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Abstract. State-based systems and the modal logics for reasoning about them
often heterogeneously combine a number of features such as non-determinism
and probabilities. Here, we show that the combination of features can also be
reflected algorithmically and develop modular decision procedures for heteroge-
neous modal logics. The modularity is achieved by formalising the underlying
state-based systems as multi-sorted coalgebras and associating both a logical and
an algorithmic description to a number of basic building blocks. Our main result
is that logics arising as combinations of these building blocks can be decided in
polynomial space provided that this is the case for the components. By instantiat-
ing the general framework to concrete cases, we obtain PSPACE decision pro-
cedures for a wide variety of structurally different logics, describing e.g. Segala
systems and games with uncertain information.

1 Introduction

Modal logics appear in computer science in a variety of contexts. They are the formal-
ism of choice for reasoning about reactive systems and feature prominently in areas
related to artificial intelligence such as knowledge representation and reasoning with
uncertainty [7]. The semantics of modal logics typically involves a notion of state and
transition, which can take a number of different forms. Transitions can be probabilis-
tic or weighted, as in probabilistic modal logic [15,9] and graded modal logic [6,5],
induced by joint actions of agents as in coalition logic [18], or non-monotonically con-
ditioned as in conditional logic [3]. An attractive aspect of many of these logics is that
they admit shallow models and are decidable in low complexity classes, in the absence
of fixpoint operators typically PSPACE (e.g. [25,18,23]), i.e. the same as the standard
modal logic K [2] and not dramatically worse than propositional logic.

Features like non-determinism, probabilistic choice or joint actions are often com-
bined, leading to systems that incorporate more than one type of transition. Moreover,
features can be combined in different ways: E.g. in the alternating model of proba-
bilistic transition systems [8], states may have either non-deterministic or probabilis-
tic transitions, whereas simple Segala systems [24] have a two-layered structure where
non-deterministic transitions lead to probability distributions over successor states. Bar-
tels et al. [1] present 12 different types of probabilistic transition systems that arise as
combinations of basic features.

Here, we introduce a simple calculus that formalises the combination of features and
establish that combined logics inherit the pleasant properties of their building blocks,
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in particular shallow models and decidability in PSPACE . Our results and algorithms
are generic and use the same algorithmic template to realise decision procedures at the
level of each individual feature. This is achieved by formalising the combined logics
in a multi-sorted extension of coalgebraic modal logic [17] whose semantics is para-
metric in a set functor T ; models then appear as T -coalgebras. This pushes the generic
PSPACE -decision procedure of [23], which works uniformly for such diverse logics
as Hennessy-Milner logic, coalition logic, graded modal logic and probabilistic modal
logic, to the level of combined logics that integrate several features.

Formally, a feature consists of a set of modal operators together with a set of associ-
ated proof rules. On the semantic level, a structure for a feature is an endofunctor of type
Setn → Set, where n is the arity of the feature (e.g. choice, fusion, and conditionality
are binary features). The notion of gluing formalises specific ways of combining given
features. Syntactically, gluings define multi-sorted modal logics. Semantically, gluings
induce endofunctors T : Setn → Setn such that T -coalgebras are models of the com-
bined logic. The single sorted case n = 1 is of special interest since since it captures the
standard models of combined systems, including e.g. the ones presented in [1], which
equip multi-sorted logics with a single-sorted semantics.

The central technical contribution of this work is the construction of a logically
equivalent flattening of a given gluing, where flat gluings assign to each feature an indi-
vidual sort in the semantics. Flat gluings are technically more tractable than general glu-
ings. In particular, one can establish the shallow model property and a generic PSPACE
algorithm for flat gluings. Together, these results imply PSPACE upper bounds for sat-
isfiability w.r.t. general gluings, including the standard single-sorted semantics.

Related Work. Our work is closely related to the framework presented in [4,11],
which focuses on completeness issues, with the main difference that our approach
makes the multi-sorted nature of heterogeneous logics explicit by considering multi-
sorted models. Our treatment of typed formulas resembles the use of ingredients in [11],
but the multi-sorted semantics avoids the use of the next-operator of loc.cit. The main
advantage of the new framework is that constructions such as cartesian product or dis-
joint union are no longer special cases and that the decision procedures of [22,23] gen-
eralise straightforwardly to the multi-sorted case. The multisorted approach to the com-
plexity of composite modal logics complements transfer results obtained for the fusion
of modal logics [26,10] in the sense that our framework is presently limited to logics
axiomatised without nested modalities, but allows more flexible logic composition and
covers also non-Kripke semantics.

2 Multisorted Modal Logics by Example

2.1 Logics for Probabilistic Systems

Segala systems [24] and alternating systems [8] both combine probabilistic transitions
and non-determinism. In Segala systems, each system state can non-deterministically
perform actions that lead to probability distributions over states. Contrastingly, alter-
nating systems have two kinds of states engaging in purely probabilistic transitions and
non-deterministic actions, respectively.
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Alternating systems

It has been shown in [12, Theorem 8] that probabilistic modal logic over a set A of
actions characterises states of image-finite Segala systems up to bisimilarity. This logic
has two sorts n and u of non-deterministic and probabilistic (‘uncertain’) formulas,
respectively, and two families of modal operators

�a : u→ n (a ∈ A) and Lp : n→ u (p ∈ [0, 1] ∩ Q),

where Lp reads ‘with probability at least p’. The sets Ln and Lu of non-deterministic
and probabilistic formulas, respectively, are thus defined by the grammar

Ln 3 φ ::= > | φ1 ∧ φ2 | ¬φ | �aψ (ψ ∈ Lu, a ∈ A)
Lu 3 ψ ::= > | ψ1 ∧ ψ2 | ¬ψ | Lpφ (φ ∈ Ln, p ∈ [0, 1] ∩ Q).

Alternating systems, on the other hand, can be captured by a logic comprising three sorts
n, u, and o of non-deterministic, probabilistic, and alternating formulas, respectively,
and modal operators

+ : u, n→ o Lp : o→ u �a : o→ n

inducing the obvious three-sorted grammar. The binary modal operator + implements
the choice between probabilistic and non-deterministic transitions, being essentially a
case statement: φ+ψ demands that φ holds if the present state is probabilistic whereas
ψ holds if present state is non-deterministic.

2.2 Fusion of Modal Logics

Both logics described above wire up the component logics in a restricted way, by im-
posing layering and choice, respectively. The unrestricted combination of logics La and
Lb featuring modal operators � and ♥, respectively, can be modelled by a logic with
sorts a, b, f and four modal operators with associated source and target sorts

[π1] : a→ f [π2] : b→ f � : f → a ♥ : f → b.

The [πi] are postulated to commute with all boolean connectives. The well-known fu-
sion La⊗Lb (cf. e.g. [13]) disjointly combines the axioms and modalities of La and Lb.
One can translate back and forth between the fusion and formulas of sort f , taking e.g.
the operator � of the fusion to the composite operator [π1]�. Thus, fusion is an instance
of the multi-sorted combination of modal logics.
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As fusion does not impose any well-typedness constraints on formulas, it can be
regarded as the maximally permissive way of combining two modal logics. However,
as shown by the previous example, formulas of the fusion do not in general have an in-
terpretation over the intended type of systems, so that it is for many purposes preferable
to work with the more restrictive well-typed combinations considered here.

2.3 Conditional Logic

The standard conditional logic CK [3] has a binary modal operator⇒, where φ⇒ ψ is
read as a non-monotonic conditional. The right hand argument of⇒ behaves essentially
like the normal modal logic K, in particular obeys the usual K-axiom when the left
argument is fixed. Indeed we can embed CK into a two-sorted extended conditional
logic with sorts c, k and modal operators

•⇒: c, k → c � : c→ k

by translating α ⇒ β to α •⇒ �β. Here, •⇒ represents a rudimentary conditional, and
� is the standard box modality of K. This shows how a given complex logic can be
broken down into simpler building blocks.

3 Compositional Syntax of Multisorted Modal Logic

For our purposes, it is convenient to present the syntax of multi-sorted modal logic in
a way that provides explicitly for a decomposition into building blocks. The building
blocks, which we call features, are collections of (possibly polyadic) modal operators
and associated proof rules that capture specific properties of a logic, such as the ability
to describe choice, non-determinism, or uncertainty.

Definition 1. An n-ary feature is a pair F = (Λ,R) consisting of a set Λ of modal
operators L with profiles L : i1, . . . , ik → ∗, where 1 ≤ i1, . . . , ik ≤ n are for-
mal argument sorts and ∗ is a formal target sort, and a set R of one-step rules of
the form (φ1; . . . ;φn)/ψ,where for i = 1, . . . , n, φi is a propositional formula over
a set Vi of propositional variables, and ψ is a disjunctive clause over atoms of the form
L(a1, . . . , ak) with L : i1, . . . , ik → ∗ in Λ and aj ∈ Vij , j = 1, . . . , k.

Note that the rule format disallows nested modalities in the conclusion, so that rules
describe the one-step behaviour of a system. As in the single sorted case [22], this
format always suffices to completely axiomatise the features of interest, as long as no
global conditions (such as transitivity) are imposed on the coalgebraic models.

Example 2. We describe the features implicit in the Examples of Sect. 2. Figure 1
shows the associated proof rules, already in a special format needed in Sect. 5. The
rules for non-determinism and uncertainty are taken from [23]; the others are obtained
by the same principles. The sum expression in the uncertainty rule refers to the (propo-
sitionally expressible) arithmetic of characteristic functions [23].

Non-Determinism: Given a setA of actions, the unary feature NA has modal operators
�a : 1 → ∗ for a ∈ A. We write K instead of NA if A is a singleton.
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Uncertainty: The unary feature U has modal operators Lp : 1 → ∗ for p ∈ [0, 1] ∩ Q.
Choice: The binary feature S has a single modal operator + : 1, 2 → ∗.
Fusion: The binary feature P has two modal operators [πi] : i→ ∗, i = 1, 2.
Conditionality: The binary feature C has a binary modal operator •⇒: 1, 2 → ∗.

Nondeterminism :

Vn
j=1 αj → βVn

j=1 �aαj → �aβ
(n ≥ 0, a ∈ A)

Uncertainty :

Pn
j=1 rjαj ≥ kWn

j=1 sgn(rj)Lpj αj

0B@ n ≥ 1, rj ∈ Z− {0}, k ∈ ZPn
j=1 rjpj

(
< k if ∀j. rj < 0

≤ k otherwise

1CA
Choice :

(
Vm

j=1 αj →
Wn

k=1 βk) : 1 (
Vm

j=1 γj →
Wn

k=1 δk) : 2Vm
j=1(αj + γj) →

Wn
k=1(βk + δk)

(m, n ≥ 0)

Fusion :
(
Vm

j=1 αj →
Wn

k=1 βk) : iVm
j=1[πi]αj →

Wn
k=1[πi]βk

(i = 1, 2; m, n ≥ 0)

Conditionality :
(
Vm

j=1 αj →
Wn

k=1 βk) : 2Vm
j=1(γ

•⇒ αj) →
Wn

k=1(γ
•⇒ βk)

(m, n ≥ 0)

Fig. 1. Proof rules for the features of Example 2

The examples from Sect. 2 demonstrate that features can be combined in different ways.
This is formalised by the notion of gluing.

Definition 3. Let Φ be a set of features, and let S be a set of sorts. Feature expressions t
are terms over the set S of variables where the features appear as function symbols, i.e.

t ::= a | F(t1, . . . , tn) a ∈ S, F ∈ Φ n-ary.

A gluing of Φ over S is a family G = (ta)a∈S of feature expressions, denoted by (a1 →
ta1 , . . . , an → tan) for S = {a1, . . . , an}; in this case we also write ai → tai ∈ G.

A gluing G = (ta)a∈S induces a multi-sorted modal logic, as follows. The set Types(G)
of G-types consists of the proper subterms of the ta, where the sorts a ∈ S are called
base types and the expressions t ∈ Types(G) \ S are the composite types. (Types are
related to the ingredients of [11].) We call a gluing flat if S = Types(G), i.e. there are no
composite types, which is the case if every term ta is of the form F(a1, . . . , an). Typed
G-formulas φ : s, s ∈ Types(G), are inductively generated by closure under boolean
operators ⊥, ¬, ∧ at each type (with further boolean operators defined in the standard
way) and by the following typing rules for composite types (left) and base types (right)

φ1 : s1, . . . , φn : sn

L(φi1 , . . . , φin) : F(s1, . . . , sn)
φ1 : s1, . . . , φn : sn

L(φi1 , . . . , φin) : a
,
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where the left hand rule has side condition F(s1, . . . , sn) ∈ Types(G) and the right hand
rule has side condition a → F(s1, . . . , sn) ∈ G, and in both cases L : i1, . . . , in → ∗
in F. We write Fs(G) for the set of G-formulas of type s and denote the family
(Fs(G))s∈Types(G) by F(G).

Similarly, the proof system induced by G is described in terms of a Types(G)-
indexed family of derivability predicates `s⊆ Fs(G) defined inductively by closure
under propositional reasoning at each type and the deduction rules for composite types
(left) and base types (right), distinguished only by the type discipline,

`s1 φ1σ, . . . ,`sn
φnσ

`F(s1,...,sn) ψσ

`s1 φ1σ . . . `sn φnσ

`a ψσ

where F(s1, . . . , sn) ∈ Types(G) in the left hand rule, a → F(s1, . . . , sn) ∈ G in the
right hand rule, and in both cases, (φ1; . . . ;φn)/ψ is a rule of F and σ is a substitution
mapping variables a ∈ Vi to formulas σ(a) : si.

A given logic can be syntactically generated by different gluings, typically including
both flat and non-flat ones, determining different classes of semantic structures (cf.
Sect. 4). The core of this work is the proof of logical equivalence for the respective
semantics. Flat gluings are technically more tractable, while logics occurring in the
literature, including the ones described in Sect. 2, are typically non-flat.

Example 4. From the features S, U, and NA (Example 2), we can form gluings

G1 ≡ (a→ S(U(a),NA(a))) and G2 ≡ (a→ S(u, n), u→ U(a), n→ NA(a)).

Here, G1 has types a, NA(a), U(a), whereas G2 is flat with types a, n, u. Modulo
identifications NA(a) = n and U(a) = u, both gluings give rise to the (typed) formulas
describing alternating systems (Sect. 2.1). The remaining example logics from Sect. 2
are captured by the following gluings (where we omit the obvious flat versions):

Probabilistic modal logic of Segala Systems: s→ NA(U(s)).
Fusion: The fusion of logics La and Lb as in Sect. 2.2, regarded as features, is f →
P(La(f),Lb(f)).
Extended conditional logic: c → C(c,K(c)). Note in particular that in the induced
proof system, we can derive the standard rule

(RCK)
∧n

i=1 αi → β∧n
i=1(γ ⇒ αi) → (γ ⇒ β)

(n ≥ 0)

of the conditional logic CK [3], where γ ⇒ α abbreviates γ •⇒ �α.

4 Multi-Sorted vs. Single-Sorted Coalgebraic Semantics

We now generalise the coalgebraic interpretation of modal logic, introduced in [17],
to the multi-sorted case. Crucially, we interpret multi-sorted logics over multi-sorted
coalgebras. The parametricity over signature functors for coalgebras is the key feature
of our framework that allows for uniform results that can be instantiated to a large
number of structurally different systems and logics. We recall some basic notions of
multi-sorted coalgebra (cf. e.g. [16]), generalising the single-sorted setting [19]:
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Definition 5. We write Set for the category of sets and functions. Let SetS denote
the category of S-sorted sets and S-sorted functions, with objects being families X =
(Xa)a∈S (or just (Xa)) of sets Xa, and morphisms f : (Xa) → (Ya) being families
f = (fa)a∈S of maps fa : Xa → Ya. We write Setn for Set{1,...,n}. A functor
T : SetS → SetS may be regarded a family T = (Ta)a∈S of functors Ta : SetS →
Set. A T -coalgebra A = (X, ξ) is a pair (X, ξ) where X is an S-sorted set and ξ =
(ξa) : X → TX is an S-sorted function (i.e. ξa : Xa → TaX) called the transition
function. A morphism between T -coalgebras (X, ξ) and (Y, ζ) is an S-sorted function
f : X → Y such that (Tf)ξ = ζf in SetS .

We view coalgebras as generalised transition systems: the transition function maps
states to structured sets of observations and successor states, the latter taken from any
of the available sorts.

The interpretation of modal operators is based on predicate liftings [17,20]; in the
multi-sorted setting, this takes the following shape.

Definition 6. A predicate lifting λ of profile λ : i1, . . . , ik
•→ ∗ for a functor T :

Setn → Set, where i1, . . . , ik ≤ n, is a natural transformation

λ : (Q ◦ P op
i1

)× · · · × (Q ◦ P op
ik

) → Q ◦ T op

between functors (Setn)op → Set, where Q denotes the contravariant powerset func-
tor Setop → Set (i.e. QX = PX , and Q(f)(A) = f−1[A]) and Pi : Setn → Set is
the i-th projection.

We now construct a compositional coalgebraic semantics of the logic F(G) induced by
a gluing G from structures associated with the features combined by G. We first describe
the notion of structure associated with a single feature, and then the combination of such
structures along a gluing.

Definition 7. Let F = (Λ,R) be an n-ary feature. A structure for F consists of an endo-
functor [[F]] : Setn → Set and an assignment of a predicate lifting [[L]] : i1, . . . , ik

•→ ∗
for T to every modal operator L : i1, . . . , ik → ∗ in Λ, subject to the condition that
every rule R = φ1; . . . ;φn/ψ over V in R is one-step sound: for every n-sorted set X
and every assignment τ of subsets τ(a) ⊆ Xi to the variables a ∈ Vi, if [[φi]]τ = Xi for
all i, then [[ψ]]τ = TX , where [[φi]]τ ⊆ Xi and [[ψ]]τ ⊆ TX are defined by the usual
clauses for boolean operators and [[L(a1, . . . , ak)]]τ = [[L]](τ(a1), . . . , τ(ak)).

When features are equipped with structures, every feature expression t over the set S of
sorts defines a functor [[t]] : SetS → Set by

[[a]] = Pa : SetS → Set (a ∈ S) and [[F(t1, . . . , tn)]] = [[F]] ◦ 〈[[t1]], . . . , [[tn]]〉,

where Pa is projection to the a-th component and 〈·〉 represents tupling. Thus, a gluing
G = (ta)a∈S induces a functor [[G]] : SetS → SetS .

The coalgebraic semantics of F(G) is now given w.r.t. [[G]]-coalgebras C = (X, ξ).
For a type s ∈ Types(G), an s-state of C is an element x ∈ [[s]]X . The semantics of a
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formula φ : s is a set [[φ]]C ⊆ [[s]]X of s-states. We have the usual clauses for propo-
sitional connectives, and the semantics of modal operators is given by the following
clauses for composite types (top, assuming F(s1, . . . , sn) ∈ Types(G)) and base types
(bottom, for a→ F(s1, . . . , sn) ∈ G):

[[L(φ1, . . . , φn) : F(s1, . . . , sn)]]C = [[L]]([[φ1]]C , . . . , [[φn]]C)

[[L(φ1, . . . , φn) : a]]C = ξ−1
a ◦ [[L]]([[φ1]]C , . . . , [[φn]]C)

where, in both cases, L : i1, . . . , in → ∗ in F. We write x |=s
C φ if φ : s and x ∈ [[φ]]C .

Note that the requirement that rules are one-step sound immediately yields sound-
ness of the logic w.r.t. the semantics described above; this is as in [4].

Example 8. The standard semantics for the features of Example 2 is induced by the
following structures.

Non-Determinism: A structure for NA is given by [[NA]] = P(A× ) and

[[�a]]X(C) = {B ∈ P(A×X) | {x : (a, x) ∈ B} ⊆ C}.

Note that (single-sorted) coalgebras for P(A × ) are labelled transition systems, and
the lifting associated with �a gives rise to Hennessy-Milner logic [17].
Uncertainty: Put [[U]] = Dω, where Dω is the finite distribution functor Dω that maps
a set X to the set of probability distributions on X with finite support. The modal
operators Lp are interpreted by

[[Lp]]X(A) = {P ∈ DωX | PA ≥ p}.

(Single-sorted) Dω-coalgebras are finitely branching probabilistic transition systems.
For G = (s→ NA(U(s))) (Example 4), we have [[G]] = P ◦Dω, so that [[G]]-coalgebras
are precisely Segala systems, while coalgebras for the corresponding flat signature have
an explicit separation between non-deterministic and probabilistic states.
Choice: Let [[S]] be the disjoint sum functor [[S]](X,Y ) = X + Y , and interpret the
modality + by

[[+]]X,Y (A,B) = A+B ⊆ X + Y.

Fusion: Let [[P]] be the binary product functor [[P]](X,Y ) = X × Y , and put

[[π1]]X,Y A = {(x, y) | x ∈ A} and [[π2]]X,Y B = {(x, y) | y ∈ B}.

Conditionality: Define the functor [[C]] by [[C]](X,Y ) = QX → Y , with Q denoting
contravariant powerset and → denoting function space, and put

[[ •⇒]]X,Y (A,B) = {f : QX → Y | f(A) ∈ B}.

For G = (c → C(c,K(c))) (Example 4), we have [[G]]X = QX → PX , and [[G]]-
coalgebras are conditional frames [3].

Modal logic talks only about the observable behaviour of states; this is formally ex-
pressed as invariance of the logic under morphisms:

8



Proposition 9. Let f : C → D be a morphism of [[G]]-coalgebras. Then for each G-
formula φ : s and each s-state x in C, x |=s

C φ iff ([[s]]f)(x) |=s
D φ.

We can now state the (local) satisfiability problem for multi-sorted modal logics.

Definition 10. A G-formula φ : s is satisfiable in a G-model if there exist a [[G]]-
coalgebra C and an s-state x in C such that x |=s

C φ.

A central contribution of this work is to show that for every gluing, we can con-
struct a flat gluing with an equivalent satisfiability problem. For flat gluings, one can
generalise existing model constructions and complexity results for coalgebraic modal
logic [22,23,21], and the relevant criteria reduce to the component logics; for the
shallow-model-based PSPACE algorithm of [23], this is discussed in more detail in
Sect. 5. We thus obtain compositional algorithmic methods also for the standard single-
sorted semantics present in the literature.

We start by constructing a flattening G[ of an arbitrary gluing G and then transform
[[G]]-coalgebras to [[G[]]-coalgebras preserving satisfaction of formulas.

Definition 11. Let G be a gluing over the set S of sorts. The flattening G[ =
(us)s∈Types(G) of G is a flat gluing over the set S[ = Types(G) of sorts, defined by
us = ta for s = a ∈ S (with immediate subexpressions of ta regarded as sorts in S[)
and us = s otherwise (with s regarded as a sort in S[).

Example 12. Given the gluings G1 ≡ (a → S(U(a),NA(a)) and G2 ≡ (a →
S(u, n), u → U(a), n → NA(a)) from Example 4, G2 is the flattening of G1, up to
renaming the sorts U(a) and NA(a) of the flattening into u and n, respectively.

It is easy to see that the flattening G[ syntactically induces the same logic as G, i.e. the
types, formulas, and proof systems coincide. Our main result is now stated as follows.

Theorem 13. A G-formula is satisfiable in a G-model iff it is satisfiable (as a G[-
formula) in a G[-model.

Proof. (Sketch) ‘Only if’: Expand a [[G]]-coalgebra C to a [[G[]]-coalgebra C[ by insert-
ing identity functions for the components of the structure map corresponding to com-
posite types. Induction on the definition of the semantics then shows that the semantics
w.r.t. C and C[ agree.

‘If’: Turn a [[G[]]-coalgebra D = (Xb, ξb)b∈S[ into the [[G]]-coalgebra D# =
(Xa, γa)a∈S , where

γa = [[F]](ζs1 , . . . , ζsn) ◦ ξa
for a → F(s1, . . . , sn) in G, and the maps ζs : Xs → [[s]](Xa)a∈S for s ∈ Types(G)
are defined recursively by

ζa = idXa (a ∈ S) and ζF(s1,...,sn) = [[F]](ζs1 , . . . , ζsn) ◦ ξF(s1,...,sn).

One can then construct a coalgebra morphism D → (D#)[, and Proposition 9 yields
the claim. ut

In our running example, the situation is as follows:
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Example 14. Consider the gluings G1 and G2 over S = {a, u, n} from Example 4 and
recall from Example 12 that G[

1 = G2. Let C = (X, ξ : X → DωX + P(A × X))
be a [[G1]]-coalgebra. Then C[ = ((Xs), (ξs)) where Xa = X,Xu = DωX , Xn =
P(A×X), ξa = s, ξu = idXu , and ξn = idXn .

Conversely, given a [[G2]]-coalgebra D = ((Xs), (ξs)), we construct a [[G1]]-
coalgebra D] = (X, ξ) by putting X = Xa and ξ = (ξu + ξn) ◦ ξa. The triple
(idX , ξu, ξs) is a homomorphism D → (D])[.

5 Applications to Model Construction and Complexity

We have seen in Sect. 3 that the same multi-sorted logic can arise from different gluings
of given features, where the difference manifests itself only on a semantic level. The
different interpretations of the logic are related by Theorem 13 which shows that the
satisfiability problem for a given gluing is equivalent to that of its flattening. We now
show that the generic shallow model construction and the ensuing PSPACE decision
procedure from [23] generalise to flat gluings; this enables us to derive upper PSPACE
bounds for arbitrary gluings, in particular for heterogeneous logics equipped with their
standard single-sorted semantics as in Sect. 2.

The shallow model construction requires the involved structures to be strictly one-
step complete in the following sense, where the notation [[ ]]τ , is as in Definition 7.
(Strict) one-step completeness implies weak completeness of the rule system [17,22].

Definition 15. An n-ary feature F is strictly one-step complete for a structure T =
[[F]] : Setn → Set if, whenever [[χ]]τ = T (X1, . . . , Xn) for a sorted set (V1, . . . , Vn)
of variables, an assignment τ of subsets τ(a) ⊆ Xi to variables a ∈ Vi, and a clause χ
over atoms of the form L(ai1 , . . . , aik

), where L : i1, . . . , ik → ∗ in F and aij ∈ Vij ,
then χ is propositionally entailed by a clause ψσ, where (φi)/ψ is a rule of F and σ is
a (V1, . . . , Vn)-substitution (i.e. σ(a) ∈ Vi for a ∈ Vi) such that [[φiσ]]τ = Xi for all i.

(The formulation above corrects the formulation given in [23] in admitting only a sin-
gle rule application in a strict derivation.) One shows analogously to the single-sorted
case [22] that the set of all one-step sound rules for a given F-structure is strictly one-
step complete, so that strictly one-step complete axiomatisations always exist. In [23],
rule resolution, a systematic procedure for obtaining strictly one-step complete rule
sets, has been described, which straightforwardly generalises to the multi-sorted set-
ting. Throughout this section, we fix a gluing G of a set Φ of features over a set S of
sorts; moreover we assume that every feature is equipped with a structure.

Definition 16. The set MA(φ) of modal atoms of an G-formula φ is defined recursively
by MA(φ ∧ ψ) = MA(φ) ∪MA(ψ), MA(¬φ) = MA(φ), and MA(L(ρ1, . . . , ρn)) =
{L(ρ1, . . . , ρn)}. A pseudovaluation for φ is a subset H of MA(φ). We define satisfac-
tion of propositional formulas χ over MA(φ) by H (H |= χ) inductively in the obvious
way, with H |= χ ⇐⇒ χ ∈ H for χ ∈ MA(φ).

Assuming that s = F(s1, . . . , sn) ∈ Types(G) if s is composite and a →
F(s1, . . . , sn) ∈ G if s = a is a base type, we say that a rule R = (φ1; . . . ;φn)/ψ
associated with the feature F matches a pseudovaluation H for φ : s if there is a sub-
stitution σ such that ψσ is a clause over MA(φ) with H 6|= ψσ. In this case, the pair
(R, σ) is called a matching of H .
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Our shallow model theorem now takes the following form.

Theorem 17. If every feature in G is strictly one-step complete, then a formula φ : s
is satisfiable in a G-model iff H |= φ for some pseudovaluation H for φ such that for
every matching ((φ1; . . . ;φn)/ψ, σ) of H , one of the formulas ¬φiσ is satisfiable.

The proof first reduces to flat gluings by Theorem 13 and then recursively constructs a
shallow model whose root state is a pseudovaluation and whose branches are models of
negated substitution instances of rule premises as in the statement.

From Theorem 17, we obtain a multi-sorted version of the generic PSPACE deci-
sion procedure of [23]. This requires to compute matchings of given pseudovaluations,
and we require that the rules associated with features are reduction closed, i.e. it suffices
to consider matchings ((φ1, . . . , φn)/ψ, σ) where ψσ does not contain duplicate liter-
als, with the consequence that there are only finitely many matches to check in every
recursion step. Since rules are generally too large to pass around directly, we assume
that every rule is represented by a code, i.e. a string over some alphabet. For the features
discussed in Example 2, the codes can be taken as the parameters of the rules.

The crucial requirement for the effectivity of the algorithm is that one has a poly-
nomial bound on codes of matching rules and that a number of minor infrastructure
operations can be performed in polynomial time (cf. [23] for details), in which case
we call a rule set PSPACE-tractable. All rule sets presented in Fig. 1 are strictly one-
step complete, reduction closed, and PSPACE -tractable (this is either clear or shown
in [23]). We obtain:

Theorem 18 (Space Complexity). If every feature in G is strictly one-step complete,
reduction closed, and PSPACE -tractable, then the satisfiability problem for F(G)-
formulas over [[G]]-coalgebras is in PSPACE .

In particular, satisfiability for logics arising through arbitrary gluings of the features
from Example 2 are in PSPACE .

Remark 19. The recursive structure of the algorithm allows for a modular implemen-
tation which interconnects separate matching routines for each feature. In particular, the
same algorithmic structure may alternatively be applied to effective heuristic matching
routines, leading to approximative but more efficient solutions.

6 Conclusions

We have introduced a calculus of gluings, which describe ways of combining logical
features like uncertainty, non-determinism, and choice. We have shown that the satis-
faction problem of a gluing is in PSPACE if this is true for involved features. This has
been achieved by equipping the logics under consideration with a multi-sorted coalge-
braic semantics. Crucially, we have shown that the satisfiability problem of a gluing
is equivalent to that of a corresponding flattened gluing, which is technically more
tractable. Our results pave the way for modularized tool support for a large class of
heterogeneous logics. The study of E-connections [14] in the coalgebraic framework is
the subject of future work.
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