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What is Go?

Two-player deterministic
board game

Originated in ancient China.
Today very popular in China,
Japan and Korea

19x19 grid, also 9x9 grid for
beginners

Simple rules, but very
complex strategy
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Why study Go?

If there are sentient beings on other planets, then they play Go
– Emanuel Lasker, former chess world champion

Go is one of the grand challenges of AI
– Ron Rivest, professor of Computer Science at MIT

Go is like life and life is like Go
- Chinese proverb
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Monte Carlo
Bandit Problem
MoGo

Monte Carlo

Often used for problems that have no closed solution, e.g.
computational physics

Sample instances from some large population

Use samples to approximate some common property of the
population

In search, select the next state based on some fixed
distribution (usually uniform)

Recently, have been very successful in Go, causing a
mini-revolution
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Monte Carlo
Bandit Problem
MoGo

K-armed bandit problem

Slot machine with K arms. Each arm provides a reward
based on some unknown, but fixed distribution

Goal: to choose arms to play such that the total reward is
maximized

How should the gambler play at any given moment?

Choose arm with highest average reward seen so far
(exploitation)

Choose a sub-optimal arm in the hope that it it will lead to
a greater reward (exploration)

Neither - need a combination of exploitation and
exploration

Dmitry Kamenetsky Machine Learning applied to Go



Introduction
Monte Carlo Go

My Work

Monte Carlo
Bandit Problem
MoGo

K-armed bandit problem

Slot machine with K arms. Each arm provides a reward
based on some unknown, but fixed distribution

Goal: to choose arms to play such that the total reward is
maximized

How should the gambler play at any given moment?

Choose arm with highest average reward seen so far
(exploitation)

Choose a sub-optimal arm in the hope that it it will lead to
a greater reward (exploration)

Neither - need a combination of exploitation and
exploration

Dmitry Kamenetsky Machine Learning applied to Go



Introduction
Monte Carlo Go

My Work

Monte Carlo
Bandit Problem
MoGo

K-armed bandit problem

Slot machine with K arms. Each arm provides a reward
based on some unknown, but fixed distribution

Goal: to choose arms to play such that the total reward is
maximized

How should the gambler play at any given moment?

Choose arm with highest average reward seen so far
(exploitation)

Choose a sub-optimal arm in the hope that it it will lead to
a greater reward (exploration)

Neither - need a combination of exploitation and
exploration

Dmitry Kamenetsky Machine Learning applied to Go



Introduction
Monte Carlo Go

My Work

Monte Carlo
Bandit Problem
MoGo

K-armed bandit problem

Slot machine with K arms. Each arm provides a reward
based on some unknown, but fixed distribution

Goal: to choose arms to play such that the total reward is
maximized

How should the gambler play at any given moment?

Choose arm with highest average reward seen so far
(exploitation)

Choose a sub-optimal arm in the hope that it it will lead to
a greater reward (exploration)

Neither - need a combination of exploitation and
exploration

Dmitry Kamenetsky Machine Learning applied to Go



Introduction
Monte Carlo Go

My Work

Monte Carlo
Bandit Problem
MoGo

K-armed bandit problem

Slot machine with K arms. Each arm provides a reward
based on some unknown, but fixed distribution

Goal: to choose arms to play such that the total reward is
maximized

How should the gambler play at any given moment?

Choose arm with highest average reward seen so far
(exploitation)

Choose a sub-optimal arm in the hope that it it will lead to
a greater reward (exploration)

Neither - need a combination of exploitation and
exploration

Dmitry Kamenetsky Machine Learning applied to Go



Introduction
Monte Carlo Go

My Work

Monte Carlo
Bandit Problem
MoGo

K-armed bandit problem

Slot machine with K arms. Each arm provides a reward
based on some unknown, but fixed distribution

Goal: to choose arms to play such that the total reward is
maximized

How should the gambler play at any given moment?

Choose arm with highest average reward seen so far
(exploitation)

Choose a sub-optimal arm in the hope that it it will lead to
a greater reward (exploration)

Neither - need a combination of exploitation and
exploration

Dmitry Kamenetsky Machine Learning applied to Go



Introduction
Monte Carlo Go

My Work

Monte Carlo
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MoGo

Upper Confidence Bounds

Successive plays of arm i give rewards Xi,1, Xi,2, ... which
are i.i.d. with unknown E(Xi) = µi

Let Ti(n) be the number of times arm i has been played
during the first n plays of machine

Upper Confidence Bounds - UCB (Auer et al. 2002)

Initialization: Play each arm once

Loop: Play arm i that maximizes µi +
√

2 log n
Ti(n)

Proven to achieve optimal regret
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Monte Carlo
Bandit Problem
MoGo

UCT

UCB for minimax tree search (Kocsis and Szepesvari 2006)

Start at the current board position p

For i = 1 to 100,000 (number of simulations)
p′ ← p
until stopping criterion is reached (e.g. end of game)

p′ ← p′ + move given by UCB
create node p′

Evaluate leaf: value← winner of p′

Update all the visited nodes with value

At p play move with highest winning percentage
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MoGo

First Go program to use UCT (Gelly et. al 2006)

Store nodes and their statistics in a tree data structure

Stopping criterion is a node that is not yet in the tree

Leaf node evaluation:

Playout position randomly until no moves remain. Final
position is trivial to score

Enhanced through the use of patterns and playing near the
previous move

Pruning techniques, smart ordering of unexplored moves
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Monte Carlo
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MoGo’s success

Ranked first on 9x9 Computer Go Server since August
2006

Won two most recent tournaments on 9x9 and 13x13

Expected to reach the level of human professional on 9x9
board
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Beta Distributions
Cooperative Scorer
Zobrist Hash
Conditional Random Fields

Replacing UCB

UCT is ad-hoc. Lack of theoretical analysis, because
random variables (rewards Xi) are not i.i.d.

Instead, use Beta distributions to model random variables

Beta distribution is a conjugate prior to binomial
distribution (game result)

Here α = wins from node, β = losses from node

Let p be parent’s winning percentage and 0 < a < 1
parameter

Pick a move that is most likely to have a winning
percentage greater than (1− a)p + a

Dmitry Kamenetsky Machine Learning applied to Go
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Beta Distributions
Cooperative Scorer
Zobrist Hash
Conditional Random Fields

Improving node evaluation

MoGo’s node evaluation is fast, but not so meaningful

Instead, use our cooperative scorer:

Initialization: Statically fill neutral territory with stones

Loop: players cooperate to make moves that do not affect
the score

Accurately predicts score: 96.3% on 9x9 and 89.2% on
19x19

Only 15 times slower than pure random
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Improving memory management

Tree data structure is memory-inefficient

Instead, use a hash table:

For each visited position p, key = ZobristHash(p)

Store statistics of p: hashTable[key] = (#wins, #runs, depth)

Collision handling

Use a small hash table with more information for
frequently visited nodes

Dmitry Kamenetsky Machine Learning applied to Go
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Learning evaluation function

Convert the board position into a graph:

Collapse regions of the same colour into one node

Create edges between adjacent regions

Use Condition Random Fields (CRF) to learn from this
graph:

Learn final territory assignment

Predict the next move

Can use this with the scorer or for move generation
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Questions?

You never ever know if you never ever GO!

Dmitry Kamenetsky Machine Learning applied to Go
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