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Abstract. This paper studies finitary modal logics as specification languages for
Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is well-
known that Set-coalgebras are not semantically adequate for finitary modal logics
in the sense that bisimilarity does not in general coincide with logical equiv-
alence. Stone-coalgebras (coalgebras over the category ofStone spaces), on the
other hand, do provide an adequate semantics for finitary modal logics. This leads
us to study the relationship of finitary modal logics and Set-coalgebras by uncov-
ering the relationship between Set-coalgebras and Stone-coalgebras. This builds
on a long tradition in modal logic, where one studies canonical extensions of
modal algebras and ultrafilter extensions of Kripke frames to account for finitary
logics. Our main contributions are the generalisations of two classical theorems
in modal logic to coalgebras, namely the Jónsson-Tarski theorem giving a set-
theoretic representation for each modal algebra and the bisimulation-somewhere-
else theorem stating that two states of a coalgebra have the same (finitary modal)
theory iff they are bisimilar (or behaviourally equivalent) in the ultrafilter exten-
sion of the coalgebra.

1 Introduction

To formalise transition systems as coalgebras for a functorT : Set → Set has many
advantages. In particular, the theory of transition systems can be set up parametric in
the ‘type’ T of the transition system and a number of techniques for coalgebras (e.g.
final semantics, isomorphism theorems, final sequence, co-Birkhoff theorems) can be
obtained by dualising the corresponding concepts for algebras (Rutten [18]). Unfortu-
nately, when it comes tospecification languages for coalgebras, it is more difficult to
achieve results parametric in the functorT .

The idea that (variants of) modal logics are the natural logics for coalgebras goes
back to Moss seminal paper [14]. Applying to modal logic dualised algebraic meth-
ods, leads to the insight that modal logic for coalgebras is dual to equational logic for
algebras [11,13]. But the methods derived from this approach are adequate only forin-
finitary logics. This can be seen as a consequence of the fact thatSetop is equivalent
to the category ofcompleteatomic Boolean algebras which correspond toinfinitary
propositional logic in the same way as Boolean algebras capture finitary propositional
logic.

⋆ Partially support by the Nuffield Foundation Grant NUF-NAL04.



Maybe for this reason, the approach towards (more realistic) finitary logics for coal-
gebras has been somewhat ad hoc. It essentially consisted ingiving up parametricity in
T and restricting attention to particular classes of functors [12,17,6]. More recently,
Pattinson [15,16] has shown how these logic arise uniformlyas logics given by predi-
cate liftings. It is one of the aims of this paper to further develop this approach towards
a theory of logics for coalgebras that is fully parametric inthe functorT .

Another approach to finitary logics for coalgebras is to change the model theory,
that is, to replace coalgebras over Set (Set-coalgebras) bycoalgebras over Stone spaces
(Stone-coalgebras) [10]. Stone-coalgebras generalise the so-called descriptive general
frames which are known in modal logic as the standard adequate semantics for finitary
modal logics. Hereadequatemeans that the logic is sound and complete and that two
states are bisimilar iff they have the same theory. The deeper reason for the adequateness
of finitary modal logics and Stone-coalgebras is the dualityof Boolean algebras and
Stone spaces, see Johnstone [7].

In [9], we have shown that every sound logicL given by predicate liftings induces
a functorL on the categoryBA of Boolean algebras. Using the dual equivalence ofBA

and the categoryStone of Stone spaces, it follows thatL has a ‘dual’L∂ onStone and
thatL∂-coalgebras provide an adequate semantics forL.

The main issue of this paper can now be explained as follows: If a finitary modal
logic for T -coalgebras is given by a functorL on BA, then an adequate semantics for
this logic is provided by the Stone-coalgebras for the dual functorL∂ . The quest for a
model theory of finitary modal logics for coalgebras now boils down to a comparison
of T -coalgebras over Set and Stone-coalgebras forL∂ . This is the main theme of this
paper. By building on the well-developed model theory of modal logics, where this
question has been studied for the special case of Kripke frames and Kripke models, our
main contribution is the generalisation of two important theorems of modal logic: The
Jónsson-Tarski theorem and bisimulation-somewhere-else. The former result provides
us with an completeness theorem, and the latter with a model-theoretic characterisation
of logical equivalence.

Summary of Techniques: The main ingredients of our approach are depicted in the
following non-commutingdiagram

BA
S // Stone

U{{wwwwwwww

Set

Q

aaDDDDDDDD

(1)

The categoryBA of Boolean algebras is the main building block of our logics,which
are obtained by ‘adding modal operators’ toBA. The categoryStone of Stone spaces is
our main technical tool.Stone is ‘categorically the same’ asBA in the sense thatStone

is dually equivalent toBA. But, as a category of topological spaces,Stone is sufficiently
Set-like to be useful in the study ofSet-based coalgebras.

The functorQ : Set → BA is the contravariant powerset functor mapping a setX to the
algebra of predicates overX . The functorS is one part of the dual equivalence between
Stone andBA and maps a Boolean algebraA to its spaceSA of ultrafilters giving a
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topological representation4 ofA. Finally,U is the forgetful functor that maps a space to
its carrier set. Note that the one traversal of this diagram,starting atBA, produces the
perfect [8] or canonical extensionQUS(A) for any Boolean algebraA. The traversal
starting atSet produces the set of ultrafiltersUSQ(X) over a setX (see e.g. [3] for
more information).

One of our aims is to lift these constructions toT -coalgebras, whereT : Set → Set.
This will be achieved by first translating aT -coalgebra to anL-algebra, for a suitable
L : BA → BA, then to transport this algebra by duality to anL∂-coalgebra overStone

and finally back to aT -coalgebra where we useQ,S, U to map the carriers of the
respective structures.

It has been shown in [9] that any logicL for T -coalgebras (as e.g. the logics in
[15,16,6,17,12]) given by predicate liftings can be described by a functorL on BA

(capturing syntax and proof rules) and a natural transformation δ : LQ → QT (giving
the coalgebraic semantics).

BA
S //L

((
Stone

Uyysssssss

δ : LQ→ QT

Set
Q

ddIIIIIII

T

YY

(2)

The transformationδ allows to lift Q to a functorQ̃ : Coalg(T ) → Alg(L). The se-
mantics of formulas w.r.t. to a coalgebraξ : X → TX is given by by the unique
morphism from the initialL-algebra toQ̃ξ. The initialL-algebra is commonly known
as the Lindenbaum algebra of the logicL.

Summary of Results: We will show how to generalise two classic results from modal
logic to coalgebras, namely the Jónsson-Tarski theorem and the bisimulation-somewhere-
else result for ultrafilter extensions.

Jónsson-Tarski Theorem (Completeness).Given a modal logic described byL andδ,
we extendUS : BA → Set to a mapŨ S̃ : Alg(L) → Coalg(T ). Applying

Q̃ŨS̃ : Alg(L) → Coalg(T ) → Alg(L) (3)

to an algebraLA→ A, there will be an injectiveL-algebra morphism

jA : A→ QUSA.

This is known in modal logic, in the case of Kripke frames, as the Jónsson-Tarski theo-
rem. As a corollary, completeness of the logic w.r.t.T -coalgebras then follows because
theT -coalgebra corresponding to the initialL-algebra provides a counter-model for any
non-derivable formula.

4 The elements ofA are represented by the clopen (closed and open) subsets of the topological
spaceSA. ∧,∨,¬ in A become intersection, union and complement.
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Lifting Functors fromSet to Stone. We will lift a functor T : Set → Set to a functor
T̂ : Stone → Stone in such a way thatSQ extends to a functor

S̃Q̃ : Coalg(T ) → Coalg(T̂ ).

T̂ will depend on a choice of logic forT , but there is a canonical such, namely the logic
given byall predicate liftings forT . We show that two states in aT -coalgebra have the
same theory if and only if they are bisimilar in the corresponding T̂ -coalgebra.

Ultrafilter Extensions.Ultrafilter extensions are one of the central notions in the model
theory of modal logics. In order to define ultrafilter extensions we need to find, for each
coalgebraX → TX a suitable coalgebraUSQ(X) → T (USQ(X)) whereUSQ :
Set → Set maps a setX to the set of ultrafilters onX . We determine conditions that
allow us to obtain a transformationt : UT̂ → TU , thus completing Diagram (2) to

BA
S //L

((
Stone

Uxxqqqqqqqq
T̂

vv

δ : LQ→ QT t : UT̂ → TU

Set
Q

ddHHHHHHH

T

YY

(4)

The transformationt allows to lift U to Ũ : Coalg(T̂ ) → Coalg(T ). The ultrafilter
extension of a coalgebra is then given by the composition

Ũ S̃Q̃ : Coalg(T ) → Alg(L) → Coalg(T̂ ) → Coalg(T ). (5)

Under the assumption that the transformationt above is natural, we show that two
states in aT -coalgebra(X, ξ) have the same theory if and only if they are bisimilar in
the ultrafilter extensioñUS̃Q̃(X, ξ). This provides a model-theoretic characterisation
of logical equivalence for finitary logics.

Related Work. The first attempt of formulating a duality which accounts foran al-
gebraic semantics of modal logic, for the special class of Kripke-polynomial functors,
goes back to Jacobs [6]. Moreover, Section 5 ofloc.cit. contains some material on ul-
trafilter extensions of coalgebras but fails to give an account of bisimilarity somewhere
else, as there the function embedding a coalgebra into its ultrafilter extension is a mor-
phism of coalgebras.

2 Preliminaries and Notation

Stone Duality. Unfortunately we have space only to indicate the most important no-
tions. For a general introduction we refer to [7,2]. We writeSet for the category of sets
and functions,BA for the category of Boolean algebras and their morphisms andStone

for the category of Stone-spaces and continuous maps. Thecontravariantfunctors wit-
nessing the dual equivalence betweenSet andStone are denoted by

P : Stone → BA and S : BA → Stone
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wherePX is the Boolean algebra of clopen (closed and open) subsets ofX andSA is the
space consisting of ultrafilters overA; on arrows, these functors act as inverse image;
for more on this duality see [7]. The forgetful functors are denoted byU : Stone → Set

andV : BA → Set throughout, andQ : Set → BA is the contravariant powerset
functor, which is assumed to take values inBA. The compositionQUS constructs the
perfect [8] or canonical extension of a Boolean algebra, andwe write

jA : A→ QUSA, a 7→ {u ∈ USA | a ∈ u}

for the canonical embedding. The fact thatjA : A → QUSA is an injective Boolean
algebra morphism is known asStone’s representation theorem for Boolean algebras:
jA representsA as an algebra of subsets where∧,∨,¬ in A become intersection, union
and complement. Another map which we will need throughout the paper is the map

ηX : X → USQX, x 7→ {Y ⊆ X | x ∈ Y }

embedding a setX into the set of ultrafilters ofQX . (In fact, but we will not use this,
Q andUS are adjoint on the right andj andη are the (co)units of the adjunction.)

The categoryStone allows familiar type constructions. For example, whereasKripke
polynomial functors (KPF)[6] on Set are given by the left-hand side below,Vietoris
polynomial functors (VPF)[10] onStone are given by the right-hand side.

T ::= Id | K | T I | T+T | T×T | P◦T T ::= Id | K | T I | T+T | T×T | V◦T

K,K denote constant functors,I denotes a set.P is covariant powerset andV the Stone
space analogue:VX is the Stone space of closed subsets ofX; the topology is generated
by {{b ⊆ UX | b closed andb ⊆ a} | a clopen}.

Coalgebraic Modal Logic. (See [9] for more details). Our treatment of coalgebras
and modal logic is parametric in an endofunctorSet → Set, which is denoted byT
throughout. By ann-ary predicate lifting forT we mean a natural transformationλ :
(2·)n → 2T · where2· : Set → Set is contravariant powerset (note that2· = V Q). A
setΛ of predicate liftings and associated arities gives rise to afunctorL0 : Set → BA

by mappingA 7→ F{[λ](a1, . . . , an) | λ n-ary, a1, . . . , an ∈ A}; hereF : Set →
BA is the functor that constructs free Boolean algebras and expressions of the form
[λ](a1, . . . , an) are understood purely syntactically. To every set of predicate liftings
we associate a logicL(Λ) given by

L(Λ) ∋ ϕ ::= ff | ϕ→ ϕ | [λ](ϕ1, . . . , ϕn) (λ ∈ Λ n-ary)

It follows by induction thatL(Λ) =
⋃

n≥0(UL0)
n(V F{tt, ff}) whereV : BA → Set

is the forgetful functor.
A modal axiomis an expressionϕ ↔ ψ whereϕ, ψ ∈ L0(FX) for a denumerable

setX of variables. We writeA ⊢ ϕ if ϕ is derivable using propositional reasoning,
congruence (ifϕ1 ↔ ψ1, . . . , ϕn ↔ ψn then[λ](ϕ1, . . . , ϕn) ↔ [λ](ψ1, . . . , ψn)) and
substitution instances of axioms inA.

Given a setA of modal axioms, we define a functorL : BA → BA by LA =
L0UA/∼ where∼ is the least equivalence relation onUL0A that contains all sub-
stitution instances of axiomsϕ ↔ ψ ∈ A. This allows us to view syntax and proof
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calculus of a logic given by a set of predicate liftings and modal axioms as endofunctor
L : BA → BA. Note that then-fold application ofL to the initial Boolean algebra2
yields the set

Ln(Λ,A) = {ϕ ∈ L(Λ) | rank(ϕ) ≤ n}/∼

where∼ is the inter-derivability relation given byA.
For aT -coalgebra(C, γ), the semantics[[ϕ]]γ ⊆ C of a formula is given by the

inductive extension of the assignment

[[[λ](ϕ1, . . . , ϕn)]]γ = γ−1 ◦ λ(C)([[ϕ1 ]]γ , . . . , [[ϕn]]γ)

to the whole ofL(Λ). Assuming soundness of the semantics, that isA ⊢ ϕ↔ ψ implies
[[ϕ]]γ = [[ψ]]γ for all T -coalgebras(C, γ), we can define a natural transformation

δX : LQ(X) → QT (X)

by the inductive extension of the assignment([λ](ϕ1, . . . , ϕn))∼ 7→ λ(X)(ϕ1, . . . , ϕn)
where(·)∼ is the equivalence class of· by∼.

This allows us to recast the coalgebraic semantics ofL(Λ) as follows: Forϕ ∈
V F ({tt, ff}), [[ϕ]]γ is given canonically; ifϕ ∈ (UL0)

n+1(V F ({tt, ff})) we obtain
[[ϕ]]γ = γ−1 ◦ δ(π(ϕ)) whereπ : L0U → L takes equivalence classes. Assuming that
the initialL-algebra exists, we arrive at the following compact characterisation of the
coalgebraic semantics. The semantics of formulas w.r.t. toa coalgebraξ : X → TX is
given by by the unique morphism from the initial algebraLI → I

I

[[·]]

��

LIoo

L[[·]]

��
QX QTX

Qξoo LQX
δXoo

(6)

We say that two statesx, y in two coalgebras arebehaviourally equivalentor bisimilar
if they can be identified by some coalgebra morphism. If two states are bisimilar, then
they satisfy the same formulae. The converse is not true in general. This failure plays
an important role in this paper.

3 Jónsson-Tarski Theorem (Completeness)

Given an algebraα : LA→ A, we want to transform it to the Set-coalgebra

Ũ S̃(α) = USA
USα
→ USLA

hA→ TUSA.

Thinking of the elements ofUSLA as ultrafilters overLA, we define

hA : USLA −→ TUSA (7)

u 7→ hA(u) ∈
⋂

{δ(LjA(a)) | a ∈ u} (8)
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that is,hA chooses an element in
⋂
{δ(LjA(a)) | a ∈ u} for each ultrafilteru onLA.

This definition is constructed in such a way thatŨ S̃ preserves the semantics (compare
Diagram(9) below with Diagram (6)). The notatioñUS̃ suggests that bothU andS can
be lifted seperately, see Section 5. Here we neither requirehA to be natural nor̃US̃ to
be a functor.

Definition 1. We say thath is definable if for all algebrasA and all ultrafiltersu onLA
we have that

⋂
{δ(LjA(a)) | a ∈ u} is non-empty.

Remark 2. A necessary condition forh to be definable is thatδ is injective. For sup-
pose otherwise. Then there will be ana ∈ LA such thata 6=⊥ andδ(LjA(a)) = ∅. As
a 6=⊥ we find an ultrafilteru ∈ USLA s.t.a ∈ u. But then

⋂
{δ(LjA(a)) | a ∈ u} = ∅.

The essence of completeness w.r.t. to the coalgebraic semantics is that

jA : A→ QUSA

is an injectiveAlg(L)-morphism. This is known as the Jónsson-Tarski theorem. Itis an
extension of Stone’s representation theorem from Boolean algebras to modal algebras
(ieL-algebras).

To see how completeness follows, assume thatϕ is not derivable andα : LA → A
is the initial algebra. We haveα |= ϕ 6= ⊤, henceQ̃Ũ S̃(α) |= ϕ 6= ⊤ by jA being an
injective morphism, hencẽUS̃(α) /|= ϕ by definition of the coalgebraic semantics (see
Diagram (6)), thus providing the countermodel forϕ.

From Stone’s theorem, we know thatjA is an injectiveBA-morphism. To see what is
needed to makejA anL-algebra morphism we take a look at the following diagram.

A

jA

��

LA
αoo

jLA

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

LjA

��
QUSA QUSLA

QUSα
oo QTUSA

QhA=h
−1
A

oo LQUSA
δUSA

oo

(9)
The lower part, which is anL-algebra onQUSA, is obtained by transforming(A,α)
into aT -coalgebra and back to anL-algebra. From the naturality ofj, it follows thatjA
is anL-algebra morphism if the triangle commutes. This leads us to

Theorem 3. Assuming thath is definable, the logic given byδ is complete w.r.t. the
coalgebraic semantics.

Proof. We show that the triangle in the diagram above commutes. Forb ∈ LA, let us
write b̂ for jLA(b) = {u ∈ USLA | b ∈ u}. Eliding subscripts, we have to show
h−1(δ(Lj(b))) = b̂, that is,

h(u) ∈ δ(Lj(b)) ⇔ b ∈ u.

‘⇐’ holds by definition ofh. For ‘⇒’ assumeb /∈ u. It follows ¬b ∈ u, henceh(u) ∈
δ(Lj(¬b)), henceh(u) ∈ ¬δ(Lj(b)), ieh(u) /∈ δ(Lj(b)).
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Remark 4. The completeness proof of Jacobs [6] works essentially thisway (hisr is
ourh). Compared to the completeness proof of [9] (which mimickedthe induction along
the final coalgebra sequence of [15]), the Jónsson-Tarski approach to completeness is
simpler as it avoids an induction along the final sequence. Onthe other hand not all
logics admit such a completeness proof: If we take the finite powerset functor together
with the standard modal logic, thenh is not definable, see Example 23.

4 Lifting Functors from Set to Stone

In this section we are going to use predicate liftings to lifta functorT : Set → Set to a
functorT̂ : Stone → Stone. We will give two descriptions of̂T . First,T̂X is the dual of
the Boolean algebra generated by the images of the predicateliftings QUX → QTUX

(Definition 7). Second,̂T is the dual of the functorL onBA that describes the complete
logic corresponding to the given predicate liftings (Remark 16).

Given a collectionS of subsets ofX we denote by〈S〉BA the subalgebra of the
Boolean algebraP(X) generated byS, i.e. by closingS under taking finite unions,
intersections and under complementation. We will use the following technical lemma.

Definition and Lemma 5. Given a functorF : C → Set and a functorG : Cop → Set

such that there is a natural transformationj : G → V QF op. Then we can define a
functor 〈G〉BA : Cop → BA by letting 〈G〉BAX := 〈jX [GX ]〉BA and 〈G〉BAf :=
V QF opf ↾〈G〉BAY for arbitraryX,Y andf : X → Y ∈ C.

Proof. Using the naturality ofj it is easy to show that〈G〉BA is well defined on objects
and morphisms. Functoriality of〈G〉BA then follows from the functoriality ofV QF op.

Definition 6. LetF,G : C → Set be functors andτ : F → G a natural transformation.
Then we define a functorℑ(τ) : C → Set by ℑ(τ)(X) := τX [FX ] for X ∈ C and by
lettingℑ(τ)(f) to be the unique map such that the following diagram commutes

FX

Ff

��

// // ℑ(τ)(X)

ℑ(τ)(f)

��

� � // GX

Gf

��
FY // // ℑ(τ)(Y )

� � // GY

wheref : X → Y ∈ C was arbitrary.

We are now ready for the definition of a lifting of aSet-endofunctor toStone.

Definition 7. GivenT : Set → Set and a setΛ of predicate liftingsλ : V Qnλ → V QT
define

T̂ := S(〈ℑ(τΛ)〉BA)

whereτΛ := [(λU ◦ inλ)λ∈Λ] :
∐

λ∈Λ V P
nλ → V QT denotes the natural transfor-

mation obtained by cotupling of all the transformationsλU ◦ inλ and the mapsinλ

X
are

the embeddingsV PnλX → V QnλUX.

Proposition 8. T̂ is a functor.
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Proof. Clearly τΛ = [(λU ◦ inλ)λ∈Λ] is a natural transformation from
∐
V Pnλ to

V QTU . Thereforeℑ(τ) is a functor fromStoneop → Set and there is a natural trans-
formationj : ℑ(τ) → V QTU . But then by Lemma 5〈ℑ(τ)〉BA is a functor from
Stoneop to BA. ThereforeT̂ is a functor fromStoneop to Stoneop or, equivalently,
T̂ : Stone → Stone.

The previous definition pre-supposes a setΛ of predicate liftings to define the lifted
functorT̂ : Stone → Stone. The next proposition, which was stated in [19] and which
is an instance of the Yoneda lemma, shows that there is a canonical choice for the set of
liftings.

Proposition 9. There is a 1-1 correspondence

{n-ary predicate liftingsλX : (2n)X → 2TX} ∼= { subsets ofT (2n)}

given byS ⊆ T (2n) 7→ λ where

λ(C) : (P1, . . . , Pn) ∈ P(C)n 7→ {t ∈ TC | 1S ◦ T 〈1P1 , . . . ,1Pn
〉(t) = 1}

where, forY ⊆ X , 1Y : X → 2 is the characteristic function ofY .

Given this canonical choice of liftings, it is instructive to look at some concrete
examples.

Example 10. 1. SupposeTX = K is constant with some finite setK as its value.
ThenT̂ ∼= K whereK is the setK with the discrete topology. To see that, note that
every lifting is determined by a subsetk ⊆ K, which gives rise to the algebraQK
of all subsets ofK, which in turn induces the lifted functor̂TX = SQK ∼= K.

2. ForTX = X , i.e.T = Id, we getT̂ ∼= Id. Forn = 1, we obtain a unary liftingλS

for everyS ⊆ 2; this gives rise to the liftings

λ1 = id λ2 = ¬ λ3 = tt λ4 = ff

whereλi(C) : P(C) → P(C). One can show, that alln-ary liftings can be obtained
as Boolean combinations ofλ1. Hence the generated Boolean algebra〈ℑ(τΛ)〉BAX

is isomorphic toPX, whenceÎd ∼= Id.
3. For TX = P(X), we obtainT̂ ∼= V whereV : Stone → Stone denotes the

Vietoris functor. Invoking Proposition 9, we obtain 8 unaryliftings of typeV QC →
V QTC, which are generated by Boolean combinations of2 and3, where2(C) :
2C → 2TC is given byc 7→ {d ⊆ C | d ⊆ c} and3 = ¬◦2◦¬. Similarly, alln-ary
liftings can be defined, and one obtains that for the caseTX = PX , 〈ℑ(τΛ)〉BAX

is the Boolean algebra generated by{2a | a ∈ PX} ∪ {3a | a ∈ PX} quotiented
by the axioms of standard modal logic, i.e.2ϕ ↔ ¬3¬ϕ and2(ϕ1, . . . , ϕn) ↔
(2ϕ1 ∧ · · · ∧ 2ϕn). From this it follows thatT̂ ∼= V , see [10] for details.

Remark 11. It is possible to prove that̂· commutes with the formation of products,
coproducts and the composition of functors, i.e.

T̂1 × T2
∼= T̂1 × T̂2, T̂1 + T2

∼= T̂1 + T̂2 and T̂1 ◦ T2
∼= T̂1 ◦ T̂2.
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Combining this fact with the above mentioned examples one can show that for every
Kripke polynomial functorT the corresponding Vietoris polynomial functor is isomor-
phic to the functor̂T .

We will now show that we can extend the functorSQ : Set → Stone to a functor
Coalg(T ) → Coalg(T̂ ). As a first step of this construction let us see how we can trans-
form ultrafilter ofQTUX naturally into ultrafilter of〈ℑ(τΛ)〉BAX by simply forgetting
the sets inQTUX \ 〈ℑ(τΛ)〉BAX.

Definition and Lemma 12. The functionπ̂X defined by

π̂X : SQTUX → T̂X

u 7→ u ∩
(
〈ℑ(τΛ)〉BAX

)

is well-defined and continuous. The family of functionsπ̂X∈Stone gives rise to a natural
transformation̂π : SQTU → T̂ .

Proof. Let j be the natural embedding of〈ℑ(τΛ)〉BAX into QTUX. Then it is easy
to see thatSj = π̂X. Henceπ̂X is well defined and continuous. Naturality ofπ̂ then
follows from the naturality ofj.

With the help ofπ̂ we can turnT -coalgebras intôT -coalgebras.

Definition 13. Let (X, γ) ∈ Coalg(T ). Then we define a function̂γ : SQX →
T̂ SQX by letting γ̂ := π̂SQX ◦ SQTηX ◦ SQγ.

SQX
SQγ //

γ̂

**
SQTX

SQTηX // SQTUSQX
π̂SQX // T̂ SQX

The operation of turning aT -coalgebra into âT -coalgebra is functorial.

Proposition 14. The mapping

(X, γ) ∈ Coalg(T ) 7→ (SQX, γ̂) ∈ Coalg(T̂ )

f ∈ Coalg(T ) 7→ SQf ∈ Coalg(T̂ )

defines a functor̃SQ̃ : Coalg(T ) → Coalg(T̂ ).

Proof. The claim follows from the fact thatη andπ̂ are both natural.

The semantics of the logic w.r.t.̂T -coalgebras is given by the following predicate
liftings.

Definition 15. A predicate liftingλ : (V Q)n → V QT for T induces a predicate lifting
λ̂ : (V P )n → V P T̂ for T̂ via

λ̂X = V k〈ℑ(τΛ)〉BAX ◦ λUX ◦ in
X

wherein
X

: (V PX)n → (V QUX)n andk〈ℑ(τΛ)〉BAX : 〈ℑ(τΛ)〉BAX → PS〈ℑ(τΛ)〉BAX

is the isomorphism given by Stone duality.
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Remark 16. T̂ can be described more abstractly. Letδ′ : L′Q → QT describe the
semantics of the logicL given as above by predicate liftings (and no axioms). We can
define ‘an improved version’L of L′ ‘with axioms’ by factoringL′A → LQUSA →
QTUSA through its image asL′A ։ LA →֒ QTUSA. One then shows the following.

1. L is a functor.
2. LQX is obtained by factoringδ′ : L′QX → QTX through its image. The image
δX : LQX → TQX gives the interpretation ofL w.r.t. T -coalgebras whereas,
intuitively, the quotientL′QX → LQX describes the axioms added toL. Thatδ
is injective corresponds to the completeness of the logic described byL, see [9].

3. L is dual toT̂ , that is, there is an isomorphismSL → T̂ S, or, equivalently,̂δ :
LP → P T̂ . The isoδ̂ gives aT̂ -coalgebra semantics to the logicL which agrees
with the one from Definition 15.

4. The functorS̃Q̃ : Coalg(T ) → Coalg(T̂ ) can now be described as mappingX →

TX to SQX → SQTX
SδX−→ SLQX

∼=
→ T̂ SQX .

Proposition 17. 1. Consider a statex of a T -coalgebra and the stateηX(x) in the
correspondinĝT -coalgebra.x andηX(x) have the same theory.

2. Two states of âT -coalgebra are bisimilar iff they have the same theory.

Proof. 1. Let ι : LI → L be the initialL-algebra andϕ ∈ I. The semantics ofϕ
w.r.t. a coalgebraX → TX and its ultrafilter extensionSQX → T̂ SQX is given
by the initial algebra maps as in the following diagram (see Remark 16).

I

[[·]]Set

��
[[·]]Stone

��

LI
ιoo

L[[·]]Set

��
L[[·]]Stone

��

QX

∼=

��

QTXoo

∼=

��

LQX
δXoo

∼=

��
PSQX PSQTXoo PSLQX

PSδXoo P T̂SQX
∼=oo LPSQX

∼=oo

The left column means thatu ∈ [[ϕ]]Stone iff [[ϕ]]Set ∈ u (note the similarity with the
truth lemma of the canonical model known in modal logic). This implies the claim.

2. This follows fromT̂ being dual toL.

The following corollary reconciles logical equivalence and bisimilarity. Although
two logically equivalent states in a Set-coalgebra may failto be bisimilar, they will be
bisimilar in the corresponding Stone-coalgebra:

Theorem 18. GivenT : Set → Set and a logicL for T -coalgebras, let̂T : Stone →
Stone be the lifted functor. Then, given(X, γ) ∈ Coalg(T ) andx, y ∈ X , we have that
x andy have the same theory iffηX(x) is bisimilar toηX(y) in S̃Q̃(X, γ).
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5 The Ultrafilter Extension of a Coalgebra

In this section we definẽU , thus lifting Diagram (1) to algebras and coalgebras5

Alg(L)
S̃ // Coalg(T̂ )

Ũwwoooooooo

Coalg(T )
Q̃

ffMMMMMMMM

(10)

Ũ S̃Q̃(X
ξ
→ TX) will be the ultrafilter extension ofξ. AlthoughSQ is left-adjoint

to U , this will not hold in general for the lifted functors. The reason is that the unit
ηX : X → USQX may fail to be a coalgebra morphism. This is the observation that
gives rise to Theorem 27.

We need a transformationt : UT̂ → TU . This can be done ifultrafilters in T̂ have
non-empty intersection, that is, if for all Stone spacesX and all ultrafiltersu ∈ UT̂X

we have
⋂
u 6= ∅. We then define

tX : UT̂X → TUX

u 7→ tX(u) ∈
⋂
u

Remark 19. UsingT̂ S ∼= SL, we see thattX appeared already ashPX in (7). Similarly,
hA is tSA. Note that naturality was not required in Section 3.

Under the assumption thatt is natural, we can now liftU : Stone → Set to a functor

Ũ : Coalg(T̂ ) → Coalg(T )

mappingξ : X → T̂X toUX
Uξ
→ ÛTX

tX→ TUX. In the following proposition we prove
two useful properties oft.

Proposition 20. For allX ∈ Stone let tX be defined as above. Then

1. tX is injective for allX.
2. If for all X and for allu ∈ UT̂X we have that

⋂
u is a singleton set, thent is a

natural transformation.

Proof. The first item follows from the fact that for two ultrafiltersu 6= u′ we always
have

⋂
u ∩

⋂
u′ = ∅. To prove thatt is natural we have to show thatTUf ◦ tX =

tY ◦ UT̂f for some arbitraryf : X → Y. Letu ∈ UT̂X . Then

tY(UT̂f(u)) = tY((TUf−1)−1(u)) = F

⇔ F ∈
⋂

(TUf−1)−1(u) = (TUf−1)−1(F ′)

for theF ′such that (
⋂
u) = {F ′}

⇔ F = TUf [F ′] ⇔ TUf(tX(u)) = F.

5 S̃(LA → A) = SA → SLA ∼= T̂SA, see Remark 16.3.
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Kripke polynomial functors fulfill this criterion, for example:

Example 21. Let T = P andΛ the canonical set of liftings. Then it is easy to see that
〈ℑ(τΛ)〉BAX = PVX and therefore we have for allu ∈ UT̂X = S(〈ℑ(τΛ)〉BAX) that⋂
u = {F} for someF ∈ VX by Stone duality. Thereforet is natural according to

Proposition 20. The reader is invited to check that in factVX = (ℑ(t)X, τt) whereℑ(t)
is defined as in 6 andτ is the quotient topology induced bytX. Therefore our definition
of an ultrafilter extension forP-coalgebras coincides with the one used in modal logic.

Remark 22. The construction sketched in the example works also for other functors:
If t is natural, the mappinḡT : Stone → Stone, X 7→ (ℑ(t)X, τt), can be extended
to a functor with the property that̂T ∼= T̄ and thatUT̄X ⊆ TUX for all X. We can
then use the inclusionUT̄X ⊆ TUX which simply forgets the topology in place of the
t-map to define the ultrafilter extension. This works in particular for a KPFT where we
get thatT̄ is equal to the corresponding VPF.

There are also functors for which we cannot define an ultrafilter extension.

Example 23. LetT = Pω andΛ = {3} wherePω denotes the finite power set functor
and3(Y ) := {Y ′ | Y ′ is finite andY ′ ∩ Y 6= ∅}. Thent cannot be defined in general.
For a counterexample considerX = (ω ∪ {∗}, τ) whereτ is generated by the Boolean
set algebra of all finite subsets ofω and all cofinite subsets ofω ∪ {∗} that contain∗.
ThenX is a Stone space. If we defineU := {3({n}) | n ∈ ω} ⊆ 〈ℑ(τΛ)〉BAX one can
easily check thatU has the finite intersection property. Therefore we can extend U to
an ultrafilteru ∈ U P̂ωX. But obviously

⋂
U = ∅ and hence also

⋂
u = ∅.

Of course, finitely branching Kripke frames, ie coalgebras for Pω, do have ultrafilter
extensions. The point of the example above is that these ultrafilter extensions areP-
coalgebras but notPω-coalgebras.

The important property we need is thatt preserves the semantics. The semantics of
the logic w.r.t.T̂ -coalgebras was given in Definition 15 and Remark 16.3.

Proposition 24. t : UT̂ → TU preserves the semantics. That is, the subsets ofUX

determined by interpreting a formula onξ : X → T̂X and ontX ◦ Uξ : UX → TUX

are identical.

Proof. The claim is proven by induction on the structure of formulas. We only provide
the inductive step for formulas of the form[λ]ϕ. Letx ∈ X andψ = [λ]ϕ, then

x ∈ [[ψ]]tX◦Uξ ⇔ x ∈ (tX ◦ Uξ)−1(λUX([[ϕ]]tX◦Uξ))
I.H.
⇔ x ∈ (tX ◦ Uξ)−1(λUX([[ϕ]]ξ))

(∗)
⇔ x ∈ Uξ−1

(
{u ∈ UT̂X |

⋂
u ⊆ λUX([[ϕ]]ξ)}

)

⇔ x ∈ Uξ−1
(
{u ∈ UT̂X | λUX([[ϕ]]ξ) ∈ u}

)
= Uξ−1

(
λ̂X([[ϕ]]ξ)

)

⇔ x ∈ [[ψ]]ξ,

where the⇒-part of(∗) is true because
⋂
u 6⊆ λUX([[ϕ]]ξ) ⇒ λUX([[ϕ]]ξ) 6∈ u⇒ −λUX([[ϕ]]ξ) ∈ u⇒

⋂
u ⊆ −λUX([[ϕ]]ξ).
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Remark 25. That t preserves the semantics means that the left-hand column of the
diagram

I

[[·]]ξ

��
[[·]]tX◦Uξ

��

LI
ιoo

L[[·]]ξ

��
L([[·]]tX◦Uξ)

��

PX� _

��

P T̂X
oo

��

LPX
δ̂Xoo

��
QUX QUT̂Xoo QTUX

QtXoo LQUX
δUXoo

commutes. We can therefore allow as transformationt : UT̂ → TU any transformation
making the lower right square commute, or, redrawing it a bit, making the following
commute.

LQUX
δUX // QTUX

QtX

��
LPX ∼=

//

OO

P T̂X
// QUT̂X

(11)

This diagram appeared already as the upper square of Diagram(9), compare Remark 19.

Proposition 26. Assume thatt is natural. Then Stone-bisimilarity equals Set-bisimilarity.
That is, two states inξ : X → T̂X are bisimilar iff they are bisimilar iñUξ.

Proof. ⊆ follows from t being natural.⊇: If two states inŨξ are bisimilar than they
have the same theory. Now apply Propositions 24 and 17.2.

We can now improve on the bisimulation-somewhere-else result of Theorem 18.
Together with the proposition above, it implies that two states inX → TX that have
the same theory are in fact bisimilar in some otherSet-coalgebra, namely the ultrafilter
extension ofX → TX .

Theorem 27. GivenT : Set → Set and a logicL for T -coalgebras, let̂T : Stone →
Stone be the lifted functor. Assume that ultrafilters in̂T have non-empty intersection
and thatt : UT̂ → TU is natural. Then, given(X, γ) ∈ Coalg(T ) andx, y ∈ X , we
have thatx andy have the same theory iffηX(x) is bisimilar toηX(y) in Ũ S̃Q̃(X, γ).

Remark 28. The result holds, in particular, for all Kripke polynomial functors.

6 Conclusion and Future Work

The focus of this paper was on the relationship between Stone-coalgebras and Set-
coalgebras. This is a special instance of a more general phenomenon in computer sci-
ence where topology-based structures and set-based structures interact. This was ob-
served already in Abramsky [1] where powerdomain-coalgebrasand powerset-coalgebras
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were compared. We believe that the methods used here will generalise to other such sit-
uations.

First, we can treat other logics than classical ones by replacing the duality between
BA andStone by one for, e.g. Heyting algebras or distributive lattices.Infinitary logics
can be treated as well, see e.g. [4]. Second, we can replaceSet by other categories of
interest in semantics. Third, we can make algebraic tools available by upgrading the
triangle of Diagram (1) to a square whereSet is now accompanied by its dual category
of complete atomic Boolean algebras. This will enable the use of methods developed in
the study of perfect or canonical extensions of Boolean algebras (see e.g. [20, Section
7]).

There are also a number of more immediate open questions. Formulate a finitary de-
finability result for classes of coalgebras in the style of Goldblatt-Thomason [5], based
on ultrafilter extensions. IfT preserves finite sets than it has a canonical lifting to from
Set to Stone; show that then this lifting agrees witĥT . Find nice conditions guarantee-
ing that ultrafilters inT̂ have non-empty intersection.
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