL.

Proof. We proceed by induction on the derivations and refer to [A{a-. .

For Ry_: Suppose the last applied rule wasgy,, with conclusionC; < D1),. .., (Cy <
Dm) = (A1 < Ba1),....(As < Bp) and premisses as given in Figure 2, and suppose all
the premisses are valid. L&t = (I, ($)ic, ) be a sphere model anide |. Suppose
i € [Ck < D] for all k € [m] and that for ak € [n] we havei ¢ [A, < B] for all
te[n], £+ k ChooseS € $ andj € SN [Bi]. Sincelv, B« = Viem De V Ve Ae
we havej € UsepnllAl U Ueem[Dell. Thus eitherj € UenlAcll or j € [Dc] for a
¢ € [m]. In the latter case, sindee [C, < D/] we find aj, € S n [C,], and since
Ev. Co = Ve Do V Ve Ar We havejz € Upo[Dell U Upem A1l Continu-
ing like this we find aj’ € | with j” € SN Ugpr[AcDl. Now if j* ¢ [Ac] there is a
¢ # kwith j € [A/]. But sincei ¢ [A; < B/] there is anS’ € $ with S’ ¢ S and
S'N[B # 0 =S"N[A]. As above we get &’ € S'NUepn [AdD = SN Urepr e lA-
Repeating the argument we finally get®th e $; with 0 # S"NUeem A = S”NIA,
and since by constructid®” C S we have € [Ax < By]l.

For Ryy.: Assumek=yy, —A andEvyy, B, let I be a normal sphere model, i.e., for
alli e | we havel J$ # 0, and leti € |. SinceJ$ # O thereis aj € S € $;. But then
j € [B] and for allt € S we havet ¢ [A]. Thusi ¢ [A < B].

For Ryr. : Supposeé=yr, ~Aand=yr, AT — \/ 4VB, andletl be totally reflexive,
i.e., foralli € | we havei € | J$. Then for anyi € | we have either € [B] and are
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done, or we can chooseSae $; with i € S. But we know thatj ¢ [A] forall j € S,
and thus we gdt¢ [A < B].

For Ryw_: SimilartoV. Letlyw, I’ = D1,...,Dm, Ad, ..., An, 4 andeyw, Ck =
Di,...,Dk-1,As, ..., A; for all k € [m], and suppose thdt is weakly centered, i.e., for
alli € | thereis ar6 € $ with S # 0 and for allS € $ with S # 0 we have € S. Then
fori € I we have either ¢ Ue[mj[Dell U ey [Acll and are done; or we have [A]]
forat € [n] and are done; or we have= [D] for ak € [m]. In the latter case we take
Se$withS # 0. Theni € S. If i ¢ [Ck < D¢]] we are done; otherwise there is a
i1 € SNC. Sincel=yw, Ck = Vi DeV Ve Ac we haves € Uy DelUU gepn [AC-
Repeating the argument yieldsjae S N Uz [AcDl. Choosek; with j € [Ag]. If
i ¢ [Aq < Byl, then thereis & & S with S’ N [A] = 0 andS’ N [By, ] # 0.
As above we get @2 € S" N U [AD = S N Ugai, [AcDl. Repeating the argument
again we successively eliminate tAgs and get &’ € [n] such that for allS € $; with
S N [Br] # 0 we haveS N [Ax] # 0. But this means € [Av < By ]. O

Next we establish completeness of the sequent systemsheittut rule. Cut-free com-
pleteness follows from the generic cut elimination reséilhe next section. Since all
our systems include the congruence rule and thus are closkt uniform substitution,
it suffices to show that all the rules and axioms of the Hilbert-stiikracterisatiof £
of a given logicL from Figure 1 are derivable in the corresponding sequemesywith
cut. Since the Hilbert-systems are complete [11], thishéistaes the result.

Theorem 6 (Completenessyor £ € {V,, VN, VT, VW, VC.} the sequent system
GR,ConWCut is complete with respect t6.

Proof. Showing that the rules and axioms®&fV ., HVN, andH VT« can be derived
in the corresponding sequent system is easy. 8. note that adding the axiom
(W) is equivalent to adding the axiomE)and A < T) Vv A, where the latter is easily
derived usingV; o. For HVCy, usingRc, we get A < T) —» Aand thusC). O

5 Cut Elimination for the Entrenchment Rules

Our approach towards proving cut elimination for the se¢jsgatems of the previous
section is based on a general method for the constructiontdfee calculi:cut elim-
ination by saturation\We call a set of (sequent) rulsaturatedif it is closed under
the operations of cut and contraction, introduced below.&limination by saturation
elevates both cut and contraction from the levgbiaiof rulesto the level ofoperations
on proof rules, i.e. constructions that allow us to deriver peoof rules while preserv-
ing soundness. Cut closure holds if for any two given rulesfgsming a cut on the
conclusions and collecting the premisses of both ruledteesua (cut-free) derivable
rule (after eliminating variables that no longer occur ia tionclusion) and contraction
closure stipulates that the result of identifying litereighe conclusion of a rule gives
a rule already present in the rule set. Assuming saturatibrelemination holds, ev-
ery cut can be replaced by a derivable rule, reducing levedigk of the cuts. The key
ingredient in sequent systems for non-iterative logichésdoncept of ahallow rule
introduced in previous work [10]. Intuitively, a shallowleladds one layer of modalities
in the conclusion, while its premisses may or may not profesiljee context.
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Definition 7. A shallow ruleis a tripleR = (Py; P;; 2 = II) whereP, € S(V) and
P. € S(V) are finite sets of sequents (then-contextuahnd contextualpremisses,
respectively) and’ = IT € S(A(V)) are theprincipal formulaesubject to the following
variable restriction: every variabfee <V may occur at most once i = 7 and occurs
in the premissediiit occurs in the principal formulae. Aimstanceof a shallow rule

{(YTo=>Qo0 | T=>02eP,} U {(IMOc=>4,Z0|0=5¢cP}
IYXo= 4,110

is given by a context” = 4 and a substitution : V — ¥ (A). We often annotate the
contextual premisses with the context (usudlly> 4) if no confusion can arise.

Remark 8. The variable restriction on the principal formulae is fochgical conve-
nience and not restrictive, as a duplicate occurrence ofiabla p is avoided by re-
placing it by a fresh variablg and adding non-contextual premisges> g andq = p.

Example 9. The rules of classical propositional logic suchﬂf}fé‘}f%A%"*B (AR) and
all of our rules for conditional logics in Figure 2 are shalld\ll premisses i\R and
Rc, are contextual, while all premissesiym andRy are non-contextual. Rulg; has
both a contextual and a non-contextual premiss.

A setR of shallow rules induces a sequent system in the standard way

Definition and Convention 10. Whenever we speak aboutsat of shallow rulesR
we assume thaR is closed under injective renaming of propositional vagabLet
R be a set of shallow rules arfsl € S(¥(A)) a set of sequents. A sequeht= 4

is R-derivable from Sin symbolsS ¢ I' = 4, if it is an element of the least set
S +x containingS and closed under the axiom ruleg———= and thecongruence rules

A=B rsziélAn) — v?‘éi%n) B> and all instances of rules iR. We write S rgg for
S Frure @and simply-g for 0 +¢. The rule seR’ is R-admissiblef gz C-¢. Derivations
are defined as usual [18] and a (not necessarily shallow)Rue P; ... P,/C with

premisse#®, ..., P, and conclusioit is R-derivableif {Py,..., Py} Fz C.

Lemma 11 (Admissibility of Weakening).rg I" = 4 whenevergy I" = 4.

The proofis standard. For admissibility of Contraction &, the rule set needs to be
closed under the operationsrofe contractionandcut between ruledescribed next.

Definition 12 (Cut as an Operation on Proof Rules).If (Op, O.) are sets of sequents
(that we think of as non-contextual and contextual premsissspectively) ang is a
variable, then th@-elimination on @ and Q is the pair On, Oc) e p := (O}, O) where
O, ={[L2=24H|{,p=24;2=1L,p)eOXOU{lTr =40, | pel,4)
O.={,X =AM |{I,p= 4,2 = I1,p) € (On U O)? \ (On x Op)}
U{lr=4€e0c|pegl U}

and we write On, Oc) © p1, . - ., pn fOr the repeated application of variable elimination.
If R= (Pn; Pe; 2 = I1,0p) andR = (P, P, ©p, 2" = II’) are shallow rules, theut
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of R and Ron©pis the shallow ruleut(R, R, 0p) = (Qn; Q¢; 2,2" = I1,1I') where
(Qn, Qc) = (PnU Py, P U Py © p. A setR of shallow rules iscut closedif for any
R, R € R with principal formulad” = 4,9opandop, I = A’ the rulecut(R, R, vp) is
RWCon-derivable.

That is, the cut betweeR andR is a (shallow) rule, whose principal formulae arise
by applying cut to the principal formulae 8&andR and whose premisses are the pre-
misses of bothR andR’ with superfluous variables eliminated by variable elimiomt
i.e. cuts on the variables that no longer appear in the ceimiuNote that a premiss is
contextual in the cut between two rules if at least one stepanvariable elimination
process did involve a contextual premiss. Cut closed rute & simply closed un-
der performing cuts between rules. Also note that in presefthe rules for classical
propositional logic the constructed rules are derivabiegighe old rules and Cut, since
we can reconstruct the cut formulae for the premisses ubmgiies fronG:

Lemma 13 ([10]). For shallow rules R, R, with principal formulaeX = 77,9p and
op, 2’ = I’ the rulecut(Ry, Ry, ©p) is GRyR,Cut-derivable.

A similar construction applies to contraction:

Definition 14 (Contraction as Operation on Proof Rules)If S is a set of sequents
andp = (pg,..., pn) @andq = (s, ..., qgn) aren-tuples of variables, theB[q « p] is the
result of replacing every occurrencegfin a sequentirs by p; foralli =1,...,nand
contracting duplicate instancesf, . .., pn. LetR = (Pn; P¢; I, ©p, ©q = 4) be a shal-
low rule. Theleft contraction of R orwp and®q is the shallow ruleConL(R, v p,0q) =
(Pa[q <« pl; Plg < p)); I, 9p = 4). Theright contractionConR(R, ¥ p, ©q) is de-
fined dually. A rule setR is contraction closedf for every ruleR € R the rules
ConL(R, vp,vq) andConR(R, ¥p, ©q) can be simulated by applications of Weakening
and Contraction, followed by at most one application of & Rile R and Weakening.

Saturated rule sets combine both properties.

Definition 15. A set of shallow rules isaturatedf it is both cut and contraction closed.
Theorem 16. For L € {V., VN, VT, VW, VC.} the rule selGR, is saturated.

Proof (Sketch)lt is easy to see that the rules Gfare saturated. Since cuts between
propositional and conditional rules on principal formutdeboth rules are impossible
we thus only need to consider the rule sRs For cut closure oRy_ it can be seen that
cuts between two ruld?, m andRy , are subsumed by the ruRa.«-1, m+c-1. Contraction
closure is evident. The sefs;y, andRyr, are cut- and contraction closed, since cuts
between a rul®,,m andRy or Ry are subsumed by the ruRy_1 m. Cut- and contraction
closure ofRyy_ follows sinceRy_ is cut closed and since cuts betweg, or Wym
andW, are subsumed bW k-1, m+¢c-1. FOr Ryc. note that cuts betwedR, , andRc1

or Rc, can be replaced by a number of application&ef andRc; . m|

Saturation enables a general cut elimination theoremviitig [5]: (multi-)cuts on con-
text formulae are propagated upwards in the proof trees(mandti-)cuts on principal
formulae can be eliminated using cut and contraction cisur
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Theorem 17 (Generic Cut Elimination). Let R be a saturated set of shallow rules.
ThenCut is admissible ilRCon, i.e.+gcon I” = 4 whenevekrgconcut I = 4.

Proof. Similar to [10, Prop. 21].
Corollary 18. For £ € {V., VN, VT, VW, VC<} GRCon has cut elimination.

Note that contraction closure only allows to eliminate Gaation onprincipal formu-
lae, but not on a principal formula and a context formula. Ndvelss, after establish-
ing cut elimination, admissibility of Contraction and a geie Reace complexity result
are obtained in the modification of the rule set, where in adsed move the principal
formulae are copied into the contextual premisses.

Definition 19 (Modified Instances).A modified instance

{(Yo=>Qo | T=>2cP,} U ({[Xo,Oo =4 E0,Illc|O=5c¢cP}
I2o= A,1lc

of a shallow rule Py; P¢; 2 = 4) is given by a substitution- and a (context) sequent
I' = 4. For themodificationR* of R the notion ofR*-admissibility andrR*-derivability
are as forR using modified instances of rules#instead of instances.

The purpose of modified instances is the elimination of Garion, where Contrac-
tion between context and principal formulae is absorbed bying principal formu-
lae upwards in the context. Moving to modified instances, thg (standard) instance
Lot 52 is replaced by the modified instané8AC22285 122 we can now
apply the following result from [10] fotractablerule sets, i.e., sets where codes of the
rules can be computed in space polynomial in the length oEtimelusion and where
the premisses can be computed in space polynomial in theafdlde rule. It can easily
be checked that all of the rule sets in Figure 2 as well as tles nfG are tractable.

Theorem 20. If R is saturated, theRgconcut = Frcon = Frcon = Fx:- In particular,Con
is R*-admissible. IR is also tractable, then backwards proof searclihis in Pspack.

Corollary 21. For £ € {V<, VN, VT, VW, VC<} we havel =g, and back-
wards proof search ifiGR )" is in Pspack.

Remark 22. Theorems 17 and 20 remain valid for languages that do notoatl
Boolean connectives. As the propositional rules are shatley can be absorbed into
the general treatment and it is easy to see that, for everieBon@onnective, adding the
corresponding left and right rules preserves saturation.

6 Strong And Weak Conditional Implication

For the systems in the language with the strong conditionalstrategy for proving
soundness and completeness is slightijedént.

Theorem 23. For £ € {Vos, VN, VT, VW, VCos } the sequent systeBR . ConCut
is sound and complete fof.
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Proof. Since the strong conditional is defined in terms of entrerettrhy the transla-
tion (A= B) & —((AA =B) < (A A B)) from [11], we get the translation rules

A=C AD= C=AD B=C B=D CD=B
IL(A<B),(Co= D)= 4

R

A=C AD= C=AD B=>C B=D CD=8B
I'=>4,(A<B),(Co= D)

which together are equivalent to the translation axiom.rllesetRy__, Ryw.. , Rvr,.
Ryw,, andRyc_, arise from the rule sets for the entrenchment connectiveukijng
every literal of every rule with the appropriate translatiale. The resulting rules have
the translation built in which gives completeness and soaasl (using Lemma 13).0

R

Since cuts between the translation rules are subsumed lyruemce and since the
entrenchment rules are saturated, saturation for thessets is not unexpected.

Theorem 24. For £ € {Vo, VN4, VT, VW, VCqos } the rule setGR, is satu-
rated and thusGR ,Con has cut elimination. Henc€ is decidable irPspack.

Proof. Cut closure is seen analogous to the entrenchment casefoE®v_, a cut
between rule®;, , andR, , is subsumed by the rul,, ; ..., ;. Note that for some of
the premisses of the latter rule we need to cut three of tignadipremisses and apply
Contraction. Contraction closure is straightforward. O

Unfortunately, this technique does not work not work for i€weak conditionat—,
since the translations af- into < or o= are more subtle. Nevertheless, since the trans-
lation (Ao~ B) & ((L < A) Vv =((AA=B) < (AA B))) of - into < from [11, p.26,53]
increases the number of subformulae only by a constantrfagéomay represent for-
mulae as directed acyclic graphs instead of trees, to obtpirely syntactical $2ace
decision procedure of optimal complexity for these logicthie language with—.

Theorem 25. The logicsVg,, VN, VT, VW, VCq, are decidable irPspack.

Proof. Since the important measure for the backwards proof seaodegure from [10]
is the nesting depth of connectives and not the size of thautare, careful inspection
of the proofs together with the fact that the translatiofniedr for the representation of
formulae by directed acyclic graphs yields the result. O

7 Applications

Interpolation. The sequent systems presented above enable us to estdidisiem 4

(Craig interpolation) for all logics considered in this pajin a standard way. A logic
L has the(Craig) interpolation property(CIP) if whenever=, A — B, then there is

aninterpolant | satisfying thevariable conditionvar (1) < var (A) N var (B) such that

Ers A— | andE, | — B. We use split sequents [18] to establish the CIP, the iotuiti
being that whenever we split a provable sequent into two,avefind an interpolant:
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Definition 26 (split sequent).An expression™; | I, = 41 | 4, is asplit sequent
if I'1,I> = 41,45 is a sequent, and we say that | I'>, = 4; | 42 is asplitting of
', 'y = 41,45, A formulal is aninterpolantin R, for the split sequenty | I, =
Ay | 45 if it satisfies thevariable conditionvar (1) C var (I'y = 4;) Nvar (I'; = 43) and
Fr, I'1 = 41,1 andrg, 1,12 = 4,. A sequeni” = 4 admits interpolationin R if all
its splittings have an interpolant iR;. A shallow ruleR supports interpolatioin R,
if whenever all its premisses admit interpolatiordp, then so does its conclusion.

It is routine to prove the following lemma by induction.

Lemma 27. If GR, is a sound and complete set of shallow rules for a lagiand alll
the rules inGR support interpolation irGR ¢, then£L has the interpolation property.

Theorem 28. V¢ has the Craig interpolation property.

Proof. We need to show that the rules®@Ry_ support interpolation. For the proposi-
tional rules this is standard [18]. F&,,, we construct an interpolant for a splitting of
the conclusion from interpolants of the correspondingtipdjs of the premisses. First,
consider the rul®, , and the splitting™; | I'>, = 43 | 4, of its conclusion given by

(Ci < D) lielm.iodd | {(Ci<Dylielnlieven = (AL <By) | (A< B).

For k € [m] let I be the interpolant for the corresponding splitting of themiss
Ck = (D¢ | € < k}, A1, Ay and fork e {1, 2} let Jx be the one for the corresponding
splitting of the premis8 = {D, | € € [M]}, A1, Ay. For every oddk € [m] we introduce

Xe=\/ I
<k, odd

Zi = hv \/ I,

v {_‘|k+1 v-d, k= max¢ € [m] | ded}
k =
te[m], £>k, ¢ odd

=l otherwise

V= <Y We=(W<zg 1= A\ WV V.
ke[, k odd

Claim 1: For every odk € [m] we haverg, I't, Wk = 41, V. The idea is to
insertW instead of C,1 < Dy.1) andVj instead of A, < By) into the rule pattern.
Then using the definitions Mk and Vi together with applications of Weakening it is
straightforward to check th&y | sc(mic odgj+1 Can be applied.

Claim 2: For every partition, S) of {k € [m] | k odd} we haverg, I, {Vk | ke
F} = 4o, (W | k € S}. The idea is to insert the, instead of the@, < Dy), and theW
as positive literals instead oA({ < B;). Then again it is straightforward to check that
we have all the necessary premisses for an applicati®&sQ{ |+ ce[mii ever-

By propositional reasoning, both claims gi\/ﬁsVg ' = 44,1 anthV< I, = 45
and the interpolarit satisfies the variable condition, since all its constitaesattisfy it.

For the general case consider the spliting ', = 4; | 4, of the conclusion, and
write I, for the interpolant for the corresponding splitting of tiremissCy = {D, | £ <
K, {A; | £ € [n]} andJ; for the one for the premisBy = {A, | £ € [n]},{D¢ | £ € [m]}.

In the construction of the interpolant above we repldgc®y \/(a <g,)es, J;, and-Jz
by V(a<g)es, ~J;- The formuladl, in X, andZ are replaced by/ jcr, |7 whereT, is
the ¢-th block of consecutive indicepwith (C; < Dj) € I'r. The formulae-ly,1 in
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Y are replaced by/ jes, sl whereSy is thek-th block of consecutive indicegwith
(Cj < Dj) € I'>. Then in the proofs of the claims the formul& andV, are inserted
instead of the block§C; < D;) | € € Ty} and{(C,; < D¢) | £ € Sk}. O

Corollary 29. VT, VN, VW, VC< have the CIP.

Proof. For VT, VN, andVCq this is immediate since the additional axioms trivially
support interpolation. For the rulés,, of Ryw. we only need to modify the proof
for the rulesR,, by replacing the interpolant3;, J, in the construction of by the
interpolant] of the contextual premiss and its negation. O

Corollary 30. For * € {Oo=, o~} the logicsV.,, VT., VN,, VW,, VC, have the CIP.

Proof. By translating the formul& — B into the entrenchment language, and translat-
ing the interpolant back into the original language. Singthliranslations are identity
on propositional variables the variable condition holdg] ave obtain an interpolant
since translating back and forth yields logically equiva®@rmulae. O

Hybrid conditional logic. In [16] a hybridisation of conditional logi¥ -, is proposed
to extend Lewis’ interpretation afi= in terms ofcontextually definite descriptions
Worlds in a sphere model represent things or individuaks siphere systems give de-
grees of salience, and a formula liRg o= Grunting is interpreted as “The (most
salient) pig is grunting’Nominals iare introduced as names for specific individuals
together with the satisfaction operators &stating thatA is true for individual.
Following [12] the sequent system f8t., can easily be turned into a sequent sys-
tem for the hybrid logidV«¢(@) in the language of the strong conditional. Sphere mod-
els are captured coalgebraically as coalgebras for thadugp with Sp(X) = {$ €
PP(X) | $a system of spherpand Sp(f) the double direct image of. The correct
semantics foo= is then given by the predicate liftingr=1x(A, B) = {$ € Sp(X) |
AS e $s.t. SN A £ 0andSn AN B® = 0)}. Our proof of soundness and completeness
for Ry_, over Vg, can be adapted to show that the rules are indeed one-sted soun
and cut-free complete with respect to the coalgebraic sosaBy [12] this induces
a sequent system which is sound and complete with respé¢li¢gg). In particular,
backwards proof search in this system can be implementealympmial space.

Theorem 31. Hybrid conditional logicV¢ (@) is decidable irPspack.

8 Conclusion

We presented the first unlabelled sequent systems for thtmoral logicsV, VN, VT
andVW in the entrenchment and strong conditional languages ari@d@an the strong
conditional language. Since these systems have cut eliimnand (after a slight mod-
ification) admissibility of contraction, backwards proeasch can be implemented in
polynomial space, giving the first purely syntacticabdee decision procedures for
these logics. Furthermore, translating the weak conditiarto our systems gives to
our knowledge the first purely syntacticalekee decision procedures for the logics in
the weak conditional language. All the algorithms are ofrapt complexity. Moreover,
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we used our calculi to show that all the logics mentioned hheeCraig interpolation
property, and to give adpace decision procedure for the hybrid versioni.,.

Related WorkOur calculus fofVCy is the sequent version of the tableau calculus
in [4, 2], but we also systematically cover weaker logics ditterent languages. The
calculi in [8] for the weak conditional language are labe#and thus conceptually more
involved, and not complexity optimal. In [1] a system ¢, involving second degree
sequents is given, but it is not used for deciding the loglee Tomplexity results in
[3] are obtained via small model theorems which complemeutgurely syntactical
treatment. Calculi for the flat fragments of conditionalitsgcorresponding to logics of
the KLM framework are given in [7].
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