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Abstract. This paper studies finitary modal logics as specificatioglages for
Set-coalgebras (coalgebras on the category of sets) using 8uality. It is well-
known that Set-coalgebras are not semantically adequati@itary modal logics
in the sense that bisimilarity does not in general coincideh Wogical equiv-
alence. Stone-coalgebras (coalgebras over the categ@tpné spaces), on the
other hand, do provide an adequate semantics for finitanahtogics. This leads
us to study the relationship of finitary modal logics and &eilgebras by uncov-
ering the relationship between Set-coalgebras and Stoalgebras. This builds
on a long tradition in modal logic, where one studies carangxtensions of
modal algebras and ultrafilter extensions of Kripke franeegccount for finitary
logics. Our main contributions are the generalisationsvof ¢tlassical theorems
in modal logic to coalgebras, namely the Jonsson-Targordm giving a set-
theoretic representation for each modal algebra and tialdetion-somewhere-
else theorem stating that two states of a coalgebra havathe ginitary modal)
theory iff they are bisimilar (or behaviourally equivalgit the ultrafilter exten-
sion of the coalgebra.

1 Introduction

To formalise transition systems as coalgebras for a furictoiSet — Set has many
advantages. In particular, the theory of transition systean be set up parametric in
the ‘type’ T of the transition system and a number of techniques for edadts (e.g.
final semantics, isomorphism theorems, final sequence,irktvd@df theorems) can be
obtained by dualising the corresponding concepts for afgetRutten [18]). Unfortu-
nately, when it comes tepecification languages for coalgebrdtsis more difficult to
achieve results parametric in the funciar

The idea that (variants of) modal logics are the naturaldedor coalgebras goes
back to Moss seminal paper [14]. Applying to modal logic ¢eed algebraic meth-
ods, leads to the insight that modal logic for coalgebrasie tb equational logic for
algebras [11,13]. But the methods derived from this apgr@ae adequate only fam-
finitary logics. This can be seen as a consequence of the facétfétis equivalent
to the category otompleteatomic Boolean algebras which correspondrtfinitary
propositional logic in the same way as Boolean algebrasucainitary propositional
logic.

* Partially support by the Nuffield Foundation Grant NUF-NALOQ



Maybe for this reason, the approach towards (more reglfgtitary logics for coal-
gebras has been somewhat ad hoc. It essentially consisi@drig up parametricity in
T and restricting attention to particular classes of fure{d?,17,6]. More recently,
Pattinson [15,16] has shown how these logic arise unifoaslpgics given by predi-
cate liftings It is one of the aims of this paper to further develop thisrapph towards
a theory of logics for coalgebras that is fully parametrittia functor?’.

Another approach to finitary logics for coalgebras is to geathe model theory,
that is, to replace coalgebras over Set (Set-coalgebrag)digebras over Stone spaces
(Stone-coalgebras) [10]. Stone-coalgebras generakssdfcalled descriptive general
frames which are known in modal logic as the standard ademeahantics for finitary
modal logics. Hereadequatemeans that the logic is sound and complete and that two
states are bisimilar iff they have the same theory. The deepson for the adequateness
of finitary modal logics and Stone-coalgebras is the dualftBoolean algebras and
Stone spaces, see Johnstone [7].

In [9], we have shown that every sound lodlgiven by predicate liftings induces
a functorL on the categorBA of Boolean algebras. Using the dual equivalencB f
and the categor§tone of Stone spaces, it follows thdthas a ‘dual’L? on Stone and
that L9-coalgebras provide an adequate semanticg for

The main issue of this paper can now be explained as folldwssfihitary modal
logic for T-coalgebras is given by a functéron BA, then an adequate semantics for
this logic is provided by the Stone-coalgebras for the duatfor.?. The quest for a
model theory of finitary modal logics for coalgebras now saibwn to a comparison
of T-coalgebras over Set and Stone-coalgebrag forThis is the main theme of this
paper. By building on the well-developed model theory of middgics, where this
question has been studied for the special case of Kripkesfsamd Kripke models, our
main contribution is the generalisation of two importargdhems of modal logic: The
Jonsson-Tarski theorem and bisimulation-somewhege-€tse former result provides
us with an completeness theorem, and the latter with a ntbéeketic characterisation
of logical equivalence.

Summary of Techniques: The main ingredients of our approach are depicted in the
following non-commutingliagram

s

The categonBA of Boolean algebras is the main building block of our logighjch
are obtained by ‘adding modal operatorsBA. The categorptone of Stone spaces is
our main technical tooBtone is ‘categorically the same’ &A in the sense th&tone
is dually equivalentt@A. But, as a category of topological spacgsine is sufficiently
Set-like to be useful in the study &et-based coalgebras.

The functor@ : Set — BA is the contravariant powerset functor mapping a¥¢o the
algebra of predicates ovéf. The functorS is one part of the dual equivalence between
Stone andBA and maps a Boolean algeh#ato its spaceS A of ultrafilters giving a

BA—— > Stone 1)
Q
Set



topological representatibiof A. Finally, U is the forgetful functor that maps a space to
its carrier set. Note that the one traversal of this diagistarting atBA, produces the
perfect [8] or canonical extensiapU S(A) for any Boolean algebra. The traversal
starting atSet produces the set of ultrafiltefSQ(X) over a setX (see e.g. [3] for
more information).

One of our aims is to lift these constructionstecoalgebras, wherg : Set — Set.
This will be achieved by first translatingZ-coalgebra to ari-algebra, for a suitable
L : BA — BA, then to transport this algebra by duality to &#-coalgebra ove$tone
and finally back to d'-coalgebra where we ug@,.S,U to map the carriers of the
respective structures.

It has been shown in [9] that any logi€ for T-coalgebras (as e.g. the logics in
[15,16,6,17,12]) given by predicate liftings can be ddsmli by a functor. on BA
(capturing syntax and proof rules) and a natural transftona : LQ — QT (giving
the coalgebraic semantics).

L C BA -5 . Stone (2

§:LQ — QT Q\ %

Set

(@)

The transformatior allows to lift  to a functor@ : Coalg(T) — Alg(L). The se-
mantics of formulas w.r.t. to a coalgebfa: X — TX is given by by the unique
morphism from the initialL-algebra toQ¢. The initial L-algebra is commonly known
as the Lindenbaum algebra of the logic

Summary of Results: We will show how to generalise two classic results from modal
logic to coalgebras, namely the Jénsson-Tarski theorehtherbisimulation-somewhere-
else result for ultrafilter extensions.

Jonsson-Tarski Theorem (Completenes§iven a modal logic described by andg,
we extend/S : BA — Set to amapU.S : Alg(L) — Coalg(T'). Applying

QUS : Alg(L) — Coalg(T) — Alg(L) (3)
to an algebrd. A — A, there will be an injectivd.-algebra morphism
ja:A— QUSA.

This is known in modal logic, in the case of Kripke frames,tesidnsson-Tarski theo-
rem. As a corollary, completeness of the logic wFicoalgebras then follows because
theT-coalgebra corresponding to the initialalgebra provides a counter-model for any
non-derivable formula.

4 The elements ofi are represented by the clopen (closed and open) subsets twjiblogical
spaceSA. A, V, - in A become intersection, union and complement.



Lifting Functors fromSet to Stone. We will lift a functor 7" : Set — Set to a functor
T : Stone — Stone in such a way tha$' Q) extends to a functor

SQ : Coalg(T) — Coalg(T).

T will depend on a choice of logic faF, but there is a canonical such, namely the logic
given byall predicate liftings fofl". We show that two states in-coalgebra have the
same theory if and only if they are bisimilar in the corresgiog 7°-coalgebra.

Ultrafilter Extensions. Ultrafilter extensions are one of the central notions in tloelet
theory of modal logics. In order to define ultrafilter extems we need to find, for each
coalgebraX — TX a suitable coalgebr&d SQ(X) — T(USQ(X)) whereUSQ
Set — Set maps a seiX to the set of ultrafilters oX. We determine conditions that
allow us to obtain a transformatiagn UT" — T'U, thus completing Diagram (2) to

C BA—> Stonej) 7 4)

5:LQ— QT TS / t:UT —TU

Set
)

The transformation allows to lift U to U : Coalg(1") — Coalg(T)). The ultrafilter
extension of a coalgebra is then given by the composition

USQ : Coalg(T) — Alg(L) — Coalg(T) — Coalg(T). (5)

Under the assumption that the transformatioabove is natural, we show that two
states in &-coalgebrg X, {) have the same theory if and only if they are bisimilar in

the ultrafilter extensio/ SQ(X, ). This provides a model-theoretic characterisation
of logical equivalence for finitary logics.

Related Work. The first attempt of formulating a duality which accounts &or al-
gebraic semantics of modal logic, for the special class gik&-polynomial functors,
goes back to Jacobs [6]. Moreover, Section %ogfcit. contains some material on ul-
trafilter extensions of coalgebras but fails to give an anto@ibisimilarity somewhere
else, as there the function embedding a coalgebra intotitilter extension is a mor-
phism of coalgebras.

2 Preliminaries and Notation

Stone Duality. Unfortunately we have space only to indicate the most ingmdnbo-
tions. For a general introduction we refer to [7,2]. We w6t for the category of sets
and functionsBA for the category of Boolean algebras and their morphismSasee
for the category of Stone-spaces and continuous map<diteavariantfunctors wit-
nessing the dual equivalence betw&enandStone are denoted by

P : Stone — BA and S : BA — Stone



wherePX is the Boolean algebra of clopen (closed and open) subsEtandS A is the
space consisting of ultrafilters ovdr, on arrows, these functors act as inverse image;
for more on this duality see [7]. The forgetful functors aemdted byl : Stone — Set
andV : BA — Set throughout, and) : Set — BA is the contravariant powerset
functor, which is assumed to take valuesBiA. The compositioQU S constructs the
perfect [8] or canonical extension of a Boolean algebra,vemevrite

ja:A—-QUSA, a—{ucUSA|ac€u}

for the canonical embedding. The fact that: A — QU SA is an injective Boolean
algebra morphism is known &tone’s representation theorem for Boolean algebras
ja represents! as an algebra of subsets wherg/, - in A become intersection, union
and complement. Another map which we will need throughoaiptper is the map

nx: X -USQX, z—{YCX|zeY}

embedding a seX into the set of ultrafilters of) X . (In fact, but we will not use this,
Q andU S are adjoint on the right anflandn are the (co)units of the adjunction.)
The categorgtone allows familiar type constructions. For example, whet&aske
polynomial functors (KPF]6] on Set are given by the left-hand side beloVigtoris
polynomial functors (VPF)10] on Stone are given by the right-hand side.

T:=1d|K|T!|T+T | TxT |PoT T:u=Id|K|T!|T+T|TxT|VoT

K, K denote constant functorEdenotes a seR is covariant powerset andthe Stone
space analogu&X is the Stone space of closed subsetXhe topology is generated
by {{6 CUX | bclosed and C a} | a clopen}.

Coalgebraic Modal Logic. (See [9] for more details). Our treatment of coalgebras
and modal logic is parametric in an endofuncket — Set, which is denoted by’
throughout. By am-ary predicate lifting forl’ we mean a natural transformatian:
(27)" — 27" where2' : Set — Set is contravariant powerset (note that= vV Q). A
set/ of predicate liftings and associated arities gives risefumnator L : Set — BA

by mapping4 — F{[\(a1,...,a,) | A n-ary,as,...,a, € A}; hereF : Set —

BA is the functor that constructs free Boolean algebras andesgjpns of the form
[A(a1,...,a,) are understood purely syntactically. To every set of pididiftings

we associate a logi€(A) given by

LAN)s>pa=10]p—0|[Npt,...,0n) (Ae A n-ary)

It follows by induction thatC(A) = |J,,~(ULo)™(V F{tt, ff}) whereV" : BA — Set
is the forgetful functor.

A modal axioms an expressiop < 1) wherep, ¥ € Lyo(F X ) for a denumerable
set X of variables. We writed ¢ if ¢ is derivable using propositional reasoning,
congruence (ifpy < ¥1,...,0n <« ¥y then[A(e1,...,0n) < [Al(¥1,...,4,)) and
substitution instances of axioms.iq

Given a setd of modal axioms, we define a functér : BA — BA by LA =
LoUA/ ~ where~ is the least equivalence relation 6Ly A that contains all sub-
stitution instances of axioms « ¢ € A. This allows us to view syntax and proof



calculus of a logic given by a set of predicate liftings anddal@xioms as endofunctor
L : BA — BA. Note that then-fold application ofL to the initial Boolean algebra
yields the set

LA, A) = {p € L(A) [ ranKp) < n}/~

where~ is the inter-derivability relation given byl.
For aT-coalgebraC, ), the semantic§y], C C of a formula is given by the
inductive extension of the assignment

[X(e1s- - en)ly =77 0 MO (Lenlys - - - [only)

to the whole of£(A4). Assuming soundness of the semantics, that s o < ¢ implies
lely = [¥], for all T-coalgebragC, ~), we can define a natural transformation

ox : LQ(X) — QT(X)

by the inductive extension of the assignm@nt(e1, . .., n))~ — M X) (01, -, n)
where(-).. is the equivalence class oby ~.

This allows us to recast the coalgebraic semanticg(of) as follows: Fory €
VF({tt, f}), [¢], is given canonically; ifp € (ULy)" ' (VF({tt,f})) we obtain
lely = vt od(n(p)) wherer : LoU — L takes equivalence classes. Assuming that
the initial L-algebra exists, we arrive at the following compact chamagation of the
coalgebraic semantics. The semantics of formulas w.ra.doalgebrg : X — TX is
given by by the unique morphism from the initial algetira — I

I LI (6)

[[-]]l lL[H]
Q¢

OX <2 oTx <X 1LQx

We say that two states y in two coalgebras atgehaviourally equivalentor bisimilar

if they can be identified by some coalgebra morphism. If tvedest are bisimilar, then
they satisfy the same formulae. The converse is not trueriergd This failure plays
an important role in this paper.

3 Jonsson-Tarski Theorem (Completeness)

Given an algebra : LA — A, we want to transform it to the Set-coalgebra

US(a) = USAYS* USLA™ TUSA.

Thinking of the elements df SL A as ultrafilters ovelL A, we define

ha:USLA— TUSA (7)
u = ha(u) € [ {6(Lja(a)) | a € u} ®)



that is,h 4 chooses an element {d(Lja(a)) | a € u} for each ultrafiltens on LA.
This definition is constructed in such a way tii&$ preserves the semantics (compare
Diagram(9) below with Diagram (6)). The notatibit suggests that botti and.S can

be lifted seperately, see Section 5. Here we neither re@uir® be natural not/ S to

be a functor.

Definition 1. We say that is definable if for all algebrad and all ultrafilters: on LA
we have thaf\{d(Lja(a)) | a € u} is non-empty.

Remark 2. A necessary condition foi to be definable is that is injective. For sup-
pose otherwise. Then there will be are LA such thats #.L and§(Lja(a)) = 0. As
a #1 wefind an ultrafilten, € USLAs.t.a € u. Butthen\{6(Lja(a)) | a € u} = 0.

The essence of completeness w.r.t. to the coalgebraic siesathat
ja:A— QUSA

is an injectiveAlg(L)-morphism. This is known as the Jonsson-Tarski theorers alh
extension of Stone’s representation theorem from Boolégabeas to modal algebras
(ie L-algebras).

To see how completeness follows, assume ¢higtnot derivable andr : LA — A
is the initial algebra. We have = ¢ # T, henceQUS(a) = ¢ # T by j4 being an
injective morphism, hencE S(a) H ¢ by definition of the coalgebraic semantics (see

Diagram (6)), thus providing the countermodel §ar

From Stone’s theorem, we know that is an injectiveBA-morphism. To see what is
needed to makg, an L-algebra morphism we take a look at the following diagram.

A 2 LA

. JjrLa )
JAl lLJA

QUSA<————QUSLA QTUSA~————LQUSA
QU S« Qha=h7! Susa
(©)

A=Yy
The lower part, which is af.-algebra onQU S A, is obtained by transformin@A, «)
into aT-coalgebra and back to dralgebra. From the naturality ¢f it follows that; 4
is an L-algebra morphism if the triangle commutes. This leads us to

Theorem 3. Assuming that is definable, the logic given hyis complete w.r.t. the
coalgebraic semantics.

Proof. We show that the triangle in the diagram above commutesb ot 4, let us
write b for jpa(b) = {u € USLA | b € u}. Eliding subscripts, we have to show
h=1(8(Lj(b))) = b, that is,

h(u) € 6(Lj(b)) < b € u.

‘<’ holds by definition ofh. For ‘=’ assumeb ¢ w. It follows —b € u, henceh(u) €
0(Lj(—b)), henceh(u) € =6(Lj (b)), ie h(u) ¢ 6(Lj(D)).



Remark 4. The completeness proof of Jacobs [6] works essentiallywthig (hisr is
ourh). Compared to the completeness proof of [9] (which mimidkexdnduction along
the final coalgebra sequence of [15]), the Jonsson-Tapgkicach to completeness is
simpler as it avoids an induction along the final sequenceth®@rother hand not all
logics admit such a completeness proof: If we take the firotegyset functor together
with the standard modal logic, thénis not definable, see Example 23.

4 Lifting Functors from Set to Stone

In this section we are going to use predicate liftings todifinctor? : Set — Set to a
functor? : Stone — Stone. We will give two descriptions of". First,7’X is the dual of
the Boolean algebra generated by the images of the prediitiaigs QUX — QTUX
(Definition 7). Second]” is the dual of the functaE on BA that describes the complete
logic corresponding to the given predicate liftings (RekEs).

Given a collectionS of subsets ofX we denote by(.S)ga the subalgebra of the
Boolean algebr& (X) generated by, i.e. by closingS under taking finite unions,
intersections and under complementation. We will use theviing technical lemma.

Definition and Lemma 5. Given a functotF' : C — Set and a functol? : C°P — Set
such that there is a natural transformatjon G — VQF°P. Then we can define a
functor (G)ga : C°P — BA by letting (G)gaX := (jx[GX])sa and (G)eaf =
VQFPf ).y forarbitraryX, Y andf : X — Y € C.

Proof. Using the naturality of it is easy to show thai)ga is well defined on objects
and morphisms. Functoriality @t¥)ga then follows from the functoriality oF/ Q F°P.

Definition 6. Let F, G : C — Set be functors and : ' — G a natural transformation.
Then we define a functd¥(7) : C — Set by S(7)(X) := 7x[FX] for X € Cand by
letting S(7)(f) to be the unique map such that the following diagram commutes

FX — S(n)(X)——GX

‘/Ff lS(T)(f) le

FY —=Q(1)(Y)——GY
wheref : X — Y € Cwas arbitrary.

We are now ready for the definition of a lifting ofSat-endofunctor ttone.

Definition 7. GivenT : Set — Set and a setl of predicate liftings\ : VQ"* — VQT
define R
T:=S((3(r"))en)

wherer” := [(Au_ o i"™ )aea] : [[yeq VP™ — VQT denotes the natural transfor-
mation obtained by cotupling of all the transformations o "> and the maps;* are
the embeddingg P X — VQ™ UX.

Proposition 8. 7 is a functor.



Proof. Clearly 74 = [(Ap. o i"™ )xea] is @ natural transformation frofi[ V P to
VQTU. Therefore3(7) is a functor fromStone®® — Set and there is a natural trans-
formationj : S(r) — VQTU. But then by Lemma 5S3(7))ga is a functor from
Stone® to BA. ThereforeT is a functor fromStone®® to Stone®® or, equivalently,
T : Stone — Stone.

The previous definition pre-supposes a4eff predicate liftings to define the lifted
functorT : Stone — Stone. The next proposition, which was stated in [19] and which
is an instance of the Yoneda lemma, shows that there is a ahchoice for the set of
liftings.

Proposition 9. There is a 1-1 correspondence
{n-ary predicate liftings\x : (2")* — 27¥} =~ {subsets of’(2")}
given byS C T'(2") — X where
AMC): (Pr,...,P) e P(C)" = {teTC|1lgoT(lp,,...,1p,)(t) =1}
where, forY C X, 1y : X — 2 is the characteristic function af.

Given this canonical choice of liftings, it is instructive lbok at some concrete
examples.

Example 10. 1. Supposd’'X = K is constant with some finite séf as its value.
ThenT = K whereK is the setk with the discrete topology. To see that, note that
every lifting is determined by a subgelC K, which gives rise to the algebaK
of all subsets of<, which in turn induces the lifted funct@rX = SQK =~ K.

2. ForTX = X,i.e.T = 1d, we getI’ = Id. Forn = 1, we obtain a unary lifting\g
for everyS C 2; this gives rise to the liftings

AM=id d=- A=t N=f1f

where);(C) : P(C) — P(C). One can show, that all-ary liftings can be obtained
as Boolean combinations af . Hence the generated Boolean algelér?))gaX
is isomorphic taPX, whenceld = Id.

3. ForTX = P(X), we obtainT = V whereV : Stone — Stone denotes the
Vietoris functor. Invoking Proposition 9, we obtain 8 unéftngs of typeV QC' —
VQTC, which are generated by Boolean combinationsi@nd<, whered(C) :
2¢ — 27C s givenbyc +— {d C C | d C ¢} and® = —~oOo—. Similarly, alln-ary
liftings can be defined, and one obtains that for the @a&e= PX, (I(74))gaX
is the Boolean algebra generated{tya | a € PX} U {<a | a € PX} quotiented
by the axioms of standard modal logic, i@y «— —=C—¢ andO(¢1, ..., ¢n) <
(Op1 A -+ - AOgp,). From this it follows thafl’ > V, see [10] for details.

Remark 11. It is possible to prove thatcommutes with the formation of products,
coproducts and the composition of functors, i.e.

TixTo=TyxTy, Th+To=T +T, and T, 0T =T oTh.



Combining this fact with the above mentioned examples omestaw that for every
Kripke polynomial functofl” the corresponding Vietoris polynomial functor is isomor-
phic to the functoff .

We will now show that we can extend the func : Set — Stone to a functor

Coalg(T") — Coalg(T"). As afirst step of this construction let us see how we cantrans
form ultrafilter of QTUX naturally into ultrafilter o 3(74))gaX by simply forgetting
the sets IMQTUX \ (S(r4))saX.

Definition and Lemma 12. The functionix defined by
#x 1 SQTUX — TX
ur—un (<C5(TA)>BAX)

is well-defined and continuogs. The family of functiatig-sione gives rise to a natural
transformatiorft : SQTU — T.

Proof. Let j be the natural embedding ¢&(7"))gaX into QTUX. Then it is easy
to see thatS; = @x. Hencenyx is well defined and continuous. Naturality dfthen
follows from the naturality of.

With the help ofi we can turril’-coalgebras intd’-coalgebras.

Definition 13. Let (X,v) € Coalg(T). Then we define a functiofy : SQX —
TSQX by Iettlng’y = ﬁ-SQX ¢} SQT?]X o SQ’}/

¥

SQvy SQTnx
—_—

sox 5% sorx SQTUSQX — % T jsox

The operation of turning #@-coalgebra into &'-coalgebra is functorial.
Proposition 14. The mapping
(X,~) € Coalg(T) — (SQX,%) € Coalg(T)
f € Coalg(T) — SQf € Coalg(T)
defines a functo§Q : Coalg(T") — Coalg(7).
Proof. The claim follows from the fact that and# are both natural.

The semantics of the logic w.ri-coalgebras is given by the following predicate
liftings.

Definition 15. A predicate liftingh : (V Q)™ — VQT for T induces a predicate lifting
A: (VP)" — VPT for T via

Ax = VE(S(r4))eax © AUx © i

wherei% : (VPX)" — (VQUX)™ andk(g (- 4)yg,x : (S(74))BaX — PS(S(7%))saX
is the isomorphism given by Stone duality.

10



Remark 16. 7' can be described more abstractly. bét: L'Q — QT describe the
semantics of the logi€ given as above by predicate liftings (and no axioms). We can
define ‘an improved versior?. of L’ ‘with axioms’ by factoringL’A — LQUSA —
QTUSAthroughitsimage aé’A - LA — QTUSA. One then shows the following.

1. Lis afunctor.

2. LQX is obtained by factoring’ : L'QX — QT X through its image. The image
0x : LQX — TQX gives the interpretation of w.r.t. T-coalgebras whereas,
intuitively, the quotient.’ QX — LQX describes the axioms added4oThatd
is injective corresponds to the completeness of the loggcrileed byL, see [9].

3. L is dual to7, that is, there is an isomorphisf. — 7°5, or, equivalently) :
LP — PT. The isoé gives al-coalgebra semantics to the logicwhich agrees
with the one from Definition 15.

4. The functorSQ : Coalg(T) — Coalg(7") can now be described as mappikig—

TX t0 SQX — SQTX 2% SLOX = TSOX.

Proposition 17. 1. Consider a state of a T-coalgebra and the statg (z) in the
corresponding’-coalgebraz andnx () have the same theory.

2. Two states of &-coalgebra are bisimilar iff they have the same theory.

Proof. 1. Let.: LI — L be the initial L-algebra and> € I. The semantics op
w.r.t. a coalgebr& — T'X and its ultrafilter extensiofQX — T'SQX is given
by the initial algebra maps as in the following diagram (seenBrk 16).

L

I LI
l[[']]set LII']]Setl
[
II'HStone QX QTX = LQX L[H]Stone

PSQX —— PSQTX <X PSLQX <= p7SQX ~— LPSQX

The left column means thate [¢]stone Iff [¢]ser € u (Note the similarity with the
truth lemma of the canonical model known in modal logic).sTihiplies the claim.
2. This follows fromI" being dual taL.

The following corollary reconciles logical equivalenceddnisimilarity. Although
two logically equivalent states in a Set-coalgebra maytéaile bisimilar, they will be
bisimilar in the corresponding Stone-coalgebra:

Theorem 18. GivenT' : Set — Set and a logicL for T-coalgebras, lef : Stone —
Stone be the lifted functor. Then, giveiX, v) € Coalg(T') andz,y € X, we have that
x andy have the same theory iffy (x) is bisimilar tonx (y) in SQ(X, ).

11



5 The Ultrafilter Extension of a Coalgebra
In this section we defin&, thus lifting Diagram (1) to algebras and coalgebras

S

Alg(L) Coalg(T) (10)

Coalg(T)

T3Q(X 5 TX) will be the ultrafilter extension of. Although SQ is left-adjoint
to U, this will not hold in general for the lifted functors. Theas®on is that the unit
nx : X — USQX may fail to be a coalgebra morphism. This is the observatian t
gives rise to Theorem 27.

We need a transformatiagn 7" — T'U. This can be done ifltrafilters in 7 have
non-empty intersection that is, if for all Stone space$ and all ultrafiltersu € UTX
we haveu # 0. We then define

tx : UTX — TUX
u— tx(u) € mu

Remark 19. UsingT'S = SL, we see thaty appeared already &s-x in (7). Similarly,
ha ists 4. Note that naturality was not required in Section 3.

Under the assumption thats natural, we can now lift/ : Stone — Set to a functor
U : Coalg(T) — Coalg(T)
mappingt : X — TX to UX Y U7X 5 TUX. Inthe following proposition we prove
two useful properties of.
Proposition 20. For allX € Stone let tx be defined as above. Then

1. tx isinjective for allX. R
2. If for all X and for allu € UTX we have thaf)u is a singleton set, thehis a
natural transformation.

Proof. The first item follows from the fact that for two ultrafiltets %= «’ we always
haveﬂAu N« = 0. To prove that is natural we have to show thatl f o tx =
ty o UT f for some arbitraryf : X — Y. Letu € UTX. Then

ty(UTf(u) = tx(TUF™) " (u) = F
S Fe(TUf ) (u) = (TUf ) H(F)
for the F’such that (ﬂ u)={F'}
& F=TUf[F'] & TU f(tx(u)) = F.

SS(LA — A)=SA— SLA~TSA, see Remark 16.3.
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Kripke polynomial functors fulfill this criterion, for exapte:

Example 21. Let T' = P and A the canonical set of liftings. Then it is easy to see that
(3(r1))gaX = PVX and therefore we have for alle UTX = S((3(74))gaX) that
Nu = {F} for someF € VX by Stone duality. Thereforeis natural according to
Proposition 20. The reader is invited to check that in 18t= (3(¢)X, 1) whereS(¢)

is defined as in 6 andis the quotient topology induced by. Therefore our definition

of an ultrafilter extension foP-coalgebras coincides with the one used in modal logic.

Remark 22. The construction sketched in the example works also forrdthectors:

If ¢ is natural, the mapping : Stone — Stone, X — (3(¢)X, ), can be extended
to a functor with the property that = T and thatU7TX C TUX for all X. We can
then use the inclusioli TX C TUX which simply forgets the topology in place of the
t-map to define the ultrafilter extension. This works in paittc for a KPFI" where we
get thatT is equal to the corresponding VPF.

There are also functors for which we cannot define an uleafktension.

Example 23. LetT = P, andA = {<} whereP,, denotes the finite power set functor
and¢(Y) :={Y’ | Y isfinite andY’ N'Y # 0}. Thent cannot be defined in general.
For a counterexample considér= (w U {x}, 7) wherer is generated by the Boolean
set algebra of all finite subsets ©fand all cofinite subsets af U {«} that containx.
ThenX is a Stone space. If we defibe:= {O({n}) | n € w} C (I(71))saX one can
easily check that/ has the finite intersection property. Therefore we can ekiémo
an ultrafilteru € UP,X. But obviously\ U = @ and hence alsp)u = ().

Of course, finitely branching Kripke frames, ie coalgeb@sR,,, do have ultrafilter
extensions. The point of the example above is that thesafilthr extensions ar@-
coalgebras but nd®,,-coalgebras.

The important property we need is thtgireserves the semantics. The semantics of
the logic w.r.t.7-coalgebras was given in Definition 15 and Remark 16.3.

Proposition 24. ¢ : UT — TU preserves the semantics. That is, the subset&Xof
determined by interpreting a formula gn X — TX and ontx o U¢ : UX — TUX
are identical.

Proof. The claim is proven by induction on the structure of formul&fe only provide
the inductive step for formulas of the forihy. Letz € X andy = [\, then

2 € [Elnove © 2 € (b1 0 UE) " Du([elixove)) B @ € (tx 0 U D ([e]e))
Wareye? ({u eUTX|(uc /\Ux([[w]]s)})

e aeUs ({ue UTX | Aux(lele) € u}) = Us™ (Au(lvle)
=T e [[w]]g,

where the=-part of (x) is true because

(N Z Aox(lele) = Aox(lele) & u= —Ivx([ele) € u=[)u < —Avx([¢le)-

13



Remark 25. Thatt preserves the semantics means that the left-hand coluntreof t
diagram

I LI
l[['ﬂs L[H]sl
) 5
[legove | PX PTX = LPX | L(ugove)

QUX <~ QUTX <22 QTUX < LQUX

commutes. We can therefore allow as transformatiobi’7” — 7'U any transformation
making the lower right square commute, or, redrawing it arpiking the following
commute.

LQUX bux QTUX (11)
T l@tx
LPX ————= PTX QUTX

This diagram appeared already as the upper square of Didgjacompare Remark 19.

Proposition 26. Assume that is natural. Then Stone-bisimilarity equals Set-bisinifjar
That is, two states i : X — T'X are bisimilar iff they are bisimilar it/ ¢.

Proof. C follows from ¢ being naturalD: If two states inU¢ are bisimilar than they
have the same theory. Now apply Propositions 24 and 17.2.

We can now improve on the bisimulation-somewhere-elsdtresidheorem 18.
Together with the proposition above, it implies that twaestain X — T'X that have
the same theory are in fact bisimilar in some otietcoalgebra, namely the ultrafilter
extension ofX — T'X.

Theorem 27. GivenT : Set — Set and a logic for T-coalgebras, lef : Stone —
Stone be the lifted functor. Assume that ultrafiltersdhhave non-empty intersection
and thatt : UT — TU is natural. Then, givetiX, ) € Coalg(T) andz,y € X, we
have that: andy have the same theory iffy () is bisimilar tonx (y) in USQ(X, ).

Remark 28. The result holds, in particular, for all Kripke polynomiairctors.

6 Conclusion and Future Work

The focus of this paper was on the relationship between Stoakyebras and Set-
coalgebras. This is a special instance of a more generabpi@mon in computer sci-
ence where topology-based structures and set-basedus&sidghteract. This was ob-
served already in Abramsky [1] where powerdomain-coalgeand powerset-coalgebras
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were compared. We believe that the methods used here wérgkse to other such sit-
uations.

First, we can treat other logics than classical ones by cépahe duality between
BA andStone by one for, e.g. Heyting algebras or distributive lattidedinitary logics
can be treated as well, see e.g. [4]. Second, we can reptadsy other categories of
interest in semantics. Third, we can make algebraic toaddahle by upgrading the
triangle of Diagram (1) to a square whé&et is now accompanied by its dual category
of complete atomic Boolean algebras. This will enable tleeafsnethods developed in
the study of perfect or canonical extensions of Booleanhalige(see e.g. [20, Section
7).

There are also a number of more immediate open questionaLuifate a finitary de-
finability result for classes of coalgebras in the style ofdbtatt-Thomason [5], based
on ultrafilter extensions. [’ preserves finite sets than it has a canonical lifting to from
Set to Stone; show that then this lifting agrees with. Find nice conditions guarantee-
ing that ultrafilters irll” have non-empty intersection.
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