Machine Learning applied to Go

Dmitry Kamenetsky

Supervisor: Nic Schraudolph

March 2007

- Introduction
- 2 Monte Carlo Go
- My Work

What is Go?

- Two-player deterministic board game
- Originated in ancient China.
 Today very popular in China,
 Japan and Korea
- 19x19 grid, also 9x9 grid for beginners
- Simple rules, but very complex strategy

Why study Go?

- If there are sentient beings on other planets, then they play Go
 Emanuel Lasker, former chess world champion
- Go is one of the grand challenges of AI
 - Ron Rivest, professor of Computer Science at MIT
- Go is like life and life is like Go
 - Chinese proverb

Why study Go?

- If there are sentient beings on other planets, then they play Go
 - Emanuel Lasker, former chess world champion
- Go is one of the grand challenges of AI
 - Ron Rivest, professor of Computer Science at MIT
- Go is like life and life is like Go
 - Chinese proverb

Why study Go?

- If there are sentient beings on other planets, then they play Go
 - Emanuel Lasker, former chess world champion
- Go is one of the grand challenges of AI
 - Ron Rivest, professor of Computer Science at MIT
- Go is like life and life is like Go
 - Chinese proverb

- Often used for problems that have no closed solution, e.g. computational physics
- Sample instances from some large population
- Use samples to approximate some common property of the population
- In search, select the next state based on some fixed distribution (usually uniform)
- Recently, have been very successful in Go, causing a mini-revolution

- Often used for problems that have no closed solution, e.g. computational physics
- Sample instances from some large population
- Use samples to approximate some common property of the population
- In search, select the next state based on some fixed distribution (usually uniform)
- Recently, have been very successful in Go, causing a mini-revolution

- Often used for problems that have no closed solution, e.g. computational physics
- Sample instances from some large population
- Use samples to approximate some common property of the population
- In search, select the next state based on some fixed distribution (usually uniform)
- Recently, have been very successful in Go, causing a mini-revolution

- Often used for problems that have no closed solution, e.g. computational physics
- Sample instances from some large population
- Use samples to approximate some common property of the population
- In search, select the next state based on some fixed distribution (usually uniform)
- Recently, have been very successful in Go, causing a mini-revolution

- Often used for problems that have no closed solution, e.g. computational physics
- Sample instances from some large population
- Use samples to approximate some common property of the population
- In search, select the next state based on some fixed distribution (usually uniform)
- Recently, have been very successful in Go, causing a mini-revolution

- Slot machine with K arms. Each arm provides a reward based on some unknown, but fixed distribution
- Goal: to choose arms to play such that the total reward is maximized
- How should the gambler play at any given moment?

- Slot machine with K arms. Each arm provides a reward based on some unknown, but fixed distribution
- Goal: to choose arms to play such that the total reward is maximized
- How should the gambler play at any given moment?
 - Choose arm with nignest average reward seen so far (exploitation)
 - Choose a sub-optimal arm in the hope that it it will lead to a greater reward (exploration)
 - Neither need a combination of exploitation and

- Slot machine with K arms. Each arm provides a reward based on some unknown, but fixed distribution
- Goal: to choose arms to play such that the total reward is maximized
- How should the gambler play at any given moment?
 - Choose arm with highest average reward seen so far (exploitation)
 - Choose a sub-optimal arm in the hope that it it will lead to a greater reward (exploration)
 - Neither need a combination of exploitation and exploration

- Slot machine with K arms. Each arm provides a reward based on some unknown, but fixed distribution
- Goal: to choose arms to play such that the total reward is maximized
- How should the gambler play at any given moment?
 - Choose arm with highest average reward seen so far (exploitation)
 - Choose a sub-optimal arm in the hope that it it will lead to a greater reward (exploration)
 - Neither need a combination of exploitation and exploration

- Slot machine with K arms. Each arm provides a reward based on some unknown, but fixed distribution
- Goal: to choose arms to play such that the total reward is maximized
- How should the gambler play at any given moment?
 - Choose arm with highest average reward seen so far (exploitation)
 - Choose a sub-optimal arm in the hope that it it will lead to a greater reward (exploration)
 - Neither need a combination of exploitation and exploration

- Slot machine with K arms. Each arm provides a reward based on some unknown, but fixed distribution
- Goal: to choose arms to play such that the total reward is maximized
- How should the gambler play at any given moment?
 - Choose arm with highest average reward seen so far (exploitation)
 - Choose a sub-optimal arm in the hope that it it will lead to a greater reward (exploration)
 - Neither need a combination of exploitation and exploration

- Successive plays of arm i give rewards $X_{i,1}, X_{i,2}, ...$ which are i.i.d. with unknown $\mathbb{E}(X_i) = \mu_i$
- Let $T_i(n)$ be the number of times arm i has been played during the first n plays of machine
- Upper Confidence Bounds UCB (Auer et al. 2002)
- Initialization: Play each arm once
 - Loop: Play arm t that maximizes $\mu_i + \sqrt{\frac{2\pi G h}{3 (n)}}$
- Proven to achieve optimal regret

- Successive plays of arm i give rewards $X_{i,1}, X_{i,2}, ...$ which are i.i.d. with unknown $\mathbb{E}(X_i) = \mu_i$
- Let T_i(n) be the number of times arm i has been played during the first n plays of machine
- Upper Confidence Bounds UCB (Auer et al. 2002)
 - Initialization: Play each arm once
 - Loop: Play arm i that maximizes $\mu_i + \sqrt{\frac{2108}{7.001}}$
- Proven to achieve optimal regret

- Successive plays of arm i give rewards $X_{i,1}, X_{i,2}, ...$ which are i.i.d. with unknown $\mathbb{E}(X_i) = \mu_i$
- Let $T_i(n)$ be the number of times arm i has been played during the first n plays of machine
- Upper Confidence Bounds UCB (Auer et al. 2002)
 - Initialization: Play each arm once
 - Loop: Play arm i that maximizes $\mu_i + \sqrt{\frac{2 \log n}{T_i(n)}}$
- Proven to achieve optimal regret

- Successive plays of arm i give rewards $X_{i,1}, X_{i,2}, ...$ which are i.i.d. with unknown $\mathbb{E}(X_i) = \mu_i$
- Let $T_i(n)$ be the number of times arm i has been played during the first n plays of machine
- Upper Confidence Bounds UCB (Auer et al. 2002)
 - Initialization: Play each arm once
 - Loop: Play arm i that maximizes $\mu_i + \sqrt{\frac{2 \log n}{T_i(n)}}$
- Proven to achieve optimal regret

- Successive plays of arm i give rewards $X_{i,1}, X_{i,2}, ...$ which are i.i.d. with unknown $\mathbb{E}(X_i) = \mu_i$
- Let $T_i(n)$ be the number of times arm i has been played during the first n plays of machine
- Upper Confidence Bounds UCB (Auer et al. 2002)
 - Initialization: Play each arm once
 - Loop: Play arm i that maximizes $\mu_i + \sqrt{\frac{2 \log n}{T_i(n)}}$
- Proven to achieve optimal regret

- Successive plays of arm i give rewards $X_{i,1}, X_{i,2}, ...$ which are i.i.d. with unknown $\mathbb{E}(X_i) = \mu_i$
- Let $T_i(n)$ be the number of times arm i has been played during the first n plays of machine
- Upper Confidence Bounds UCB (Auer et al. 2002)
 - Initialization: Play each arm once
 - Loop: Play arm i that maximizes $\mu_i + \sqrt{\frac{2 \log n}{T_i(n)}}$
- Proven to achieve optimal regret

- UCB for minimax tree search (Kocsis and Szepesvari 2006)
- Start at the current board position p
- For i = 1 to 100,000 (number of simulations)
 - until stopping criterion is reached (e.g. end of game)
 - Evaluate leaf: value --- winner of y/
 Indate all the visited us less with walunted
- At p play move with highest winning percentage

- UCB for minimax tree search (Kocsis and Szepesvari 2006)
- Start at the current board position p
- For i = 1 to 100,000 (number of simulations)
 - until stopping criterion is reached (e.g. end of game)

- Update all the visited nodes with value
- At p play move with highest winning percentage

- UCB for minimax tree search (Kocsis and Szepesvari 2006)
- Start at the current board position p
- For i = 1 to 100,000 (number of simulations)
 - $p' \leftarrow p$
 - until stopping criterion is reached (e.g. end of game)

- Evaluate leaf: value \leftarrow winner of p'
- Update all the visited nodes with value
- At p play move with highest winning percentage

- UCB for minimax tree search (Kocsis and Szepesvari 2006)
- Start at the current board position p
- For i = 1 to 100,000 (number of simulations)
 - $p' \leftarrow p$
 - until stopping criterion is reached (e.g. end of game)
 - p' ← p' + move given by UCB
 create node v'
 - Evaluate leat: value \leftarrow winner of p
 - Update all the visited nodes with value
- At p play move with highest winning percentage

- UCB for minimax tree search (Kocsis and Szepesvari 2006)
- Start at the current board position p
- For i = 1 to 100,000 (number of simulations)
 - $p' \leftarrow p$
 - until stopping criterion is reached (e.g. end of game)
 - $p' \leftarrow p' + \text{move given by UCB}$
 - create node *p'*
 - Evaluate leaf: value \leftarrow winner of p'
 - Update all the visited nodes with value
- At p play move with highest winning percentage

- UCB for minimax tree search (Kocsis and Szepesvari 2006)
- Start at the current board position p
- For i = 1 to 100,000 (number of simulations)
 - $p' \leftarrow p$
 - until stopping criterion is reached (e.g. end of game)
 - $p' \leftarrow p' + \text{move given by UCB}$
 - create node *p*′
 - Evaluate leaf: value \leftarrow winner of p'
 - Update all the visited nodes with value
- At p play move with highest winning percentage

- UCB for minimax tree search (Kocsis and Szepesvari 2006)
- Start at the current board position p
- For i = 1 to 100,000 (number of simulations)
 - $p' \leftarrow p$
 - until stopping criterion is reached (e.g. end of game)
 - $p' \leftarrow p' + \text{move given by UCB}$
 - create node p'
 - Evaluate leaf: value \leftarrow winner of p'
 - Update all the visited nodes with value
- At p play move with highest winning percentage

- UCB for minimax tree search (Kocsis and Szepesvari 2006)
- Start at the current board position p
- For i = 1 to 100,000 (number of simulations)
 - $p' \leftarrow p$
 - until stopping criterion is reached (e.g. end of game)
 - $p' \leftarrow p' + \text{move given by UCB}$
 - create node p'
 - Evaluate leaf: value \leftarrow winner of p'
 - Update all the visited nodes with value
- At p play move with highest winning percentage

- UCB for minimax tree search (Kocsis and Szepesvari 2006)
- Start at the current board position p
- For i = 1 to 100,000 (number of simulations)
 - $p' \leftarrow p$
 - until stopping criterion is reached (e.g. end of game)
 - $p' \leftarrow p' + \text{move given by UCB}$
 - create node *p*′
 - Evaluate leaf: value \leftarrow winner of p'
 - Update all the visited nodes with value
- At p play move with highest winning percentage

- UCB for minimax tree search (Kocsis and Szepesvari 2006)
- Start at the current board position p
- For i = 1 to 100,000 (number of simulations)
 - $p' \leftarrow p$
 - until stopping criterion is reached (e.g. end of game)
 - $p' \leftarrow p' + \text{move given by UCB}$
 - create node p'
 - Evaluate leaf: value \leftarrow winner of p'
 - Update all the visited nodes with value
- At p play move with highest winning percentage

MoGo

- First Go program to use UCT (Gelly et. al 2006)
- Store nodes and their statistics in a tree data structure
- Stopping criterion is a node that is not yet in the tree
- Leaf node evaluation:

Pruning techniques, smart ordering of unexplored moves

MoGo

- First Go program to use UCT (Gelly et. al 2006)
- Store nodes and their statistics in a tree data structure
- Stopping criterion is a node that is not yet in the tree
- Leaf node evaluation:

Pruning techniques, smart ordering of unexplored moves

MoGo

- First Go program to use UCT (Gelly et. al 2006)
- Store nodes and their statistics in a tree data structure
- Stopping criterion is a node that is not yet in the tree
- Leaf node evaluation:
 - Playout position randomly until no moves remain. Final position is trivial to score
 - Enhanced through the use of patterns and playing near the previous move
- Pruning techniques, smart ordering of unexplored moves

- First Go program to use UCT (Gelly et. al 2006)
- Store nodes and their statistics in a tree data structure
- Stopping criterion is a node that is not yet in the tree
- Leaf node evaluation:
 - Playout position randomly until no moves remain. Final position is trivial to score
 - Enhanced through the use of patterns and playing near the previous move
- Pruning techniques, smart ordering of unexplored moves

- First Go program to use UCT (Gelly et. al 2006)
- Store nodes and their statistics in a tree data structure
- Stopping criterion is a node that is not yet in the tree
- Leaf node evaluation:
 - Playout position randomly until no moves remain. Final position is trivial to score
 - Enhanced through the use of patterns and playing near the previous move
- Pruning techniques, smart ordering of unexplored moves

- First Go program to use UCT (Gelly et. al 2006)
- Store nodes and their statistics in a tree data structure
- Stopping criterion is a node that is not yet in the tree
- Leaf node evaluation:
 - Playout position randomly until no moves remain. Final position is trivial to score
 - Enhanced through the use of patterns and playing near the previous move
- Pruning techniques, smart ordering of unexplored moves

- First Go program to use UCT (Gelly et. al 2006)
- Store nodes and their statistics in a tree data structure
- Stopping criterion is a node that is not yet in the tree
- Leaf node evaluation:
 - Playout position randomly until no moves remain. Final position is trivial to score
 - Enhanced through the use of patterns and playing near the previous move
- Pruning techniques, smart ordering of unexplored moves

MoGo's success

- Ranked first on 9x9 Computer Go Server since August 2006
- Won two most recent tournaments on 9x9 and 13x13
- Expected to reach the level of human professional on 9x9 board

MoGo's success

- Ranked first on 9x9 Computer Go Server since August 2006
- Won two most recent tournaments on 9x9 and 13x13
- Expected to reach the level of human professional on 9x9 board

MoGo's success

- Ranked first on 9x9 Computer Go Server since August 2006
- Won two most recent tournaments on 9x9 and 13x13
- Expected to reach the level of human professional on 9x9 board

- UCT is ad-hoc. Lack of theoretical analysis, because random variables (rewards X_i) are not i.i.d.
- Instead, use Beta distributions to model random variables
- Beta distribution is a conjugate prior to binomial distribution (game result)
- Here α = wins from node, β = losses from node
- Let p be parent's winning percentage and 0 < a < 1 parameter
- Pick a move that is most likely to have a winning percentage greater than (1 a)p + a

- UCT is ad-hoc. Lack of theoretical analysis, because random variables (rewards X_i) are not i.i.d.
- Instead, use Beta distributions to model random variables
- Beta distribution is a conjugate prior to binomial distribution (game result)
- Here α = wins from node, β = losses from node
- Let p be parent's winning percentage and 0 < a < 1 parameter
- Pick a move that is most likely to have a winning percentage greater than (1 a)p + a

- UCT is ad-hoc. Lack of theoretical analysis, because random variables (rewards X_i) are not i.i.d.
- Instead, use Beta distributions to model random variables
- Beta distribution is a conjugate prior to binomial distribution (game result)
- Here $\alpha = \text{wins from node}$, $\beta = \text{losses from node}$
- Let p be parent's winning percentage and 0 < a < 1 parameter
- Pick a move that is most likely to have a winning percentage greater than (1 a)p + a

- UCT is ad-hoc. Lack of theoretical analysis, because random variables (rewards X_i) are not i.i.d.
- Instead, use Beta distributions to model random variables
- Beta distribution is a conjugate prior to binomial distribution (game result)
- Here $\alpha = \text{wins from node}$, $\beta = \text{losses from node}$
- Let *p* be parent's winning percentage and 0 < a < 1 parameter
- Pick a move that is most likely to have a winning percentage greater than (1 a)p + a

- UCT is ad-hoc. Lack of theoretical analysis, because random variables (rewards X_i) are not i.i.d.
- Instead, use Beta distributions to model random variables
- Beta distribution is a conjugate prior to binomial distribution (game result)
- Here $\alpha =$ wins from node, $\beta =$ losses from node
- Let *p* be parent's winning percentage and 0 < *a* < 1 parameter
- Pick a move that is most likely to have a winning percentage greater than (1 a)p + a

- UCT is ad-hoc. Lack of theoretical analysis, because random variables (rewards X_i) are not i.i.d.
- Instead, use Beta distributions to model random variables
- Beta distribution is a conjugate prior to binomial distribution (game result)
- Here $\alpha = \text{wins}$ from node, $\beta = \text{losses}$ from node
- Let *p* be parent's winning percentage and 0 < *a* < 1 parameter
- Pick a move that is most likely to have a winning percentage greater than (1 a)p + a

- MoGo's node evaluation is fast, but not so meaningful
- Instead, use our cooperative scorer:
 - Initialization: Statically fill neutral territory with stones
 - Loop: players cooperate to make moves that do not affect the score
- Accurately predicts score: 96.3% on 9x9 and 89.2% on 19x19
- Only 15 times slower than pure random

- MoGo's node evaluation is fast, but not so meaningful
- Instead, use our cooperative scorer:
 - Initialization: Statically fill neutral territory with stones
 - Loop: players cooperate to make moves that do not affect the score
- Accurately predicts score: 96.3% on 9x9 and 89.2% on 19x19
- Only 15 times slower than pure random

- MoGo's node evaluation is fast, but not so meaningful
- Instead, use our cooperative scorer:
 - Initialization: Statically fill neutral territory with stones
 - Loop: players cooperate to make moves that do not affect the score
- Accurately predicts score: 96.3% on 9x9 and 89.2% on 19x19
- Only 15 times slower than pure random

- MoGo's node evaluation is fast, but not so meaningful
- Instead, use our cooperative scorer:
 - Initialization: Statically fill neutral territory with stones
 - Loop: players cooperate to make moves that do not affect the score
- Accurately predicts score: 96.3% on 9x9 and 89.2% on 19x19
- Only 15 times slower than pure random

- MoGo's node evaluation is fast, but not so meaningful
- Instead, use our cooperative scorer:
 - Initialization: Statically fill neutral territory with stones
 - Loop: players cooperate to make moves that do not affect the score
- Accurately predicts score: 96.3% on 9x9 and 89.2% on 19x19
- Only 15 times slower than pure random

- MoGo's node evaluation is fast, but not so meaningful
- Instead, use our cooperative scorer:
 - Initialization: Statically fill neutral territory with stones
 - Loop: players cooperate to make moves that do not affect the score
- Accurately predicts score: 96.3% on 9x9 and 89.2% on 19x19
- Only 15 times slower than pure random

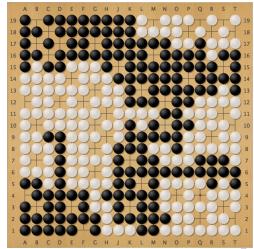
Scorer Example



Scorer Example



Scorer Example



- Tree data structure is memory-inefficient
- Instead, use a hash table:
 - For each visited position p, key = ZobristHash(p)
 - Store statistics of p: hashTable[key] = (#wins, #runs, depth)
 - Collision handling
- Use a small hash table with more information for frequently visited nodes

- Tree data structure is memory-inefficient
- Instead, use a hash table:
 - For each visited position p, key = ZobristHash(p)
 - Store statistics of *p*: hashTable[*key*] = (#wins, #runs, depth)
 - Collision handling
- Use a small hash table with more information for frequently visited nodes

- Tree data structure is memory-inefficient
- Instead, use a hash table:
 - For each visited position p, key = ZobristHash(p)
 - Store statistics of *p*: hashTable[*key*] = (#wins, #runs, depth)
 - Collision handling
- Use a small hash table with more information for frequently visited nodes

- Tree data structure is memory-inefficient
- Instead, use a hash table:
 - For each visited position p, key = ZobristHash(p)
 - Store statistics of *p*: hashTable[*key*] = (#wins, #runs, depth)
 - Collision handling
- Use a small hash table with more information for frequently visited nodes

- Tree data structure is memory-inefficient
- Instead, use a hash table:
 - For each visited position p, key = ZobristHash(p)
 - Store statistics of *p*: hashTable[*key*] = (#wins, #runs, depth)
 - Collision handling
- Use a small hash table with more information for frequently visited nodes

- Tree data structure is memory-inefficient
- Instead, use a hash table:
 - For each visited position p, key = ZobristHash(p)
 - Store statistics of *p*: hashTable[*key*] = (#wins, #runs, depth)
 - Collision handling
- Use a small hash table with more information for frequently visited nodes

- Convert the board position into a graph:
 - Collapse regions of the same colour into one node
 - Create edges between adjacent regions
- Use Condition Random Fields (CRF) to learn from this graph:

Can use this with the scorer or for move generation

- Convert the board position into a graph:
 - Collapse regions of the same colour into one node
 - Create edges between adjacent regions
- Use Condition Random Fields (CRF) to learn from this graph:

```
Learn final territory assignment
```

- Friedrich ine next move
- Can use this with the scorer or for move generation

- Convert the board position into a graph:
 - Collapse regions of the same colour into one node
 - Create edges between adjacent regions
- Use Condition Random Fields (CRF) to learn from this graph:
 - Learn final territory assignment
 - Predict the next move
- Can use this with the scorer or for move generation

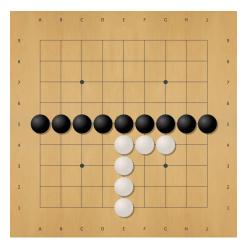
- Convert the board position into a graph:
 - Collapse regions of the same colour into one node
 - Create edges between adjacent regions
- Use Condition Random Fields (CRF) to learn from this graph:
 - Learn final territory assignment
 - Predict the next move
- Can use this with the scorer or for move generation

- Convert the board position into a graph:
 - Collapse regions of the same colour into one node
 - Create edges between adjacent regions
- Use Condition Random Fields (CRF) to learn from this graph:
 - Learn final territory assignment
 - Predict the next move
- Can use this with the scorer or for move generation

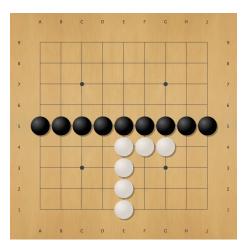
- Convert the board position into a graph:
 - Collapse regions of the same colour into one node
 - Create edges between adjacent regions
- Use Condition Random Fields (CRF) to learn from this graph:
 - Learn final territory assignment
 - Predict the next move
- Can use this with the scorer or for move generation

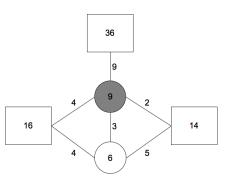
- Convert the board position into a graph:
 - Collapse regions of the same colour into one node
 - Create edges between adjacent regions
- Use Condition Random Fields (CRF) to learn from this graph:
 - Learn final territory assignment
 - Predict the next move
- Can use this with the scorer or for move generation

Graph conversion example



Graph conversion example





Beta Distributions Cooperative Scorer Zobrist Hash Conditional Random Fields

Questions?

• You never ever know if you never ever GO!

