
Learning from Data 1

Naive Bayes

David Barber

dbarber@anc.ed.ac.uk

course page : http://anc.ed.ac.uk/∼dbarber/lfd1/lfd1.html
c© David Barber 2001, 2002

1



Learning from Data 1 : c© David Barber 2001,2002 2

1 Why Naive Bayes?

Naive Bayes is one of the simplest density estimation methods from which
we can form one of the standard classification methods in machine learning.
Its fame is partly due to the following properties:

• Very easy to program and intuitive

• Fast to train and to use as a classifier

• Very easy to deal with missing attributes

• Very popular in certain fields such as computational linguistics/NLP

However, despite the simplicity of Naive Bayes, there are some pitfalls that
need to be avoided, as we will describe. The pitfalls usually made are due
to a poor understanding of the central assumption behind Naive Bayes,
namely conditional independence. Before we explain how to use conditional
independence to form a classifier, we concentrate on explaining the basic
assumption of conditional independence.

2 Understanding Conditional Independence

Consider a general probability distribution of two variables, p(x1, x2). Using
Bayes rule, without loss of generality, we can write

p(x1, x2) = p(x1|x2)p(x2) (2.1)

Similarly, if we had another “class” variable, c, we can write, using Bayes
rule :

p(x1, x2|c) = p(x1|x2, c)p(x2|c) (2.2)

In the above expression, we have not made any assumptions at all. Consider
now the term p(x1|x2, c). If knowledge of c is sufficient to determine how
x1 will be distributed, we don’t need to know the state of x2. That is, we
may write p(x1|x2, c) = p(x1|c). For example, we may write the general
statement:

p(cloudy, windy|storm) = p(cloudy|windy, storm)p(windy|storm) (2.3)

where, for example, each of the variables can take the values ‘yes’ or ‘no’, and
now further make the assumption p(cloudy|windy, storm) = p(cloudy|storm)
so that the distribution becomes

p(cloudy, windy|storm) = p(cloudy|storm)p(windy|storm) (2.4)

We can generalise the situation of two variables to a conditional indepen-
dence assumption for a set of variables x1, . . . , xN , conditional on another
variable c:

p(x|c) =

N
∏

i=1

p(xi|c) (2.5)

A further example may help to clarify the assumptions behind conditional
independence. EasySell.com considers that its customers conveniently fall
into two groups – the ‘young’ or ‘old’. Based on only this information,
they build general customer profiles for product preferences. Easysell.com
assumes that, given the knowledge that a customer is either ‘young’ or ‘old’,
this is sufficient to determine whether or not a customer will like a product,
independent of their likes or dislikes for any other products. Thus, given
that a customer is ‘young’, she has a 95% chance to like Radio1, a 5%
chance to like Radio2, a 2% chance to like Radio3 and a 20% chance to like
Radio4. Similarly, they model that an ‘old’ customer has a 3% chance to
like Radio1, an 82% chance to like Radio2, a 34% chance to like Radio3 and
a 92% chance to like Radio4. Mathematically, we would write

p(R1, R2, R3, R4|age) = p(R1|age)p(R2|age)p(R3|age)p(R4|age) (2.6)



Learning from Data 1 : c© David Barber 2001,2002 3

where each of the variables R1, R2, R3, R4 can take the values either ‘like’
or ‘dislike’, and the ‘age’ variable can take the value either ‘young’ or ‘old’.
Thus the information about the age of the customer is so powerful that
this determines the individual product preferences without needing to know
anything else. Clearly, this is a rather strong assumption, but a popular
one, and sometimes leads to surprisingly good results.

In this chapter, we will take the conditioning variable to represent the class
of the datapoint x. Coupled then with a suitable choice for the conditional
distribution p(xi|c), we can then use Bayes rule to form a classifier. In this
chapter, we will consider two cases of different conditional distributions,
one appropriate for discrete data and the other for continuous data. Fur-
thermore, we will demonstrate how to learn any free parameters of these
models.

3 Are they Scottish?

Consider the following vector of attributes:

(likes shortbread, likes lager, drinks whiskey, eats porridge, watched England play football)T (3.1)

A vector x = (1, 0, 1, 1, 0)T would describe that a person likes shortbread,
does not like lager, drinks whiskey, eats porridge, and has not watched
England play football. Together with each vector xµ, there is a class label
describing the nationality of the person: Scottish, or English. We wish to
classify a new vector x = (1, 0, 1, 1, 0)T as either Scottish or English. We
can use Bayes rule to calculate the probability that x is Scottish or English:

p(S|x) =
p(x|S)p(S)

p(x)
(3.2)

p(E|x) =
p(x|E)p(E)

p(x)
(3.3)

Since we must have p(S|x) + p(E|x) = 1, we could also write

p(S|x) =
p(x|S)p(S)

p(x|S)p(S) + p(x|E)p(E)
(3.4)

It is straightforward to show that the “prior” class probability p(S) is sim-
ply given by the fraction of people in the database that are Scottish, and
similarly p(E) is given as the fraction of people in the database that are En-
glish. What about p(x|S)? This is where our density model for x comes in.
In the previous chapter, we looked at a using a Gaussian distribution. Here
we will make a different, very strong conditional independence assumption:

p(x|S) = p(x1|S)p(x2|S) . . . p(x5|S) (3.5)

What this assumption means is that knowing whether or not someone is
Scottish, we don’t need to know anything else to calculate the probability
of their likes and dislikes.

Matlab code to implement Naive Bayes on a small dataset is written below,
where each row of the datasets represents a (row) vector of attributes of the
form equation (3.1).



Learning from Data 1 : c© David Barber 2001,2002 4

% Naive Bayes using Bernoulli Distribution

xE=[0 1 1 1 0 0; % english

0 0 1 1 1 0;

1 1 0 0 0 0;

1 1 0 0 0 1;

1 0 1 0 1 0];

xS=[1 1 1 1 1 1 1; % scottish

0 1 1 1 1 0 0;

0 0 1 0 0 1 1;

1 0 1 1 1 1 0;

1 1 0 0 1 0 0];

pE = size(xE,2)/(size(xE,2) + size(xS,2)); pS =1-pE; % ML class priors pE = p(c=E), pS=p(c=S)

mE = mean(xE’)’; % ML estimates of p(x=1|c=E)

mS = mean(xS’)’; % ML estimates of p(x=1|c=S)

x=[1 0 1 1 0]’; % test point

npE = pE*prod(mE.^x.*(1-mE).^(1-x)); % p(x,c=E)

npS = pS*prod(mS.^x.*(1-mS).^(1-x)); % p(x,c=S)

pxE = npE/(npE+npS) % probability that x is english

Based on the training data in the code above, we have the following :
p(x1 = 1|E) = 1/2,p(x2 = 1|E) = 1/2,p(x3 = 1|E) = 1/3,p(x4 = 1|E) =
1/2,p(x5 = 1|E) = 1/2, p(x1 = 1|S) = 1,p(x2 = 1|S) = 4/7,p(x3 = 1|S) =
3/7,p(x4 = 1|S) = 5/7,p(x5 = 1|S) = 3/7 and the prior probabilities are
p(S) = 7/13 and p(E) = 6/13.

For x∗ = (1, 0, 1, 1, 0)T , we get

p(S|x*) =
1 × 3

7
× 3

7
× 5

7
× 4

7
× 7

13

1 × 3

7
× 3

7
× 5

7
× 4

7
× 7

13
+ 1

2
× 1

2
× 1

3
× 1

2
× 1

2
× 6

13

(3.6)

which is 0.8076. Since this is greater than 0.5, we would classify this person
as being Scottish.

3.1 Further Issues

Consider trying to classify the vector x = (0, 1, 1, 1, 1)T . In the training
data, all Scottish people say they like shortbread. This means that p(x, S) =
0, and hence that p(S|x) = 0. This demonstrates a difficulty with sparse
data – very extreme class probabilities can be made. One way to ameliorate
this situation is to smooth the probabilities in some way, for example by
adding a certain small number M to the frequency counts of each class:

p(xi = 1|c) =
number of times xi = 1 for class c + M

number of times xi = 1 for class c + M + number of times xi = 0 for class c + M
(3.7)

This ensures that there are no zero probabilities in the model.

3.2 Gaussians

Fitting continuous data is also straightforward using Naive Bayes. For
example, if we were to model each attributes distribution as a Gaussian,
p(xi|c) = N(µi, σi), this would be exactly equivalent to using the condi-
tional Gaussian density estimator in the previous chapter by replacing the
covariance matrix with all elements zero except for those on the diagonal.



Learning from Data 1 : c© David Barber 2001,2002 5

3.3 Text Classification

Naive Bayes has been often applied to classify documents in classes. We will
outline here how this is done. Refer to a computational linguistics course
for details of how exactly to do this.

Consider a set of documents about politics, and a set about sport. We search
through all documents to find the, say 100 most commonly occuring words.
Each document is then represented by a 100 dimensional vector representingBag of words
the number of times that each of the words occurs in that document – the so
called ‘bag of words’ representation (this is clearly a very crude assumption
since it does not take into account the order of the words). We then fit a
Naive Bayes model by fitting a distribution of the number of occurrences of
each word for all the documents of, first sport, and then politics. This then
completes the model.

The reason Naive Bayes may be able to classify documents reasonably well
in this way is that the conditional independence assumption is not so silly :
if we know people are talking about politics, this perhaps is almost sufficient
information to specify what kinds of other words they will be using – we
don’t need to know anything else. (Of course, if you want ultimately a more
powerful text classifier, you need to relax this assumption).

4 Pitfalls with Naive Bayes

So far we have described how to implement Naive Bayes for the case of
binary attributes and also for the case of Gaussian continuous attributes.
However, very often, the software that people seem to commonly use requires
that the data is in the form of binary attributes. It is in the transformation
of non-binary data to a binary form that a common mistake occurs.

Consider the following attribute : age. In a survey, a person’s age is marked
down using the variable a ∈ 1, 2, 3. a = 1 means the person is between 0
and 10 years old, a = 2 means the person is between 10 and 20 years old,
a = 3 means the person is older than 20. Perhaps there would be other
attributes for the data, so that each data entry is a vector of two variables
(a, b)T .

One way to transform the variable a into a binary representation would be1-of-M encoding
to use three binary variables (a1, a2, a3). Thus, (1, 0, 0) represents a = 1,
(0, 1, 0) represents a = 2 and (0, 0, 1) represents a = 3. This is called 1−of−
M coding since only 1 of the binary variables is active in encoding the M
states. The problem here is that this encoding, by construction, means that
the variables a1, a2, a3 are dependent – for example, if we know that a1 = 1,
we know that a2 = 0 and a3 = 0. Regardless of any possible conditioning,
these variables will always remain completely dependent, contrary to the
assumption of Naive Bayes. This mistake, however, is widespread – please
help preserve a little of my sanity by not making the same error. The correct
approach is to simply use variables with many states – the multinomial
rather than binomial distribution. This is straightforward and left as an
exercise for the interested reader.

5 Estimation using Maximum Likelihood : Bernoulli Process

In this section we formally derive how to learn the parameters in a Naive
Bayes model from data. The results are intuitive, and indeed, we have
already made use of them in the previous sections. However, it is instructive
to carry out this procedure and some light can be cast also on the nature of
the decision boundary (at least for the case of binary attributes).

Consider a dataset X = {xµ, µ = 1, . . . , P} of binary attributes. That is
xµ

i ∈ {0, 1}. Each datapoint xµ has an associated class label cµ. Based
upon the class label, we can split the inputs into those that belong to each
class : Xc = {x|x is in class c}. We will consider here only the case of



Learning from Data 1 : c© David Barber 2001,2002 6

two classes (this is called a Bernoulli process – the case of more classes is
also straightforward and called the multinomial process). Let the number
of datapoints from class c = 0 be n0 and the number from class c = 1 be
n1.

For each class of the two classes, we then need to estimate the values
p(xi = 1|c) ≡ θc

i . (The other probability, p(xi = 0|c) is simply given from
the normalisation requirement, p(xi = 0|c) = 1 − p(xi = 1|c) = 1 − θc

i ).
Using the standard assumption that the data is generated identically and
independently, the likelihood of the model generating the dataset Xc (the
data X belonging to class c) is

p(Xc) =
∏

µ from class c

p(xµ|c) (5.1)

Using our conditional independence assumption

p(x|c) =
∏

i

p(xi|c) =
∏

i

(θc
i )

xi(1 − θc
i )

1−xi (5.2)

(remember that in each term in the above expression, xi is either 0 or 1
and hence, for each i term in the product, only one of the two factors will
contribute, contributing a factor θc

i if xi = 1 and 1 − θc
i if xi = 0). Putting

this all together, we can find the log likelihood

L(θc) =
∑

i,µ

xµ
i log θc

i + (1 − xµ
i ) log(1 − θc

i ) (5.3)

Optimising with respect to θc
i ≡ p(xi = 1|c) (differentiate with respect to

θc
i and equate to zero) gives

p(xi = 1|c) =
number of times xi = 1 for class c

(number of times xi = 1 for class c) + (number of times xi = 0 for class c)
(5.4)

A similar Maximum Likelihood argument gives the intuitive result:

p(c) =
number of times class c occurs

total number of data points
(5.5)

5.1 Classification Boundary

If we just wish to find the most likely class for a new point x, we can compare
the log probabilities, classifying x∗ as class 1 if

log p(c = 1|x∗) > log p(c = 0|x∗) (5.6)

Using the definition of the classifier, this is equivalent to (since the normal-
isation constant − log p(x∗) can be dropped from both sides)
∑

i

log p(x∗

i |c = 1) + log p(c = 1) >
∑

i

log p(x∗

i |c = 0) + log p(c = 0) (5.7)

Using the binary encoding xi ∈ {0, 1}, this is : classify x∗ as class 1 if

∑

i

{

x∗

i log θ1

i + (1 − x∗

i ) log(1 − θ1

i )
}

+ log p(c = 1) >
∑

i

{

x∗

i log θ0

i + (1 − x∗

i ) log(1 − θ0

i )
}

+ log p(c = 0)

(5.8)

Note that this decision rule can be expressed in the form : classify x∗ as
class 1 if

∑

i wix
∗

i +a > 0 for some suitable choice of weights wi and constant
a (the reader is invited to find the explicit values of these weights). The
interpretation of this is that w specifies a hyperplane in the x space and
x∗ is classified as a 1 if it lies on one side of the hyperplane. We shall talk
about other such “linear” classifiers in a later chapter.


