
Modular Synthesis of Provably Correct Vote
Counting Programs

Florrie Verity and Dirk Pattinson

The Australian National University

Abstract. Vote counting schemes, in particular those that employ var-
ious different variants of single transferable vote, often vary in small
details. How are transfer values computed? What are the precise rules
when two or more candidates tie for exclusion? In what order are candi-
dates elected? These details are crucial for the correctness of vote count-
ing software. While the verification of counting programs using interac-
tive theorem provers gives very high correctness guarantees, correctness
proofs need to be re-done when these details change, as this is reflected in
both specification and implementation. This paper presents a framework
where counting schemes are specified by rules, and provably correct, uni-
versally verifiable counting programs can be synthesised automatically,
given (formal) proofs of two simple and intuitive properties of the spec-
ification of the protocol in rule form.

1 Introduction

Our trust in the correctness of paper-based vote counting rests on two basic
pillars: first, vote counting is transparent, i.e. it does not happen behind closed
doors. Second, we have a good understanding of the way in which votes are to
be counted, that is, there is no confusion as to how the counting process should
proceed.

These two properties can be replicated for electronic vote counting by (a)
publishing an exact formal specification on how the vote counting program op-
erates, and by (b) publishing a transcript of the count that can be independently
verified by third parties.

These two properties go hand-in-hand as the form of the transcript invari-
ably depends on the formal specification of the vote counting scheme. A close
correspondence between hand-counting and machine-counting can be achieved
by mirroring the actions of hand-counting in the formal specification. The elec-
tronic count then proceeds by applying precisely these actions, and the sequence
of actions applied provides a transcript of the count that can be (electronically)
scrutinised by third parties. In particular, this guarantees universal verifiabil-
ity of the count, as the transcript plays the role of a certificate that can be
independently verified by third parties.

For example, the action ‘take an uncounted ballot, update the running tally
according to the first listed preference, and place the ballot paper onto the pile

of votes counted for for the first preference candidate’ becomes a rule that pro-
gresses the state of the count. To model this by means of a formal specification,
we need to keep track of the data being manipulated. In this example, we need
to record uncounted ballots, a running tally, and a pile of ballot papers for each
candidate (on which votes counted in favour of this candidate are placed). A
formalisation direct formalisation would therefore rely on a notion of state of
vote counting that represents precisely this data (uncounted ballots, running
tally and, for each candidate, a list of votes counted in their favour) that is
manipulated by rules, i.e. a formal description of how states may be correctly
manipulated according to the given vote counting scheme. This approach has
been taken in [9] where two simple vote counting schemes are formalised in this
way in the Coq theorem prover [3]. In particular, this style of formalisation is
amenable to synthesising vote counting programs that are (a) provably correct,
that is, each individual step corresponds to correctly applying a rule given in the
specification, and (b) also deliver the sequence of rules applied, i.e. a universally
verifiable transcript of the count. The synthesis of vote counting programs is not
fully automatic, but requires a formal proof of the fact that for every given set
of (initial) ballots, there is a sequence of correct rule applications that leads to
the determination of election winners.

‘vote counting as mathematical proof‘ [9] In the context of vote counting,
the two fundamental principles that engender our trust in paper based elections
are the transparency of the process (it doesn’t happen behind closed doors) and
a good understanding of the overall vote counting scheme (there’s no confusion
as to how the counting should proceed). The approach of ‘vote counting as
mathematical proof‘ [9] tries to bring these benefits to the area of electronic
ballot counting. In a nutshell, actions of vote counting officials that progress the
count are understood as rules, and rules are applied until the outcome of the
count has been determined. Transparency is achieved by the counting algorithms
not only providing a determination of the winner, but also the complete sequence
of rule application that leads to its determination.

The work reported is based on two case studies using a simplified version
of single transferable vote (STV) and first-past-the-post (FPTP), or plurality,
scheme. In both cases, the voting scheme was formalised inside a theorem prover
(Coq, [3]), and from formal proofs, in both vote counting schemes, of the fact
that “every election has a winner”, the authors synthesised a provably correct
program that counts votes according to this scheme.

In op.cit., both specifications and proofs are monolithic. This has two main
disadvantages: (i) proofs become difficult to manage because of sheer size, and (ii)
even small changes in the specification of the vote counting scheme necessitate
to completely re-do all proofs. Moreover, it is not quite clear whether or not the
approach would actually be adaptable to real-world vote counting schemes that
are usually more involved than the two case studies that have been analysed.

In this paper, we show that the two deficiencies above can be remedied by
introducing a more general framework that allows us to treat, and analyse, vote
counting rules on an individual basis, and apply the approach to the voting

2

system that is used by the ANU union [11] to elect their board of representatives.
In a nutshell, the general framework we present here just requires us to give
formal proofs of the fact that (a) at every stage of the count, at least one rule is
applicable, and (b) every rule application makes ’something smaller’, i.e. leads
to decrease in a well-founded ordering. Our experience with formalising a real-
world voting protocol indicates that the rule-based approach lends itself to more
complex voting schemes that are in fact used in real elections.

Related Work. Our work falls within the area of applying formal methods to
the specification, analysis and verification of voting protocols. The mainstay of
our work is formal proof [?], i.e. machine-checked assurance of our mathematical
arguments.

In the literature, many different ways of formally specifying vote counting
schemes, and verifying associated vote counting programs, have been put for-
ward. What they have in common is that they involve some form of expressive
logical formalism that is rich enough to express both the voting scheme and its
properties. De Young and Schürmann advocate linear logic [6], Gore et.al [7] use
Higher-Order logic, Cochran and Kinry use the Alloy tool [5], and Cochran has
used various light-weight methods for the same task but with limited success
[4]. Beckert et.al make a distinction between light weight (fully automated) and
heavy weight (interactive) methods and concludes that the scope of fully auto-
mated methods is severely limited. Our work is carried out within the formal
logic of an interactive theorem prover and clearly falls into the heavy weight
category, together with the work reported in [7]. It has been argued in [4] that
only heavy-weight methods will give us full assurance on functional correctness
of the software used to count votes. On the downside, heavy weight methods
require a significant investment in learning both the use of theorem provers and
acquiring familiarity with their underlying logic. One side effect of the work re-
ported here is that this burden is somewhat lessened as one is not required to
construct fully fledged proofs about complex vote counting schemes, but instead
only comparatively small proofs that pertain to individual rules.

mention constructive logic / program extraction

2 Rule-Based Specification of Voting Schemes

Check definitions: they are lacking?

It was argued in [9] that vote counting schemes are both naturally and con-
veniently expressed using a rule based system. The formalisation centres around
a notion of state that is manipulated by rules. It is instructive to think of a state
in analogy with hand counting of paper ballots. When hand counting, we would
maintain e.g. the current tally of all candidates, one (or more) piles containing
yet uncounted ballot papers as well as for each candidate, a pile onto which the
ballot papers counted in their favour are being placed. Continuing the metaphor,
a rule describes one (of generally many) action of an individual that progresses
the count according to the vote counting scheme in force. An informal descrip-
tion of such a rule could be “take a ballot from the pile of uncounted votes,

3

update the tally of the candidate listed as first preference on the ballot, and
place the ballot onto the pile corresponding to this candidate”. In a rule-based
formulation, we would construe ballots as (rank-ordered) lists of candidates and
express this as follows explain u, t, p

state(u1 ++[c:cs] ++u1, t, p)

state(u1 + +u2, t′, p′)

and stipulate that this rule is only applicable if the following side conditions are
met

– t′(c) = t(c) + 1, t′(d) = t(d) for all d 6= c

– p′(c) = (c:cs):p(c) ++[c], p′(d) = p(d) for all d 6= c

where we assume a set C of candidates, c ∈ C and write [x1, . . . , xn] for the list
containing x0, . . . , xn and l1 ++ l2 for the concatenation of lists and x:xs for the
list with first (head) element x and tail xs. The side condition here is crucial, as
it must be met for the rule to be applied according to the counting scheme.

States of the above form are called intermediate and are augmented by so-
called final states, e.g. of the form winners(w), that indicate that the list w of
candidates have won the election.

Given this style of specification, a count is a sequence of rule applications
that ends in a final state, and commences in a specified initial state, usually a
state where all ballots are uncounted and the current tally records zero votes for
all candidates.

One crucial aspect of a meaningful specification of a voting protocol in this
manner is the ability to proceed to a final state from any given state by means
of correctly applied rules. In other words, if we can prove that every election
has a winner. Formally, this amounts to establishing that for every initial state,
there exists a sequence of correct rule applications that ends in a final state. The
authors of [9] then argue that this sequence plays the role of a universally veri-
fiable certificate that attests to the correctness of the count, and moreover, that
provably correct vote counting programs can be synthesised from constructive
formal proofs of the above termination criterion, i.e. every election has a winner.
This was demonstrated using two small examples, plurality voting and simple
instance of single transferable vote.

In both cases, the formal proofs of termination were given in a monolithic
way, and small changes of the vote counting scheme necessitate to re-do the entire
proof. In this paper, we take one step further and develop a modular framework
that automatically generates termination proofs (and as a consequence, also
provably correct vote counting programs), given two properties of the rule set:
(a) there is at least one rule that can be applied at any non-final state of the
count, and (b) non-final states are equipped with a measure (taking values in a
well-founded ordering) that decreases with every rule application.

Mention that rules themselves don’t guarantee that counting is deterministic

or determined.

4

3 Modular Termination Proofs

As electoral authorities across the world use versions of STV that differ in small
detail, it is clearly advantageous for an approach to provably correct, indepen-
dently verifiable electronic vote-counting to be readily adaptable. Our experience
indicates that the extent of the revisions required to adapt an existing formali-
sation to a very similar protocol is great, while at the same time, the features in
common between the formalisations of two very different protocols – FPTP and
Simple STV – are many. We therefore abstract the features in common to all pro-
tocols under the rule-based specification approach into one generic framework.
We then prove meta-results about the framework which can then by instantiated
with specific protocols. Under this approach, we can change the protocol without
having to completely re-do a proof. Rather, it is only necessary to re-establish
properties for one or two relevant rules.

We begin by defining this framework, which involves separating out the rules,
rather than giving them as a single type, and then defining a termination con-
dition local to the rules.

After establishing the generic termination framework, we demonstrate its
adaptability by first applying it to the two protocols studied in [9]: FPTP and
Simple STV. Finally, we extend this proof of concept to a real world vote-
counting protocol, the version of STV used by The Australian National Uni-
versity Union Incorporated [11]. This protocol uses a common feature of STV
that is not used in Simple STV, namely the assignment of fractional transfer
values to ballots.

Our method hinges on identifying a termination condition local to the rules.
This starts with the observation from working with the proof-rules formalisa-
tions of FPTP and Simple STV, as the count proceeds (i.e. the sequence of rule
applications gets longer) there is always something that is decreasing. In the
case of FPTP, from the initial judgement onwards, the number of uncounted
votes decreases after each rule application until it reaches zero and a winner
may be declared. For Simple STV it is more complicated, but there are similar
observations - at every rule application, the number of uncounted votes and the
number of continuing candidates, for example, are non-increasing.

the following is garbled? We make the understanding before of some
judgements being intermediate and judgements of a certain form being final,
and then define a function that assigns to a non-final judgement to value of
the data in the judgement that is always decreasing (the measure of a non-final
judgement). Intuitively, if the measure decreases at every rule application, and
there is always a rule that can be applied to a non-final judgement, then we can
prove termination – that a final judgement is always reached. We can then use
the principle of well-founded induction to establish termination.

For FPTP, the less than relation on the natural numbers is a suitable well-
founded order. Since there is not one piece of data always decreasing in the case
of Simple STV, we use the lexicographic order on triples of natural numbers as
codomain of the measure function. We describe the abstract framework and then
give concrete instances for three different vote counting scheme.

5

Throughout the rest of the section, we fix a type of j of
explain judgement

judgements that will later be instantiated with the judgements of the concrete
voting protocol, and set R of rules. Formally, every rule is a property of pairs of
judgements (in Coq, a function j -> j -> Prop, i.e. a proposition depending
on two judgements, the premiss and the conclusion of the rule), and rule r
is applicable to a judgement p (that we think of as the premiss) if there is a
conclusion c such that the property r(p, c) holds. We also separate out final and
non-final judgements by means of an abstract propositional function final : j →
Prop, i.e. final judgements are precisely those c ∈ j for which final(c) holds.

explain Prop / Bool

Throughout, we fix a setR of rules, and a (measure) functionm : j→ O where
O is a set equipped with a well-founded ordering. We formalise two properties
which together give a termination condition local to the rules.

Definition 1. Let dec be the property of a list of rules R such that dec(R) if
whenever a rule holds true of two judgements, the value of the measure of the
premise is greater than the value of the measure of the conclusion. Formally, we
have that r(p, c) implies that m(c) > m(p) for all rules r ∈ R. In other words,
whenever a rule is applied the measure decreases.

The second property states that (at least) one rule is applicable at any stage of
the count.

Definition 2. Let app be the property of a list of rules R such that app(R) if
for every non-final judgement, there is always a rule that may be applied. Again
formally, we have that for every non-final judgement p (the premiss) there exists
a judgement c (the conclusion) and a rule r ∈ R such that r(p, c) holds.

The main termination theorem is as follows. For two judgements a and b and a
list of rules R, we say that a proof from a to b via R is a sequence of correct
applications of rules in R, starting with a and ending in b.

Theorem 3. For any set R of rules such that dec(R) and app(R) hold, and every
judgement i there exists a final judgement f and a sequence of rule applications
beginning in i and ending in f .

The theorem is proved by well-founded induction, and a formal proof can be
found in the Coq sources that accompany this paper. Although the proof is
not mathematically deep, the computational information it contains is precisely
what allows us to synthesise provably correct counting programs later.

4 Formalisation in Coq

We prove the main theorem of the previous section formally in Coq. The con-
structive nature of the Coq theorem prover then enables us to do program ex-
traction, i.e. automatically construct a provably correct program from a formal
termination proof.

6

Implementation 4. We define the type Judgement that captures both final
and non-final states of the count. This type is left abstract (not instantiated) in
the general framework, whereas in concrete instances, judgements will be states
of the count. In the examples described later, judgements will be of the form
state(u, t, p) and winners(w).

Where before there was an implicit notion of a ‘final’ judgement giving the
end result of the count, we make this explicit by defining it as a property of a
judgement. We also specify that this property is decidable – for every judgement
there is either a proof that it is final or a proof that it is non-final. The latter
is important as it engenders a function that determines whether a judgement
is final or not. In general, the law of excluded middle is not an axiom of our
constructive meta-theory as a function that decides whether a statement A or
its converse holds cannot always be procured.

Variable Judgement : Type.
Variable final: Judgement -> Prop.
final_dec: forall j : Judgement, (final j) + (not (final j)).

The keywords Variable and Hypothesis designate these as abstract, and instan-
tiating the abstract framework amounts to (among other things) giving concrete
definitions for the above. Similarly, we define generic relation wfo on a type WFO,
and hypothesise that this relation is well-founded, and a measure defined on the
set (type) of non-final judgements. The (constructive) notion of well-foundedness
is taken from the Coq standard library.

Variable WFO : Type.
Variable wfo: WFO -> WFO -> Prop.
Hypothesis wfo_wf: well_founded wfo.
Variable m: { j: Judgement | not (final j) } -> WFO.

A rule is defined as a relation on two judgements, where the first judgement is
thought of as a premise and the second as a conclusion.

Definition Rule := Judgement -> Judgement -> Prop.

Finally we define a type of proofs, that is, sequences of correct rule applications
that we think of as evidence for the fact that the final judgement in the se-
quence has been obtained in accordance with the given rules. As in the original
paper, this will allow us to produce an independently verifiable certificate of the
correctness of the count. The type of proofs is given as a dependent inductive
type with two constructors, or ways of giving evidence that a judgement has the
property of provability. It is parametrised by an initial judgement and a list of
rules.

Inductive Pf (a : Judgement) (Rules : list Rule) : Judgement -> Type :=
ax : forall j : Judgement, j = a -> Pf a Rules j

| mkp: forall c : Judgement, forall r : Rule, In r Rules ->
forall b : Judgement, r b c -> Pf a Rules b -> Pf a Rules c.

The ax constructor, read axiom, says that every judgement has a proof if it is
equal to the initial judgement. The second constructor mkp, read make proof,
says that if there is a proof from a judgement a to a judgement b, and a rule
from the list holds true of b and a third judgement c, then there is a proof from
a to c.

7

This establishes the elements of the general framework: given a vote counting
scheme, defined by a set R of rules, and an initial judgement j, the type Pf j r
can be thought of as an indexed family, or function, that – for every other
(usually final) judgement j′ – represents all correctly formed sequences of rule
applications that start with j and end in j′. Thus, an element of this type is
evidence for the correctness of a count where the result j′ has been obtained
from initial state j. We now encode two properties, parametrised by a list of
rules, to capture our reasoning from before.

Implementation 5. The properties are encoded as parametrised dependent
function types. The first property dec, read decrease, is defined as:

Definition dec (Rules : list Rule) : Type :=
forall r, In r Rules -> forall p c : Judgement, r p c ->
forall ep : not (final p), forall ec : not (final c),

wfo (m (mk_nfj c ec)) (m (mk_nfj p ep)).

We read this as saying for the rules in the list and the pairs of judgements
satisfying the rules, with evidence that these judgements are non-final, the well-
founded order holds for the measures of the judgements. That is, the measure of
the conclusion is accessible from the measure of the premise. The function mk nfj

constructs non-final judgements. For the second property app, read application,

Definition app (Rules : list Rule) : Type :=
forall p : Judgement, not (final p) ->
existsT r, existsT c, (In r Rules * r p c).

This says that for every judgement with evidence that it is non-final, there exists
a rule and a judgement such that the rule is contained in the list and the rule
holds of the two judgements.

Note that although we refer to dec and app as properties, the codomain is Type
rather than Prop. This is for the same reason as using the type level existential
quantifier and the type level disjunction - if we defined it as Prop we would
lose the evidence and just have knowledge of truth or falsity whereas the type
level existential quantifer allows us to reconstruct the rule. It is precisely this
type-level information that allows us to extract a program from the proof of the
fact that all elections have a winner.

The main result we want to show is that if these two properties hold for a list
of rules, then we have termination. In the formalisation, termination corresponds
to the existence of a term of the type Pf a Rules c where c is a final judgement.
In the syntax of Coq:

Corollary termination: forall Rules : list Rule,
dec Rules -> app Rules ->
forall a : Judgement, (existsT c : Judgement, final c * Pf a Rules c).

As indicated by the keyword, this is a corollary of a more general statement that
stipulates that every sequence of rule applications that links a judgement a to
a non-final judgement b can be extended to a final judgement (c in this case).
The key stepping stone in the proof is the ability to extend every sequence of
rule applications by just one rule, thereby decreasing the measure.

8

5 Instances of the General Framework

We demonstrate that the two examples that were treated in [9] can be seen as
instances of the more general framework presented here. We then take a (simple)
voting protocol, single transferable vote with fractional transfer values as used
in ANU union elections, extract a rule-based specification and show that this
voting scheme is also an instance of our generic approach.

5.1 First past the post

For a first simple instantiation of the vote-counting protocol, we consider simple
plurality voting, and replicate the voting scheme discussed in [9] as instance of
our general framework.

Implementation 6. Judgements in FPTP counting are either states or declare
the election winner

Inductive FPTP_Judgement : Type :=
state : (list cand) * (cand -> nat) -> FPTP_Judgement

| winner : cand -> FPTP_Judgement.

where a state records the uncounted votes (we identify votes with candidates as
every vote is a vote for one candidate only) and the current tally. Final judgement
is of the form winner w, and it is immediate that every statement is either final
or it is not.

Definition FPTP_final (a : FPTP_Judgement) : Prop := exists c, a = winner c.

Lemma final_dec: forall j : FPTP_Judgement, (FPTP_final j) + (not (FPTP_final j)).

For the rules, we specialise the definition of a rule to the type of judgement we
defined.

Definition FPTP_Rule := FPTP_Judgement -> FPTP_Judgement -> Prop.

In contrast to [9] where the rules where absorbed into one huge, monolithic type
representing runs of the vote counting scheme, here we treat, and define each
rule individually. In particular, the property that rule application decreases in
measure does not need to be re-established if we use the same rule in a different
voting scheme. We have two rules (only), one that represents counting of a single
vote, and the second determines the winner. Formally:

Definition count (p: FPTP_Judgement) (c: FPTP_Judgement) : Prop :=
exists u1 t1 u2 t2, p = state (u1, t1)

/\ (exists l1 c l2, u1 = l1 ++ [c] ++ l2 /\ u2 = l1 ++ l2 /\ inc c t1 t2)
/\ c = state (u2, t2).

where inc c t1 t2 expresses that t2 is the tally obtained from t1 by incre-
menting cs tally by one (and leaving all other tallies as they are). The second
rule takes the form

9

Definition declare (p: FPTP_Judgement) (c: FPTP_Judgement) : Prop :=
exists u t d, p = state (u, t) /\ u = []

/\ (forall e : cand, t e <= t d) /\ c = winner d.

i.e. winners can be declared provided no other candidate has strictly more votes.
We then define the list of rules used for FPTP counting as FPTPR = [count;

declare], i.e containing both count and declare.
Note that there are only two rules - we don’t have axioms as in [9]. This

is because a starting state is specified in the type of proofs, where as it wasn’t
before. This means we can start with any judgement, but for a count we will
obviously be entering the ballots as uncounted.

We observe of these rules that under every rule application, either the number
of uncounted votes decreases or a final judgement is deduced. Therefore, the
relevant well-founded order is the predecessor relation on the natural numbers.
We instantiate the framework accordingly, defining first the type on which the
order exists, the order and then proving the order is well-founded. The measure
just needs to be defined on non-final states, and we define the measure of a
non-final state as the number of uncounted votes. With this formalised, it is a
matter of proving the two properties. Instantiating the general framework, we
now obtain a proof of termination of FPTP counting, from which we can extract
a program that not only counts in a provably correct way, but also delivers
the count, i.e. the sequence of rule applications that lead to the result, as an
independently verifiable certificate.

5.2 Simple STV

As a second example, we demonstrate that a simple version of STV, in fact the
same that was also used as an example in [9], can also be derived as part of our
more generic framework. We recall simple STV from op.cit.:

1. if candidate has enough first preference to meet the quota, (s)he is declared
elected. Any surplus votes for this candidate are transferred.

2. if all first preference votes are counted, and the number of seats is (strictly)
smaller than the number of candidates that are either (still) hopeful or
elected, a candidate with the least number of first preference votes is elimi-
nated, and her votes are transferred.

3. if a vote is transferred, it is assigned to the next candidate (in preference
order) on the ballot.

4. vote counting finishes if either the number of elected candidates is equal
to the number of available seats, or if the number of remaining hopeful
candidates plus the number of elected candidates is less than or equal to the
number of available seats.

In order to subsume simple STV as instance of the generic framework presented
here, we had to adapt the type of judgement. While we still have the same type,
we extend it to contain more information. In particular, we don’t only maintain

10

a list of candidates already elected at every state of the count, we additionally
require that this list doesn’t contain more candidates than there are seats to fill.
In the same vein, we also require that the tally is never greater than the quota
(as candidates get elected once they have reached the quota, and future first-
preference votes for the same candidate get transferred to the next preference).
Technically, this amounts to replacing both the list of elected candidates and the
tally with a Σ-type. Informally, we can think of it in terms of set-comprehension,
a notation that is also supported by Coq:

Implementation 7. Judgements for simple STV are represented as follows in
Coq

Inductive STV_Judgement :=
state: (** intermediate states **)

list ballot (* uncounted votes *)
* (cand -> list ballot (* assignment of counted votes to first pref candidate *)
* { tally : (cand -> nat) | forall c, tally c <= qu } (* tally *)
* (list cand) (* continuing cands still in the running *)
* { elected: list cand | length elected <= s} (* elected cands *)
-> STV_Judgement

| winners: (** final state **)
list cand -> STV_Judgement. (* election winners *)

A final judgement is defined to be a judgement of the second form, declaring a
set of winners, and it is routine to show that finality of judgements is a decidable
property. The notion of STV rule is as before

Definition STV_Rule := STV_Judgement -> STV_Judgement -> Prop.

The rules may then be defined, with an individual type for each rule. They
expressed differently but correspond to the same rules as before, except for minor
adjustments due to the dependent types in the judgement type and as in the
case of FPTP, we dispense of the rule corresponding to the start of the count.
We include the definition of the rule for excluding the weakest candidate (the
full definition may be found in the Coq sources that accompany this paper):

Definition tl (p: STV_Judgement) (c: STV_Judgement) : Prop :=
exists u a t h nh e d, (** transfer least **)

p = state ([], a, t, h, e) /\ (* if we have no uncounted votes *)
length (proj1_sig e) + length h > s /\ (* and there are still too many candidates *)
In d h /\ (* and candidate d is still hopeful *)
(forall e, In e h-> (proj1_sig t) d <= (proj1_sig t) e) /\ (* but all others have more votes *)
eqe d nh h /\ (* and d has been removed from the new list of hopefuls *)
u = a(d) /\ (* we transfer d’s votes by marking them as uncounted *)
c = state (u, a, t,nh, e). (* and continue in this new state *)

The remainder of the rules are written in the same form. They are omitted here
but included in the code.

The well-founded order in which the measure takes values is slightly more
complex that for simple plurality. For example, under the ‘count one’ rule, the
number of uncounted votes decreases and the number of hopeful candidates re-
mains the same, while t the ‘transfer least’ rule reduces the number of continuing

11

candidates. We therefore use the lexicographic order on triples of natural num-
bers as well-founded ordering and define the measure of a non-final judgement
as follows

state(u, a, t, h, e) 7→
(
|h|, |u|,

∑
v∈u
|v|
)

that is, a triple of the length of the list of hopeful candidates, the length of the list
of uncounted votes and the sum of the lengths of the uncounted votes. In two of
the five rules concerning non-final judgements, the number of hopeful candidates
decreases. Of the remaining rules, the ‘count one’ and ‘empty votes’ rules both
preserve the number of hopeful candidates but decrease the number of uncounted
votes, while the ‘transfer votes’ rule preserves the number of hopeful candidates
and the number of uncounted votes but decreases the sum of the lengths of the
uncounted votes. As a consequence, rule application leads to decrease in the well-
founded order on triples of natural numbers. In other words, the dec property
applies to all rules, and it is easy to show that one rule can be applied at any
point of the counting process.

In summary, supplying (formal) proofs of the app and dec property for the
generic framework, we were able to obtain a proof of termination for simple
STV from which we have extracted a provably correct vote counting function by
simply instantiating Coq’s extraction mechanism [8].

5.3 The ANU Union vote-counting protocol

The Australian National University Union Incorporated (the Union) uses a pro-
tocol based on a variant of STV using fractional transfer values. A fractional
transfer value is a rational number less than 1 assigned to a candidate’s surplus
at the stage of transfer. In our version of simple STV, we did not take this into
account. The voting procedure for the Union is outlined in section 20 of the
Union constitution [11], and we report on both our experience of transcribing a
real-life voting protocols into a rule-based format, and also on instantiating the
generic termination proof with this particular protocol, once formalised.

With fractional transfer, the tally is the sum of the transfer values on the
ballots. The formalisation draws on the method of manual counting in which
there is a ‘pile’ of ballots corresponding to each candidate. Throughout the
count, ballots are moved between the piles as candidates are eliminated and
their votes are transferred. We also keep a backlog of candidates requiring their
votes to be transferred. The order of transfer is important, as transfers happen
in the order candidates were eliminated.

For the mathematical formalisation, we fix a set C of candidates, and repre-
sent a ballot by a pair B = (v, w), where the ‘vote’ v ∈ List(C) is a permutation
of the set of candidates and w ∈ Q is the ‘weight’ of the ballot, also known as

the transfer value. We use the Droop quota q = |b|
s+1 + 1, rounded upwards to

the next integer.

12

Definition 8. If b ∈ List(B) represents the list of ballots cast and s ∈ N repre-
sents the number of seats available to be filled, then a judgement takes one of
two forms:

(b, s) ` state(ba, t, p, bl, e, h)

where ba ∈ List(B) the list of ballots requiring attention; t : C → N a tally
recording the votes for each candidate; p : C → List(B) a ‘pile’ of ballots being
counted towards a particular candidate; bl ∈ List(C) the ‘backlog’ of candidates
whose votes are to be transferred; e ∈ List(C) the elected candidates; and h ∈
List(C) the list of hopeful candidates still in the running; or

(b, s) ` winners(w)

where w ∈ List(C) represents the list of winners of the election. A judgement is
final if it is of the form winners(w).

We now describe the formulation of the ANU Union protocol in the form of
vote counting rules.

Definition 9. The ANU union protocol [11] is formalised by seven vote-counting
rules. For each rule, we given a short description, then the formulation of the
rule with side condition as bullet-point list on the right, and then provide an
informal reading of the rule.

Count applies when there are ballots requiring attention, for example at the
start of the count or after votes have been transferred. The ballots requiring
attention are distributed amongst the candidates’ piles, according to the first
continuing candidate on the ballot. The candidates’ tallies are updated by adding
together the weights of the ballots in their updated pile. To distribute the ballots,
let fcc be the ‘first continuing candidate’ relation,

fcc(ba, h, c, b) ≡ b ∈ ba ∧ c ∈ h ∧ ∃l1, l2.
(
π1(b) = l1 # c # l2 ∧ ∀d.(d ∈ l1⇒ d 6∈ h)

)
holding for a list of ballots requiring attention, a list of hopeful candidates, a
candidate c and a ballot b when b requires attention, and c is the first hopeful
candidate on the ballot. Formally, Count is the rule on the left subject to the
side condition on the right:

(b, s) ` state(ba, t, p, bl, e, h)

(b, s) ` state(ba′, t′, p′, bl, e, h)
(Count)

– ba 6= ∅, ba′ = ∅.
– ∀c, ∃l such that
• p′(c) = p(c) # l
• ∀b, b ∈ l⇔ fcc(ba, h, c, b)
• t′(c) =

∑
b∈p′(c) π2(b)

“If there are ballots requiring attention, redistribute each ballot from
this pile to the pile corresponding to the first continuing candidate on
the ballot. Update the tally for each candidate according to the transfer
value on the ballot.”

13

Transfer applies when there are no ballots requiring attention and no candidates
that may be elected, however there is a backlog of candidates no longer in the
running that need their votes transferred. As a formal rule:

(b, s) ` state(va, t, p, bl, e, h)

(b, s) ` state(va′, t, p′, bl′, e, h)
(Transfer)

– va = ∅
– ∀c, c ∈ h⇒ t(c) < qu
– ∃l, c such that
• bl = c:l
• va′ = p(c)
• bl′ = l
• p′(c) = ∅
• ∀d.(d 6= c⇒ p′(d) = p(d))

“If there are no ballots requiring attention, none of the hopeful candi-
dates have reached the tally and there is a backlog of candidates to have
their votes transferred, take the pile of ballots for the candidate at the
front of the backlog and add it to the list of ballots requiring attention.
The backlog is updated by removing the head, duplication of ballots is
prevented by specifying that the pile of the candidate in question is now
empty, and every other pile remains unchanged.”

Elect applies when there are no candidates requiring attention and there are
hopeful candidates who have reached the quota to be elected. To specify that
the lists of hopeful candidates and elected candidates are updated, let leqe be
the relation that holds for k, l, l′ ∈ List(X) if and only if l and l′ are equal, except
that l′ additionally contains all elements of the list k.

Let ordered be a function ordering a list according to according to a rational-
valued function f such that if f(x) ≥ f(y), x is before y in the list. Let map
denote applying a function to all elements of a list (used here to update transfer
values) of elected candidates). The elect rule then takes the following form:

(b, s) ` state(va, t, p, bl, e, h)

(b, s) ` state(va, t, p′, bl′, e′, h′)
(Elect)

– va = ∅
– ∃l such that
• l 6= ∅
• |l| ≤ s− |e|
• ∀c.(c ∈ l⇔ (c ∈ h ∧ t(c) ≥ q))
• ordered(t, l)
• leqe(l, h′, h), leqe(l, e, e′)
• ∀c, c ∈ l⇒
p′(c) = map(λ(v, w).

(
v, w ∗

t(c)−q
t(c)

)
, p(c))

• ∀c, c 6∈ l⇒ p′(c) = p(c)
• bl′ = bl:l

“If there are no ballots requiring attention, and there are continuing
candidates who have reached the quota (but no more than the number

14

of available seats), order these candidates by surplus and declare them
elected by moving them from the list of hopefuls to the list of elected
candidates. Update the transfer values in the piles of the newly elected
candidates, while leaving the other piles unchanged. Add the list of newly
elected candidates to the end of the backlog. ”

Elimination applies when there are no ballots requiring attention, no transfer
backlog and too many candidates still in the running. As a formal rule:

(b, s) ` state(va, t, p, bl, e, h)

(b, s) ` state(va′, t, p′, bl, e, h′)
(Elim)

– va = ∅, bl = ∅
– length h+ length e > s
– ∀c ∈ h, t(c) < q
– ∃c such that
• ∀d ∈ h, t(c) ≤ t(d)
• h′ = h \ [c]
• va′ = p(c)
• ∀d, d 6= c⇒ p′(d) = p(d)
• p′(c) = ∅

“If there are no ballots requiring attention, there is no backlog of
candidates to have their votes transferred and the sum of hopeful and
elected candidates exceeds the number of available seats, then take the
candidate with the minimum number of votes and remove them from the
hopefuls. Move their pile of ballots to the pile requiring attention, while
leaving all of the other piles unchanged.”

Hopeful win declares the winners of the election in the case where the number
of elected plus continuing (hopeful) candidates is no greater than the number of
seats.

(b, s) ` state(ba, t, p, bl, e, h)

(b, s) ` winners(w)
(Hwin)

– |e|+ |h| ≤ s
– w = e #h

“If the number of candidates that are either hopeful or elected is less
than or equal to the number of seats available, then scrutiny ceases and
all candidates that are either elected or hopeful are declared winners of
the election”.

Elected win declares the winners of the election in the case where the number
of seats is the same as the number of candidates marked as elected. Define the
rule:

(b, s) ` state(ba, t, p, bl, e, h)

(b, s) ` winners(w)
(Ewin)

– |e| = s
– w = e

15

“If the number of elected candidates equals the number of seats avail-
able, scrutiny ceases and the elected candidates are declared the winners
of the election”.

We consider the lexicographic order on the set of triples of natural numbers and
define the following measure of non-final judgements

m(state(ba, t, p, bl, e, h)) = ((|h|, |bl|, |ba|)

and we can show that each rule decreases the measure so defined by simply
inspecting the individual rules.

The formalisation of this protocol in Coq is very much similar to the formal-
isation of FPTP and simple STV so that we don’t discuss it further here but
refer the reader to the Coq code that comes with this paper.

6 Discussion

Discuss question of validating rules

mention that having rules is easier than verifying, mention receipt.

Possibly earlier?

Our work is based on the idea of specifying voting protocols as rule-based
systems [9]. Our contribution is two-fold, and we have demonstrated (a) that
provably correct vote counting programs can also be constructed in a modular
way, by separating out two properties of a rule-based specification that can be
established individually, and (b) using the rule-based approach to specify and
formalise a real-world voting protocol. We comment on both in turn.

Modular Generation of Provably Correct Vote Counting Code. The
basic idea, and underlying technical principle, of generating provably correct vote
counting code is identical to [9]: we give a constructive proof of the fact that every
election has a winner, and then employ program extraction, described in [8] for
the Coq-system that we are using, and [2] for a more general context. In contrast
to [9], our proofs of termination are not monolithic, but both more modular
and more principled. We treat each of the rules in turn, and show that their
application decreases a measure that takes values in a well-founded ordering.
This not only clarifies the mechanism behind the termination proofs of op.cit.
but makes the process of synthesising vote counting programs more manageable,
and enables quicker prototyping: rather than re-working large formal proofs, only
changes local to some of the counting rules are required.

Formalisation of a real-world voting protocol Up to know, the only exam-
ples formalised as a rule-based system were plurality voting and a very simple
version of single transferable vote. Both voting protocols are very simple in na-
ture, and don’t display any of the subtleties often found in real-world voting
schemes. The ANU union voting protocol adds complexity in that ballots come
with transfer values, and in form of the requirement that votes are to be trans-
ferred in a particular order. As a consequence, the formulation of this protocol

16

is slightly more involved, but the main leitmotif of rule-based specification still
applies: every rule should formalise an action of a vote-counting officer that is
in accordance with the protocol.

Conclusion. In our experience, modularising the termination proof from which
vote counting programs can be constructed not only has the advantage that it
becomes more modular, but it also becomes more manageable as it is broken
down into smaller chunks. The formalisation of the ANU Union rules in our
opinion showed the flexibility and strength of the approach, and in particular
the usefulness of the guiding metaphor: every rule should embody one action
of a human counting the votes. What is needed now are larger, and more case
studies, in combination with a careful analysis into the efficiency and scalability
of code extracted from mathematical proofs.

References

1. B. Beckert, T. Börmer, R. Goré, M. Kirsten, and T. Meumann. Reasoning about
vote counting schemes using light-weight and heavy-weight methods. In Proc.
VERIFY 2014: Workshop associated with IJCAR 2014, 2014.

2. U. Berger, H. Schwichtenberg, and M. Seisenberger. The warshall algorithm and
dickson’s lemma: Two examples of realistic program extraction. Journal of Auto-
mated Reasoning, 26(2):205–221, 2001.

3. Y. Bertot, P. Castéran, G. Huet, and C. Paulin-Mohring. Interactive theorem prov-
ing and program development : Coq’Art : the calculus of inductive constructions.
Texts in theoretical computer science. Springer, 2004.

4. D. Cochran. Formal Specification and Analysis of Danish and Irish Ballot Counting
Algorithms. PhD thesis, 2012.

5. D. Cochran and J. R. Kiniry. Formal model-based validation for tally systems. In
J. Heather, S. A. Schneider, and V. Teague, editors, Proc. Vote-ID 2013, volume
7985, pages 41–60. Springer, 2013.

6. H. DeYoung and C. Schürmann. Linear logical voting protocols. In A. Kiayias and
H. Lipmaa, editors, Proc. VoteID 2011, volume 7187 of Lecture Notes in Computer
Science, pages 53–70. Springer, 2012.

7. R. Goré and T. Meumann. Proving the monotonicity criterion for a plurality vote-
counting program as a step towards verified vote-counting. In R. Krimmer and
M. Volkamer, editors, Proc. EVOTE 2014, pages 1–7. IEEE, 2014.

8. P. Letouzey. Extraction in coq: An overview. In A. Beckmann, C. Dimitracopoulos,
and B. Löwe, editors, Proc. CiE 2008, volume 5028 of Lecture Notes in Computer
Science, pages 359–369. Springer, 2008.

9. D. Pattinson and C. Schürmann. Vote counting as mathematical proof. In
B. Pfahringer and J. Renz, editors, Proc. AI 2015, volume 9457 of Lecture Notes
in Computer Science, pages 464–475. Springer, 2015.

10. A. Troelstra and D. van Dalen. Constructivism in mathematics: an introduction.
North Holland, 1988. Two volumes.

11. T. A. Union. Constitution and board minutes, 2016. accessed May 27, 2016.

17

