
Modelling Go Positions with Planar CRFs

Statistical Machine Learning Program

Authors
Dmitry Kamenetsky | Nic Schraudolph | Simon Günter | S.V.N. Vishwanathan

Abstract

We apply Conditional Random Fields (CRFs) to territory prediction in the game
of Go. We propose a two-stage graph reduction of the Go position, with the
first stage used for CRF parameter estimation and the second for inference. The
interaction potentials in our model are calculated from generic shape features; the
associated parameters are shared between semantically equivalent feature types.
Our experiments indicate that this architecture is very efficient at propagating
relevant information across the graph.

Go

• Two players (black and white) alternate in placing stones on the intersections
of a 9 × 9 (or 19 × 19) grid.

•Neighbouring stones of the same colour form a contiguous block.

•A block can be captured if all its empty neighbours (liberties) are occupied by
opponent stones.

• Players aim to maximize the area (territory) of blocks that cannot be captured.

• Territory prediction: given a board position, determine which player controls
each intersection (see Figure 1 for an example).

Graph Abstraction

Common fate graph

• Common fate property: blocks always live or a die as a unit.

• Common fate graph G f (Graepel et al., 2001) merges all black stones in a block
into a single node � and white stones into � (Figure 2).

• Block’s size and shape can be represented in the corresponding node’s features.

Block graph

• Empty regions are usually divided between players and so cannot be fully col-
lapsed. However if we do not collapse them at all, we end up with large,
unwieldy graphs.

•Our block graph Gb is a compromise between these two extremes (Figure 3).

•We collapse empty intersections of G f into black surround �, white surround
� and neutral � depending on the Manhattan distance to the nearest black and
white stones.

•Gb is more concise than G f , but preserves all the information required for
predicting territory.

• Since Gb is planar, we employ exact polynomial-time parameter estimation
based on the work of Globerson and Jaakkola (2007).

Group graph

•Group: set of blocks of the same colour that share at least one surround.

•We construct the group graph Gg by collapsing groups of Gb (Figure 3).

• Blocks belonging to the same group are likely to have the same fate, therefore
we use Gg for inference.

Example

Figure 1. A typical
9 × 9 board position
represented as a grid
graph G. Black’s terri-
tory is shaded in dark-
gray, while White’s ter-
ritory is shaded in light-
gray. The stones inside
the opponent’s territory
are dead; the rest are
alive.

Figure 2. Correspond-
ing common fate graph
G f .

13

26

8 9 12

11

13

17

Figure 3. Correspond-
ing block graph Gb. �
represent stones, � rep-
resent surrounds, and
� are neutral. Dashed
lines indicate nodes of
the group graph Gg.

0 13

5

8

2

4

6

7

10 11

9 12

15

13 14

16 17

1819

Features and Parameters

Nodes

•Given a node v ∈ Gb, for each point i ∈ v compute the number of adjacent
points Ai that are also in v (see Figure 4 top).

•Node’s feature is a vector F, where Fk = |{i : Ai = k}|.

• F provides a powerful summary of the region’s shape. This is important for
classifying the region’s eye-forming potential and thus its ability to live/die.

Edges

•Given two adjacent nodes v1, v2 ∈ Gb, for each point i ∈ v1 compute the
number of adjacent points A1

i that are in v2 and vice versa for A2
i .

• Edge’s features are two vectors F1 and F2 that use A1 and A2 respectively.

•Our edge features provide additional information that is not conveyed by the
features of the nodes they connect (see Figure 4 bottom).

Parameter sharing

•We encode colour symmetry by appropriate parameter sharing.

• 3 node parameters: stone (θ�), surround (θ�), and neutral (θ�).

• 8 edge parameters: one for each possible type of node pairing.

• For each edge we also include features of its neighbouring nodes and edges.
These features are associated with the parameter vector θn.

Experiments

•We use 9 × 9 endgame positions of van der Werf et al. (2005).

• Each intersection is labeled as either or .

• 4 measures of error

– Vertex: percentage of misclassified non-neutral nodes in G.
– Block: percentage of misclassified stone nodes in Gb.
– Winner: percentage of games whose winner is predicted incorrectly.
– Game: percentage of games that have at least one vertex error.

•Naive error assumes all stones are alive, i.e., � is and � is .

Conclusion and Future Work

•Our system is clearly outperforming previous generic models, however it is
worse than approaches that incorporate Go-specific features.

•Our high-order graph representation enables the system to capture the sub-
tleties of life and death in Go, despite our simple generic features.

• Future work will focus on better ways of classifying empty regions and incor-
poration of more domain-specific knowledge.

Figure 4. Top: Node features,
resulting in feature vector [2, 4,
2, 1]. Bottom: Edge features,
resulting in feature vectors [6, 3,
0] and [3, 3, 1] for edges �→ �
and �→ �, respectively.

Figure 5. Parameters and fea-
tures used to compute the poten-
tial of one particular edge (blue)
in a small block graph (below).

Current Edge Neighbour Edges
Param. Feat. Param. Feat.

Nodes
θ� � θn� �

θ� � θn� �

θn� �

Edges

θ�� �→ � θn�� � → �

θ�� �→ � θn�� �→ �

θn��
�→ �
�→ �

θn��
�→ �
�→ �

Error (%)
Algorithm Vertex Block Winner Game

Naive 6.79 17.57 30.79 75.70
Stern et al. (2004) 4.77 7.36 13.80 38.30

Block graph 2.36 3.56 4.53 13.02
Block graph + neighbour features 1.87 2.76 3.42 9.60

Block graph + other enhancements 1.54 2.20 2.09 7.90
* GnuGo - - - 1.32

* van der Werf et al. (2005) 0.19 ≤ 1.00 0.50 1.10

Figure 6. Prediction error (percentage) for various algorithms.
*: employs Go- specific features and was used to label training data.

References

T. Graepel, M. Goutrié, M. Krüger, and R. Herbrich. Learning on graphs in the game of Go. In
ICANN, 2001.

A. Globerson and T. Jaakkola. Approximate inference using planar graph decomposition. In
NIPS, 2007.

E. C. D. van der Werf, H. J. van den Herik, and J. W. H. M. Uiterwijk. Learning to score final
positions in the game of Go. Theoretical Computer Science, 349(2), 2005.

D. H. Stern, T. Graepel, and D. J. C. MacKay. Modelling uncertainty in the game of Go. In NIPS.
2004.

