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" An Introduction to Hidden

Markov Models

The basic theory of Markov chains has been known to
mathematicians and engineers for close to 80 years, but it is
only in the past decade that it has been applied explicitly to
problems in speech processing. One of the major reasons why
speech models, based on Markoy chains, have not been devel-
oped until recently was the fack of a method for optimizing
the parameters of the Markov model to match observed signal
patterns. Such a method was proposed in the late 1960’s and
was immediately applied to speech processing in several re-
search institutions. Continued refinements in the theory and
implementation of Markov modelling techniques have greatly
enhanced the method, lead ing to a wide range of applications
of these models. It is the purpose of this tutorial paper to
give an introduction to the theory of Markov models, and to
illustrate how they have been applied to problems in speech
recognition.

INTRODUCTION

ASSUME YOU ARE GIVEN the following problem. A

real world process produces a sequence of observable
symbols. The symbols could be discrete (outcomes of coin
tossing experiments, characters from a finite alphabet,
quantized vectors from a codebook, etc.) or continuous
(speech samples, autocorrelation vectors, vectors of linear
prediction coefficients, etc.). Your job is to build a signal
model that explains and characterizes the occurrence of
the observed symbols. If such a signal model is obtain-
able, it then can be used later to identify or recognize
other sequences of observations.

In attacking such a problem, some fundamental deci-
sions, guided by signal and system theory, must be made.
For example, one must decide on the form of the model,
linear or non-linear, time-varying or time-invariant, deter-
ministic or stochastic, Depending on these decisions, as
well as other signal processing considerations, several
possible signal models can be constructed,

To fix ideas, consider modelling a pure sinewave. If we
have reason to believe that the observed symbols are from
a pure sinewave, then all that would need to be measured
is the amplitude, frequency and perhaps phase of the sine-
wave and an exact model, which explains the observed
symbals, would result,
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Consider next a somewhat more complicated signal-
namely a sinewave imbedded in noise. The noise compo-
nents of the signal make the modelling problem more
complicated because in order to propetly estimate the
sinewave parameters (amplitude, frequency, phase)
one has to take into account the characteristics of the
noise component. . ’

In the above examples, we have assumed the sinewave
part of the signal was stationary-i.e. not time varying. This
may not be a realistic assumption. If, for example, the
unknown process produces a sinewave with varying am-
plitude, then clearly a non-linear model, e.g. amplitude-
modulation, may be more appropriate. Similarly, if we
assume that the frequency, instead of the amplitude, of
the sinewave is changing, a frequency-modulation model
might be most appropriate.

Linear system models

The concepts behind the above examples have been
well studied in classical communication theory. The vari-
ety and types of real world processes, however, does not
stop here. Linear system models, which model the ob-
served symbols as the output of 4 linear system excited by
an apprppriate source, form another important class of
processes for signal modeling and have proven useful for
a wide variety of applications. For example, “short time”
segments of speech signals can be effectively madeled as
the output of an all-pole filter excited by appropriate
sources with essentially a flat spectral envelope. The signal
modeling technique, in this case, thus involves deter-
mination of the linear filter coefficients and, in some
cases, the excitation parameters. Obviously, spectral analy-
ses of other kinds also fall within this category.

One can further incorporate temporal variations of the
signal into the linear system model by alfowing the filter
coefficients, or the excitation parameters, to change with
time. In fact, many real world processes cannot be mean-
ingfully modeled without considering such temporal
variation. Speech signals are one example of such pro-
cesses. There are several ways to address the problem of
modeling temporal variation of a signal.

As mentioned above, within a° “short time” period, ~

some physical signals, such as speech, can be effectively
modeled by a simpie linear time-invariant system with the,
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& appropriate excitation, The easiest way then to address the
? time-varying nature of the process is to view it as a direct
¢ concatenation of these smaller “short time” segments,
- each such segment being individually represented by a
" linear system model. In other words, the overall model is

a synchronous sequence of symbols where each of the

symbols is a linear system model répresenting a short seg-
ment of the process. In a sense this type of approach
models the observed signal using representative tokens of
the signal itself (or some suitably averaged set of such
signals if we have muitiple observations).
Time-varying processes

Modeiing time-varying processes with the above ap-
proach assumes that every such short-time segment of
observation is a unit with a prechosen duration. In gen-
eral, however, there doesn‘t exist a precise procedure
to- decide what the unit duration should be so that both
the time-invariant assumption holds, and the short-time

linear system models (as welf as concatenation of the mod- -

els) are meaningful. In most physical systems, the duration
of a short-time segment is determined empirically. In
many processes, of course, one would neither expect the
properties of the process to change synchronously with
every unit analysis duration, nor observe drastic changes
from each unit to the next except at certain instances.
Making no further assumptions about the relationship be-
tween adjacent short-time models, and treating temporal
varfations, small or large, as “typical” phenomena in the
observed signal, are key features in the above direct con-
catenation technique. This template approach to signal

above approach, while useful, may not be the most effi-

world processes seem to manifest a rather sequentially
changing behavior: the properties of the process are usy-
ally held pretty steadily, except for minor fluctuations,
for a certain period of time (or a number of the above-
mentioned duration units}, and then, at certain instances,
change (gradually or rapidly) to another set of properties,
The Opportunity for more efficient modeling can be ex-
ploited if we can first identify these periods of rather
steadily behavior, and then are willing to assume that the
temporal variations within each of these steady periods
are, in a sense, statistical. A more efficient representation
May then be obtained by using a common short time
model for each of the steady, or well-behaved parts of the
signal, along with some characterization of how one
such period evolves to the next. This is how hidden
Markov models {HMM) come about. Clearly, three prob-
lems have to be ‘addressed: 1) how these steadily or dis-

den Markov models successfully treat these problems un.
der a probabilistic or statistical framework.

it is thus the purpose of this Paper to explain what a
hidden Markov model is, why it is appropriate for certain
types of problems, and how it can be used in practice. In
the next section, we illustrate hidden Markov models via
some simple coin toss examples and outline the three
fundamental problems associated with the modeling tech-
nique. We then discuss how these problems can be solved
in Section 1il. We will not direct our general discussion to
any one particular problem, but at the end of this paper we
illustrate how HMM’s are used via a couple of examples in
speech recognition,

DEFINITION OF A HIDDEN MARKOV MODEL

An HMM is a doubly stochastic process with an under-
lying stochastic process that is not observable (it is hid-
den), but can only be observed through another set of
stochastic processes that Produce the sequence of ob-
served symbols. We illustrate HMM's with the following
coin toss example.

Coin toss example

To understand the concept of the HMM, consider the
following simplified example. You are in a room with a
barrier (e.g., a curtain) through which you cannot see
what s happening. On the other side of the barrier is
another person who is performing a coin (or multiple
coin) tossing expetiment. The other person will not telf
you anything about what he is doing exactly; he will only
tell you the resuit of each coin flip. Thus a sequence of
hidden coin tossing experiments is performed, and you
only observe the results of the coin tosses, i.e.

O=%% IxITTH%-..5

where ¥ stands for heads and J stands for tails.

Given the above experiment, the problem is how do we
build an HMM to explain the observed sequence of heads
and fails. One possible model is shown in Fig. 1a. We call
this the “1-fair coin” model. There are two states in the
model, but each state is uniquely associated with either
heads (state 1) or tails (state 2). Hence this model is not
hidden because the observation sequence uniquely de-
fines the state. The model represents a “fair coin” because
the probability of generating a head (or a tail) following a
head (or a tail) is 0.5; hence there is no bias on the current
observation. Thisis a degenerate example and shows how
independent trials, like tossing of a fair coin, can be inter-
preted as a set of sequential events, Of course, if the
person behind the barrier is, in fact, tossing a single fair
coin, this model should explain the outcomes very well.

A second possible HMM for explaining the observed
sequence of coin toss outcomes is given in Fig. 1b. We cali
this model the “2-fair coin” model. There are again 2 states
in the model, but nejther State is uniquely associated with
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Figure 1. Models which can be used to explain the

results of hidden coin tossing experiments. The sim-
plest model, shown in part (a), consists of a single fair
coin with the outcome heads corresponding to one
state and tails to the other state. The madel of part (b)
carresponds to tossing two fair (unbiased) coins, with
the first coin being used in state 1 and the second cain
being used in state 2. An independent “fair” coin is
used to decide which of the other two fair coins is
flipped at each trial. The model of part (c) corresponds
Lo tossing two biased coins, with the first cain being
heavily biased towards heads, and the second coin
heavily biased towards tails. Again a “fair” coin is used
to decide which biased coin is tossed at each trial,
+  Finally the model of part d corresponds to the case of
;3 biased coins being used.

sither heads or tails. The probabilities of heads (or tails) in
2ither state is 0.5. Also the probability of leaving (or re-
maining in) either state is 0.5. Thus, in this case, we can
1ssociate each state with a fair (unbiased) coin. Although
he probabilities associated with remaining in, or ieaving,
sither of the two states are all 0.5, a little thought should
‘onvince the reader that the statistics of the observable
utput sequences of the 2-fair coins model are indepen-
fent of the state transitions. The reason for this is that this

-
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model is hidden (i.e. we cannot know exactly which fajr,

coin (state) led to the observed heads or tails at each ob.’

- servation), but is essentially indistinguishable (in a statisti.

cal sense) from the 1-fair coin model of Fig. 1a. :

Figures1cand 1d show two more possible HMM’s which:
can account for the observed sequence of heads and tails,
The model of Fig. 1c, which we call the 2-biased coins
model, has two states (corresponding to two different
coins). In state 1, the coin is biased strongly towards
heads. In state 2, the coin is biased strongly towards tails,
The state transition probabilities are all equal to 0.5. This
2-biased coins model is a hidden Markoy model which
is distinguishable from the two previously discussed
models. Interestingly, the reader should be able to con-
vince himself that the fong time statistics (e.g. average
number of heads or tails) of the observation sequences
from the HMM of Fig. 1c are the same as those from the
models of Figs. 1a and 1b. This model is very appropriate
if what is happening behind the barrier is as follows, The
person has three coins, one fair and the other two biased
according to the description in Fig. Tc. The two biased
coins are associated with the two faces of the fair coin
respectively. To report the outcome of every mysterious
coin flip, the person behind the barrier first flips the fair
coin to decide which biased coin to use, and then flips the
chosen biased coin to obtain the result. With this model,
we thus are able to look into and explain the above subtle
characteristic changes (i.e. switching the biased coins),

The model of Fig. 1d, which we call the 3-biased coins
mode!, has three states (corresponding to three different
coins). In state 1 the coin is biased slightly towards heads;
in state 2 the coin is biased strongly toward tails; in state 3
the coin is biased slightly toward tails, We have not speci-
fied values of the state transition probabilities in Fig. 1d;
clearly the behavior of the observation sequences pro-
duced by such a model are strongly dependent on these
transition probabilities. (To convince himself of this, the
reader should consider two extreme cases, namely when
the probability of remaining in state 3 is large (>0.95), or
small (<0.05). Very different sequence statistics wilf result
from these two extremes because of the strong bias of the
coin associated with state 3). As with the 2-biased coin
model, some real scenario behind the barrier, corre-
sponding to such a model can be composed; the reader
should find no difficulty doing this himseif,

There are several important points to be learned from
this discussion of how to model the outputs of the coin
tossing experiment via HMM's. First we note that one of
the most difficult parts of the modeling procedure is to
decide on the size (the number of states) of the model.
Without some a priori information, this decision often is
difficult to make and could involve trial and error before
settling on the most appropriate model size. Although we
stopped at a 3-coin model for the above tlustration, even
this might be too small. How do we decide on how many
coins (states) are really needed in the model? The answer
to this question is related to an even larger question,
namely how do we choose mode parameters (state transi-
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Pr{R)=- Pr(R)= -
Pr (B)=- Pr {(B)= "
Pr (Y)=- Pr(Y)= -«

Figure 2. An urn and ball

with the originally selected urn.

mode! which illustrates the general case of a discrete symbol hidden Markov mode!. Each
of N urns (the N states of the modef) contains a large number of colored balls. The proportion of each colored ball,
in each urn, is different, and is governed by the probability density of colors for each urn, The observations from
the urn and ball mode! consists of announcing the color of the ball drawn at random from a selected urn, replacing
the ball, and then choosing a new urn from which to select a ball according to the state transition density associated

tion probabilities, probabilities of heads and tails in each
state) to optimize the model so that it best explains the
observed outcome sequence. We will try to answer this
guestion in the section on Solutions to the Three HMM
Problems as this is the key to the successful use of HMM’s
for real world problems. A final point concerns the size of
the observation sequence. If we are restricted to a small
finite observation sequence we may not be able to reliably
estimate the optimal model parameters. (Think of the
case of actually using 10 coins but be given a set of
50-100 observations). Hence, in a sense, depending on the
amount of model training data we are given, certain
HMM's may not be statistically, reliably different.

Elements of an HMM

We now explain the elements and the mechanism of the
type of HMM's that we discuss in this paper:

1. There are a finite number, say N, of states in the
model; we shall not rigorously define what a state is but
simply say that within a state the signal possesses some
measurable, distinctive properties.

2. At each clock time, t, a new state is entered based
upon a transition probability distribution which depends
on the previous state (the Markovian property). (Note that
the transition may be such that the process remains in the
previous state.)

3. After each transition is made, an observation output
symbol is produced according to a probability distribution
which depends on the current state. This probability distri-
bution is held fixed for the state regardiess of when and

hoxf« the state is entered. There are thus N such obser- :
vation probability distributions which, of course, repre-

seni random variables or stochastic processes. L
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To fix ideas, fet us consider the “urn and ball” model o
Fig. 2. There are N urns, each filled with a large number o
colored balls. There are M possible colors for each ball
The observation sequence is generated by initially choos
ing one of the N urns {according to an initial probabilit
distribution), selecting a ball from the initial urn, record
ing its color, replacing the ball, and then choosing a nev
urn according to a transition probability distribution assc
ciated with the current urn. Thus a typical observatio
sequence might be:

clock time 1234---T

urn (hidden) state | qsqq1Gz - - - Q-2

RBYY---R

color {observation)

We now formally define the following model noftatic
for a discrete observation HMM:

T = length of the observation sequence (total number «
clock times)

N = number of states (urns) in the model

M = number of observation symbols (colors)

Q = {g+, G2, . - . , G}, states (urns)

V = {va, V2, ..., v} discrete set of possible symbol obse
vations (colors)

A = {a;}, a; = Pr(g;att + 1]g;att), state transition prob
bility distribution

B = {b;(k)}, b;{k) = Pr{vi at t| g att), observation symb
probability distribution in state j

7 = {m}, m = Prig; at t = 1), initial state distribution

Using the model, an observation sequence, O
010, ..., Or, is generated as follows:
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1. Choose aninitial state, i, according to the initial state
distribution, ;

2. Sett =1; .

3. Choose O according to b;(k), the symbol probability
distribution in state i,;

4. Choose i according to {aui.}, fer = 1,2, . ... N,
the state transition probability distribution for state iy;

5. Sett =1t +1; return to step 3 if £ < T: otherwise
terminate the procedure. '

We use the compact notation A = (A, B, #) to represent
an HMM. Specification of an HMM involves choice of the
number of states, N, and the number of discrete symbols
M, (we will briefly discuss continuous density HMM's at
the end of this paper), and specification of the three
probability densities A, 8, and . If we try to specify the
relative importance of the three densities, A, B, and =,
then it should be clear that for most applications 7 is the
least important (this represents initial conditions), and B is
the most important (since it is directly related to the ob-
served symbols). For some problems the distribution A is
also quite important (recall the 3-biased coins models dis-
cussed earlier), whereas for other problems (e.g. isolated
word recognition problems) it is of less importance.

The three problems for HMM’s

Given the form of the HMM discussed in the previous
section, there are three key problems of interest that must
be solved for the model to be useful in real world applica-
tions. These problems are the following:

>roblem 1 —  Given the observation sequence O =
04,0,,...,07, and the model A =
(A, 8,7, how we compute Pr(O|2), the
probability of the observation sequence.

‘roblem 2 —  Given the observation sequence O =
01,04, ...,04 how we choose a state
sequence ! = j;, iy, ....,ir which is opti-
mal in some meaningful sense.

roblem 3 —  How we adjust the model parameters

A = (A, B, m) to maximize Pr(O|A).

Problem 1is the evatuation problem: given amodel and
sequence of observations, how we can compute the
robability that the observed sequence was produced
y the model. We can also view the problem as: given a
iodel and a sequence of observations, how we “score” or
valuate the model. The latter viewpoint is very useful. If
e think of the case in which we have several competing
iodels (e.g. the four modeis of Fig. 1 for the coin tossing
«periment), the solution to problem 1 allows us to
1oose the model which best matches the observations.
Problem 2 is the one in which we attempt to uncover the
dden part of the model, i.e. the state sequence. This
a typical estimation problem. We usually use an opti-
ality criterion to solve this problem as best as possible.
nfortunately, as we will see, there are several possible
timality criteria that can be imposed and hence the
oice of criterion is a strong function of the intended use

)
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for the uncovered state sequence. A typical use of the
recovered state sequence is to learn about the structure of
the model, and to get average statistics, behavior, etc.
within individual states,

Problem 3 is the one in which we attempt to optimize -

the model parameters so as to best describe how the ob-
served sequence comes about. We call this a training se-

quence in this case since it is used to train the model. The {

training problem is the crucial one for most applications
of HMM's since it allows us to optimally adapt model

parameters to observed training data—i.e. to create best °

models for real phenomena.

To fix ideas, consider the following speech recognition
scheme. We want to design an N-state HMM for each word
of a V-word vocabulary. Using vector quantization (VQ)
techniques, we represent the speech signal by a sequence
of VQ codebook symbols derived from an M-word code-
book. Thus we start with a training sequence, for each
vocabulary word, consisting of a number of repetitions of
the spoken word (by one or more talkers). We use the
solution to Problem 3 to optimally get model parameters
for each word model. To develop an understanding of the
physical meaning of the model states, we use the solution
to Problem 2 to segment each of the word training se-

quences into states, and then study the observations oc-

curring in each state. The result of this study may lead to
further improvements on the model. We shall discuss this
in later sections. Finally to do recognition on an unknown
word, we use the solution to Problem T to score each
word model based upon the given test observation se-
quence, and select the word whose word model score is
the highest.

We now present the formal mathematical solutions to
each of the three fundamental problems for HMM's. And,
as we shall see, these three problems may be linked to-
gether under our probabilistic framework.

SOLUTIONS TO THE THREE HMM PROBLEMS

Problem 1

We wish to calculate the probability of the observation
sequence O, given the model A. The most straightforward
way of doing this is through enumerating every possible
state sequence of length T (the number of observations).
For every fixed state sequence ! = isiz- - - i, the proba-
bility of the observation sequence O is Pr(O[1, A), where

Pr(O[1,2) = ba(O)b(0,) - - - bi{O7).

The probability of such a state sequence 1, on the other
hand, is

PI’(I ’ J\.) = Winii@hi * * * Ap_yip -

The joint probability of O and /, i.e., the probability that
O and / occur simultaneously, is simply the product of the
above two terms, Pr(O,/|A) = Pr(O]1, A) Pr(f{A). The
probability of O then is obtained by summing this joint
probability over all possible state sequences:

i.e.
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h possible .states g,
i=1,2, time 1 @) is the probability of
the joint. 010, - O, are observed and the state
stops at g attime t, the product adiay is then the proba-
bility of the joint event that Oy Oy - - O are observed and
aie g is-réached at time t +1 via state g;-at time f.
summing this product over all the N possible states g,
i=1,2,...,N, at time t results in the probability of g; at
time ¢ + T:with all the accompanying previous partial ob-
servations; Orice this is done and g; is known, it s easy to
see that a.,1(j) is obtained by augmenting multiplicatively
the summed quaritity with the probability 5{O¢+1). Finally
step 3 gives the desired calculation of Pr{O|A) as the sum
oi who terminal forward variables a7(i). This is so because
antih = PHOTOp - - O, ir = qi A). .

if we examine the computation involved in the cal-
culation of @i(j), 1<t <T, 1<j <N, we see that it
requires on-the order of N2T calculations, rather than
2TN™ as required by the direct calculation. (Again to be
precise, we need N(N + 1)(T — 1) + N multiplications
and N(N =1)(T — 1) additions.}) For N = 5, T = 100, we

i =< N.At-times

val ue§:§_ of ad )}

ervation sequence
at time ¢t and the
follows:

1. BN =1, 1=<i<N;
2 fort=T~—1,T-2,...,1, 1=<i<N

-

BM=§MNM@'

Step 1 arbitrarily defines (i} to be 1 for all i. Step 2,
which is illustrated in Figure 4, shows that in order to have
been in state g; at time ¢, and to account for the rest of the
observation sequence, you had to make a transition to
every one of the N possible states at time £ + 1, account
for the observation symbol Ot in that state, and then
account for the rest of the observation sequence.

Again the computation of B} for1 <t <T, 1 <7 <N,
requires on the order of N2T calculations, and can be
computed in a lattice structure similar to that of Fig. 3b.

I}

5 \0"1
W

c,f»’fdm

PO = 3 Pe(O},2) Prt|2) oy T

all ¢

E 7Ti1bi1(o1)ai1f2biz(02) Tt air—ﬂrbir(OT)

iz ..., iT

T_he interpretation of the computation in the above equa-
tion is the following. Initially (at time ¢ = T} we are in state
f» with probability 7, and generate the symbol O, with
pr_obability b;,(04). We then make a transition to state i
W_lfh probability a.,,, and generate symbol O, with proba-
bility by(0,). This process continues until we make the last
tia-Hion from state ir—q to state ir with probability air_.ir

Box 1

and generate symbol Or with probability bi{Or).

A little thought should convince the reader that the cal-
culation of Pr(G] ), accurding to its direct definition, in-
volves on the order of 2T - ~ alculations, since at every
time £ =1,2,...,T, there are N possible states to go
through and for each summand about 27 calculations are
required. (To be precise, we need (2T — THNT multi-
plications and N™ — 1 additions.) This calculation is com-
putationally unfeasible, even for small valuesof N and T;
e.g. for N =5, T =100, there are on the order of
2+ 100 » 5 = 1072 computations! Clearly a more efficient
procedure is required to solve problem 1. Such a pro-
cedure exists and is sometimes called the forward-
backward procedure. (See Box 1)
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Figure 3. (a) Mustration of the sequence of opera-
tions required for the computation of the forward vari-
able, a.«1(/). In order to be in state g; at time ¢ + 1,
the system must have been in any previous state g; at
time £, (with probability « {1} and then made a transi-
tion to state g; with probability a;

{b) the implementation of the recursive computation
for the forward variable, a.+ilf), leads to a lattice
structure in which computations of the type shown in
part a are performed for each state, J, and for each
observation, t,

! BEX
B8, (i) By +10j)

Figure 4. lllustration of the sequence of operations
required for the computation of the backward variable,
B:0. In order to be in state g, at time t, the system
would have to be in some state g. at time ¢t + 1, with
prabability 8..,(f), having made a transition (with
probability &,) from state g, to state q.

Problem 2

There are several possible ways of solving Problem 2,
namely finding the optimal state sequence associated with
the given observation sequence, since there are several
possible optimality criteria. One possible optimality cri-
terion is to choose the states, i, which are individually
most likely. This maximizes the expected number of cor-
rect individual states. To implement this solution we de-
fine the variable

ydi) = Pr(l}.= q,l O, A7)

i.e. the probability of being in state q: at time ¢, given the
observation sequence O and the model A. A little thought
should convince the reader that y,(i) is trivially expressed
in terms of the «'s and 8's as

o oDNBF)
ydi) = “PF(O[A)

10
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since ai) accounts for O, Oz, ..., O and state g; att, and
Bdi} accounts for Oy, ..., 05 given state g; at t. The nor-
malization factor, Pr(O|A}, makes (i) a conditional
probability, so that ¥, y(i) = 1.

Using y.(), the individually most likely state, i;, at time
tis

bl
--'

i = argmax[y(i}] 1=t
1=isN

There might be some problems with the above criterion
and solution, however. When there are disallowed
transitions—i.e. a; = 0 for some i and J. the obtained
state sequence may in fact be an impossible state se-
quence. The solution simply determines the most likely

state at every instance without regard to the global trellis

structure, the neighboring (in time) state, and the length
of the observation sequence. It is still useful, though, asin
practice such undesirable situations do not usuatly occur,
and this instantaneous optimality provides insights for a
theoretically tractable parameter smoothing scheme.
The drawback of the above approach points to the ne-
cessity of global constrains, of some type, on the derived
optimal state sequence. Almost trivially, an optimality cri-
terion of this type is to find the single best path (state
sequence) with the highest probability, i.e. to maximize

Pr(O, I/3). A formal technique for finding this single best -

sfate sequence exists and is called the Viterbi algorithm.
{See Box 2)

Problem 2

The third problem is to adjust the model parameters |
(A, B, m) to maximize the probability of the observation |

o



sequence given the model. This is the most difficult of the

.three problems we have discussed. There is no known way
_to solve for a maximum likelihood model analytically.

Therefore an iterative procedure, such as the Baum-Welch
method, or gradient techniques for optimization must be
used. Here we will only discuss the iterative procedure. It
appears that with this procedure, the physical meaning of
various parameter estimates can be easily visualized.

To describe how we (re)estimate HMM parameters, we
first define £, ) as

§t("fj) = Pr(jt = qirit+1 = qjlor ’\)

i.e. the probability of a path being in state g; at time t and
making a transition to state g; at time t + 1, given the
observation sequence and the model. From Fig. 5 it
should be clear that we can write £/, /) as

(47 ,(i)a;;b,-(Ot+1)B t+1 (])
Pr(O|A)

§t(’r’) =

In the above, a.(i) accounts for the first ¢ observations,
ending in state g; at time ¢, the term a;H{O,.) accounts
for the transition to state g; at time ¢ + 1 with the occur-
rence of symbol O, and the term Beeal)) accounts for

] agbi{044 1)
I %] 1}

a, (i}

Figure 5. (llustration of the computatian reguired for
the calculation of the joint event that the system is in
state g; at time ¢, and state g at time ¢ + 1. This
event gccurs with probability « (i} (which accounts for
the path terminating in state g at time ¢, times &; b;
{0¢+4) which accounts for the local transition from
state g}, times B...{/) (which accounts for the path
being in state § at time t + 1 and then being uncon-
strained until the end of the observation sequence).

Box 3

T_bef"_Baum-.Welch-_feestih’:_éjtidh-'formulas ) _
““The reé'sti'mation"fo_rmul'_as for m, A, and B are:

nd LF=yd, 1=isN A i
E:]);_I Box 2 =i . T=1 *
_ Viterbi-algorithm K E? £G.p :=21 7D
me e s . g
The formal steps in the Viterbi algorithm for finding: - LA
the single best state sequence are as follows: 3. bik) = E 7)) Z; %)
Step 1 — Initialization T pvohqlo:%'ﬁ hevgy an o o
e St cley _ The reestimation formula for #; is. trivially the proba- ¥
:'_6_1(’) - 1_7,-b,-(O1),. T<isN . bility of being in state q; at ¢t = 1. The reestimation
o W) =0 o, Lohing Wé formula for a; is the ratio of the expected number of
red L Lo {ib wlo transitions from state g; to g;, divided by the expected |°
ed Step 2=—Recursion el . number of transitions out of state q;. Finally the reest-
se- ‘For2=t=<T7, [ 1 =j= Wh’lk; imation formula for btk) is the ratio of the expected
ol o ) Yf; o ks number of times of being in state j and observing
;]“Z e - 8dg) = Ei):r[ e-1(aglb{ O v twpd\ symbol k divided by the expected number of times of
'gth "s\g;‘f’ ~S5V(j) = aﬁgmﬁxfammaff] y v M ) ?eing in itate i N;:_ite that the summation for bik) is
. =r< M~ ﬁ:’!:" romt=Ttot =1
Su'? Step 3?—,Term§nathn \ WW*% If we define the initial medel as A and the reesti-
o a’l f = P* = max[§{] : \V\ mation model as A, consisting of the above 77;, 3, and
; L =N (5] b;(k), then it can be proven that either:
5 LT = argmax[84{i g L _ .
ne- i ey T = 1. The initial model A defines a critical point of the
ved Step 4—Path (state sequence) backtracking likelthood function, in which case A = A, or
cri- Fort 1T -2.. 1 2. Mo_gél_z\.is:more_ likely in the sence that
tate o ) ' Pr(O fkl>-Pr_(O.._f':\), i.e. we have found another
rize | it = Walifi) model A, from.which the observation sequence is
yest The Viterbi algorithm is similar (without the back- _more 'lrkejy to }?Q'-p.FOdUC_ed‘ _
nm. tracking steps) in implementation to the forward- Therefore, if we iteratively use A in place of A and
backward calculation; however, a maximization over repeat the above reestimation calculation, we then can
Previous states is used in place of the summing proce- improve the probability of O being observed from the
ters dure used previously. Again a trellis structure efficiently model until some limiting point is reached. The result is
ion implements the computation. the estimated model.
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the remainder of the observation sequence. The normal-
ization factor Pr(O |A) provides the proper normalization
for &4, ).

Recall that we have previously defined (/) as the proba-
bility of being in state g; at time ¢, given the observation
sequence and the model; hence we can relate y.(i) to

E&di, j) by summing £, j) over j, giving

Tt(i) = % fz(f,j) .

If we sum (i) over the time index t, we get a quantity
which can be interpreted as the expected (over time) num-
ber of times that state g; is visited, or equivalently, the
expected number of transitions made from state g;, if we
exclude the last moment, 7, in the summation. Similarly,
summation of £{i,/} avert (fromt =1tot =7 — 1) can
be regarded as the expected number of transitions from
state q; to state q;. That is
-1
> vd) = Expected number of transitions
=1 made from g;
=1
E &di, ) = Expected number of transitions
from state q; to state g;

Using the above formulas {and the concept of counting
event occurrences} we can use the Baum-Welch method
to reestimate values of the HMM parameters. (See Box 3}

Summary of results

We have shown how to define an HMM, how to score it
on an observation sequence (Probiem 1), how to make a
best guess as to the hidden state sequence (Problem 2},
and how to optimize model parameters to best match a
given training sequence (Problem 3). In the next section
we discuss some properties of the models, issues involved
in practical implementation, and some special cases of
the B parameters. Finally, in Section V, we illustrate the
application of HMM'’s to a simple speech recognition sys-
tem fo show one possible way of applying the concepts
discussed here.

ISSUES WITH HMM'S

In this section we discuss several issues related to types
of HMM's, issues in implementation, and extensions of
the basic model to more advanced forms. We will not be
rigorous here, but will only give indications of the kinds of
problems people have been concerned with. More detail
on the mathematical aspects are given in the references.

Types of HMM’s

The general HMM we have been dealing with until now
is assumed to have essentially a full state transition matrix,
i.e. transitions can be made from any state in some way to
any other state. Such models are often ergodic in the
sense that any state will be revisited with probability one
and that such revisits are not required to take place at
periodic intervals of time. We show an example of one

12
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Figure 6. lllustration of three distinct types of hidden
Markov models. The model of part (a), calied an ergodic
{or non-absorbing) madel is one in which it is possible to
reach any state from any other state. The model of
part (b, called a left-to-right model, is one with a dis-
tinct temporal structure in which & low numbered
state always precedes a higher numbered state. (Such
maodels are applicable to modeliing time—varying signals
such as speech] The model of part (c) is a paralle! left-
to-right model in which there are several paths through
the states.

such model in Fig. 6a. (Here N = 4 states). For some ap-
plications we are interested in non-ergodic models where
we impose constraints on the state transition matrix. For
example, Figs. 6b and 6c show two examples of non-
ergodic HMM's. For these cases the state transition matrix
is upper triangular (i.e. transitions can only be made to a

state whose index is as large or larger than the index of the

current state). Such models have been called left-to-right
models since the state sequence which produced the ob-

servation sequence must always proceed from the left-
most state to the rightmost state. Such left-to-right models °
inherently impose a temporal order to the HMM since
lower numbered states account for observations occur- -
ring prior to those for higher numbered states. We shall -

see how we use this feature to our advantage in our dis-

cussion of how we apply HMM's to speech recognition. :

o o» = ~ -

- -
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Imp jementation issues

1 the section on Solutions to the Three HMM Prob-
lems, we outlined several simple and straightforward pro-
cedures for working with HMM's. For the most part the

rocedures work exactly as discussed. However there is
at feast one computational issue of significance, and a
couple of practical aspects that must be kept in mind, for
the procedures to be maximally useful.

The computational issue concerns the implementa-
Lion of the forward-backward computation. A quick glance
will convince the reader that both adi) and B.i) tend
1o zero geometrically fast (recall that all probabilities are
less than 1.0). Hence a scaling technique of the 's and
Bs is required to avoid mathematical underfiow. The de-
tails of such scaling procedures are beyond the scope of
this paper.

A second issue concerns the use of 2 finite set of training
data for estimating the HMM parameters. If we look at
the reestimation formulas we see that a parameter will be
set to 0 if there are no occurrences in the training set—i.e.
if a symbol does not occur often enough in the observa-
tion sequence, then the probability for that symbol will
be 0 in some states. If this effect is due to the small size
of the training observation sequence, then special effort
must be made to insure that no HMM parameter becomes
too small. If it is a real effect, then a zero probability
parameter is perfectly reasonable. In any case care must
be taken to guarantee (perhaps via constraints on the

2. Gaussian autoregressive M-component mixture densi-
ties of the form

M
bj(x) = 21 Cjkbik(x)

where
e—B(X; k2

o =

p
8(x; 2) = r0)(0) + 22 rali)esdi} -
=1
5(x; a) is the standard LPC distance between a vector X {of
dimension K) with autocorrelation r,, and an LPC vector a
(of dimension p) with autocorrelation r..

These alternate density functions have been used to
good advantage in several speech recognition systems.

EXAMPLE OF THE USE OF HMM'S —ISOLATED WORD
RECOGNITION

Hidden Markov models have been found to be ex-
tremely useful for ecology, cryptanalysis, and a wide spec-
trum of speech applications. Here we consider the case
of trying to use HMM's to build an isolated word recog-
nizer. Assume we have a vocabulary of V words to be
recognized. We have a training set of L tokens of each
word (spoken by 1 or more talkers), and an independent
testing set. To do speech recognition we perform the fol-
lowing steps:

. First we build an HMM for each word in the vocabulary.

arameter space) that the esti d v . .
P pace) imated HMM parameters ¥ We use the observations from the set of L tokens to esti-

are reasonable.

Finally we point out that all the formulas presented in
this paper for a single observation sequence can be modi-
fied to handle the case of multiple observation sequences.
Hence one could do training of an HMM from a long
single sequence, or from a set of multiple observation
sequences (particularly useful for non-ergodic models).

Special cases of the B parameters

Unti! now we have only considered the case of discrete
svymbol HMM's, i.e. where the observation sequence was
one of a set of M discrete symbols. The modef can readily
be extended to the case where the observations are con-
tinuous symbols, or more generally, continuous vectors,
x. For such a model the b;(k) probability density is replaced
by the continuous density, b{x), 1 < j =< N, where

bx)dx = probability that observation vector, O, lies be-

. tween x and x + dx.
There are several special forms for by(x) which have been
proposed, including:

1. Gaussian M-component mixture densities of the form
M
bix) = kE e N X, pk, Ui
=1
where ¢ is the mixture weight, N is the normal density

i, . .
ant i« and Uy are the mean vector and covariance matrix
associated with state j, mixture k.

mate the optimum parameters for each word, giving
model ¥, for the v vocabulary word, 1< v = V.

2. For each unknown word in the test set, characterized by
observation sequence O = 04, O2,..., Or, and for each
word model, X%, we calculate P, = Pr{O | A according to
the procedure of the section on Solution to the Three
HMM Problems.

3, We choose the word whose model probability is high-
est, i.e.

v* = argmax(P.]
T=y=V

The HMM based recognizer has been applied to several
word recognition tasks using both a discrete symbo! ob-
servation set (VQ codebook symbols), and at least two
continuous observation models. The table below (based
on experiments performed at AT&T Bell Laboratories)
gives some performance characteristics for a speaker in-
dependent system using a vocabulary of 10 digits.

'_.:3 ‘Recognizer: . - Recognition Accuracy (%)

Template Based -~ |-~ I
Using Dynamic Time. | .. 98.2% -

o Warping .

~HMM using i

Discrete Symbol 97.1% -

" HMM using - _‘
Continuous Densities 98.1%

13
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It can be seen that the performance of the HMM with a
continuous observation symbol density performs as well
as the best template based recognizer; the HMM using
discrete symbols performed worse due to the quantiza-
tion distortions in using small codebooks.

We shall see in the following sections how HMM’s ac-
complish the word recognition task and how the above-
menticned salient features affect such a task.

=]

log ENERGY

.
o &

tlogf

L
W
=]

STATE
— N W b

byrageT
FRAME NUMBER

Figure 7. lllustrations of several contours associated
with the use of HMM's for isolated word recognition.
The plot of part a is the log energy contour {i.e. log
energy versus time or frame number) corresponding to
the spoken word /six/. One can readily identify the fric-
ative regions, corresponding to the /s/ sound, at the
beginning and end of the contour, as well as the jow
energy, short, silence region due to the closure for the
transient sound /k/. The plot of part b is the accumu-
lated iog likelihood when “scoring” (using the solution to
problem 1) the observations of the word /six/ against
the HMM for the word /six/ using the Viterbi proce-
dure. Finally the plot of part b is the estimated state
segmentation (again from the Viterbi procedure) of the
observation for a 5 state model.

Markov chain structure

For word recognition where the starting and ending
points of the utterance are approximately known, it is
found to be advantageous to use the above mentioned
left-to-right models, particularly as shown in Fig. 6b. This
is because, for word utterances, the progressive nature
of the state sequence is rather unambiguous and the
number of states needed for each word model is usually
manageable. If the task were to model a long conver-
sational speech signal such a constrained model might be
impractical. :

The meaning of each state can be examined via the state
sequence estimation procedure outlined in the section on
Solutions to the Three HMM Problems. In one of the ex-
amples, 5-state HMM's were used for the digits. Figure 7
shows the estimated state sequence which resulted from
using the Viterbi algorithm to segment an utterance of
the digit “six”. It can be seen that the states correspond
roughly to the sounds in the word six. In particular, one
observes that the sequentially changing characteristics of

14
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the word are appropriately represented. This progressive
change in signal characteristics in each state marks the
effectiveness of the Markov structure with which we have !
atternpted to model the utterance, (In the previous biased :

coin toss example, this would mean that we are able to | -

detect when a different biased coin is used in the toss- :
ing trial).

Matching of state observation density

For the resultant model to be accurate, the estimated
observation density in each state should display some fit
to the given observations. Since the assumed distribu-
tion of the observations within the j*% state, is b{x), a
comparison can be made of the marginal distributions
B{x) Fx=t...x..» against a histogram of the actual obser-
vations assigned to that j* state. Such a comparison is
given in Fig. 8 for a 9-dimensional representation of the
observation vectors. The results of Fig. 8 and Fig. 7 clearly
confirm the goal we set out to accomplish as explained
in the first section: to identify steadily or distinctively
behaving periods, to characterize the sequentially evolv-
ing nature of these periods, and to effectively represent
the signals spanning over these periods, all with good
accuracy.

Durational information

Since the HMM allows us to perform segmentation (us-
ing the solution to problem 2), we can use the measured
state durations for word recognition purposes. Such du-

WORD:. ZERG, STATE |

.254 -0569 0.797

COUNT

223 -0.579 0.272
:u T o i-l:
L : SENEE R,
-043% 0.766 -0483 0.375 44.20 -4z

PARAMETER RANGE

Figure 8. lllustration of comparisons of theoretical
Gaussian-mixture fits and measured histograms for a
8 parameter representation (8 cepstral coefficients |}
and log energy} for state 1 of the word /zero/. It can
be seen that, in some cases, a single Gaussian (with a
diagona! covariance matrix) appears ta provide good
fits to the data (e.g. C5, C8, G7). In other cases {e.g.
C1, C2,C4), a single Gaussian is grossly inadequate
and a mixture density is required.
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rational information is often represented in a normalized
{orm for word models, (since the word boundary is essen-

tially known), in the form:

pl/T) = probability of being in stétej for exactly (I/T}) of
f the word, where T is the number of frames in the
word and [ is the number of frames spent in

state j.

A typical set of histograms of P(//T) for a 5-state model
1or the word “six” is shown in Fig. 9. As seen from the
figure, the first state s generally very brief; the second and
third states have longer duration; the fourth state has a
well-defined peak in the density with an average duration
of about 20 percent of the word and is never skipped over
(i.e. I/T = 0); the final state (the stop plus the fricative)
covers about 50 percent of the word length and is also
always present in the utterances.

It is found that this durational .information is rather
robust under different channel conditions and is quite
useful for word recognition. The main effect appears to be
from the resuftant constraint that certain states must be

: - present for some minimum duration.

Score evaluation

in the section on Solutions to the Three HMM Prob-
lems, we already explained how the forward-backward
procedure works in obtaining the quantity Pr(O|A). This
quantity is the summation of Pr(O, ! | A) over all possible
state sequences-/. Since the Viterbi algorithm efficiently
finds the maximum of Pr(O,/{A) over all /, a question
is then: what is the relationship between Pr(O|A} and
max, Pr(O, I | A}

Interestingly enough, for speech signals and with some
properly chosen model specifications, the dynamic range

DIGIT: St
T T T
STATE 1

ALALlL))d

1 1 1 1 L L

T T T T T T

STATE 2

IRNENNNEN]

1 1 1 I L. 1

T T T T T T

STATE 3

Ji2ii)10)

LI T T T T T

“STATE 4

JLLLLLILS

1 1 3 1 H

a T LIRS T T T 3 T =T
: i A/\ _VSTATE 5
k I L) i 1 I3 e I

HORMALIZED DURATION

ITERETRRT

Figure 8. HHustration of the measured normalized du-
ration density histograms for the 5 states of a hidden
Markov model for the word /six/. The plots show that
State 1 represents a transient state, whereas state 5
{which carresponds to the final fricative /sf), has an
average normalized duration of over 0.5,

of Pr(O, 1]A) is usually very large and max, Pr{O, /| A) is
usually the only significant term in the summation for
Pr(O|A). Therefore, in such cases, either the forward-
backward procedure or the Viterbi algorithm works
equally well in the word recognition task.

Other considerations

HMM's provide a framework based upon which higher
level structures in continuous speech signals may be inte-
grally modelled. Care, however, must be taken in imple-
menting such an extension.

The above left-to-right word models effectively exploit
such a priori information as the word boundaries. Direct
concatenation of the above word model may or may not
be viable for continuous speech recognition, particularly
when the vocabulary is large. Constructing a global HMM
from small HMM’s based upon such units as phonemes,
etc. has been and is still being pursued.

Another consideration relates to the robustness of the
modeling technique. Different assumptions on the form
of observation density, as well as the a priori Markov struc-
ture constraints lead to different levels of robustness in
performing the recognition task. This robustness issue, of
course, is compounded by the various representations of
the short-time speech symbols (spectra). Some represen-
tations may be better characterized as Gaussian mul-
tivariates and some may be less susceptible to channel
fluctuations, speaker variations, and noise contamination
etc. It is yet unknown what the best combination is.

The above considerations in no way discourage the use
of HMM in speech recognition. On the contrary, these
are the main directions that research effort is pointing to
for solving the ultimate recognition problem with HMM?s.
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Cambridge.

From 1962 through 1964 he participated in the cooperative plan in

electrical engineering at Bell Laboratories, Whippany, and Murray ?

Hill, N). He worked on digital circuitry, military communications

problems, and problems in binaural hearing. Presently he is engaged ;
in research on speech recognition and digital signal processing tech- |
niques at Bell Laboratorfes, Murray Hill. He is coauthor of the books

“Theory and Application of Digital Signal Processing”, (Prentice-Hall,
1975}, “Digital Processing of Speech Signals”, (Prentice-Hall, 1978)
and “Multirate Digital Signal Processing”, (Prentice-Hall, 1983).

Dr. Rabiner is a member of Eta Kappa Nu, Sigma Xi, Tau Beta Pi, The

National Academy of Engineering, and a Fellow of both the Acoustical
Society of America and the IEEE. _

Biing-Hwang Juang (5'79-M'81) was born in 1951. He received the
B.Sc. degree in electrical engineering from the Nationaf Taiwan Uni-
versity in 1973 and the M.S¢. and Ph.D. degrees in electrical and

computer engineering from the University of California, Santa

Barbara, in 1979 and 1981, respectively. .

In 1978, he joined the Speech Communications Research Labora-
tory, Santa Barbara, CA, and was involved in research work on vocal
tract modeling. In 1979, he became affiliated with Signal Technology,
Inc., Santa Barbara, CA, where his research work was in the areas of
speech coding and speech interference suppression. Since 1982, he
has been with AT&T Bell Laboratories. His current research interests
include speech recognition, coding and stochastic processes.
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R  Faculty Positions in Digital S\igni!“l"-rocessing R
_Electrical Engineering Department, Rutgers University, Piscataway, NJ -

Applications are'solicited for tenure-track faculty positions in the area of Digital Signal Processing. Qualifications
hould.include a elevant Ph.D. .in Electrical.Engineering, a strong academic record, research.credentials in Digital
) miti at both the undergraduate and graduate level. While positions are
available at the Assistant Professor level,” applicants with outstanding qualifications may beconsidered: for ap-
‘pdintments at the level of Associate‘or Full Professor. It is expected that appointments will begin in'September 1986.
ticular. interest include; but are not limited to: spectral ‘estimation, - medium rate 'speech -
storation paraliel processing; and real number coding. Successful applicants will be'exp '
- the:development of courses and laboratory facilities in the area of their'sp
.- Resumes should be sent to:' Professor Richard Mammone, Rutgers University,
Engineering Department, P.O. Box 909, Piscataway, N.J. 08854.
Rutgers University-is an equal opportunity/affirmative action employer.
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