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Hebbian Learning

Donald Hebb wrote in 1949:

When an axon in cell A is near enough to excite cell B and repeat-

edly and persistently takes part in firing it, some growth process

or metabolic change takes place in one or both cells such that A’s

efficiency in firing B is increased.

Today this growth process is known as Hebbian learning.
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The Hebbian Synapse

A biological system which exhibits Hebbian learning.

∆w1(t) ∝ x(t) y(t) (1)
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The Hebbian Neuron

A computational system which implements Hebbian learning.

Let’s assume a linear unit; experiment shows this is largely sufficient:

V =
∑
j

wjξj = w̄T ξ̄ (2)

ξ1

ξ2

ξ3

V∑
w1

w2

w3

Plain Hebbian learning:

∆w̄ = η V ξ̄ (3)
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Hebbian Learning, Non-zero-mean Data

Recall that ∆w̄ = η V ξ̄ and that V = w̄T ξ̄.

But note that if the initial w̄ points away from the cluster, the dot

product with ξ̄ will be negative, and w̄ will ultimately point in exactly

the opposite direction.

Interpretation awkward ...
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Plain Hebbian Learning, Zero-mean Data

Recall that ∆w̄ = η V ξ̄ and that V = w̄T ξ̄.

In this case, the weight vector will ultimately align itself with the

direction of greatest variance in the data.
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The Direction of Greatest Variance

If the data has zero mean, Hebbian learning will adjust the weight

vector w̄ so as to maximize the variance in the output V .

When projected onto this direction, the data {ξ̄ } will exhibit variance

greater than in any other direction.

This direction is also known as the largest principal component of

the data.
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Locality of Plain Hebbian Learning

Looking at one synapse at a time (from input unit j)

∆wj = η V ξj (4)

This is a local update rule.

The Hebbian synapse, characterized by a weight wj, is modified as

a function of the activity of only the two units it connects.

By contrast, backprop is non-local. The update rule involves the

backpropagation of a distant error signal, computed (potentially

many) layers above it.

This makes Hebbian learning a likely candidate for biological systems.
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Hebbian vs Competitive Learning

Plain Competitive Learning Plain Hebbian Learning

Similarities
Unsupervised training methods (no teacher, no error signal).
Frequently used online .
Strong connection to biological systems.

Linear units: V = w̄T ξ̄

Differences
Exactly one output must be No constraint imposed by
active. neighboring units.
Only winner’s weights updated All weights updated at every
at every epoch. epoch.

∆w̄ = η ξ̄ ∆w̄ = η V ξ̄
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A Consequence of ∆w̄ = η V ξ̄

Let’s look at the update rule Eq 3 given our expression for V in
Eq 2:

∆w̄ = η V ξ̄

= η
(
w̄T ξ̄

)
ξ̄ (inner product)

≡ η
(
ξ̄ ξ̄T

)
w̄ (outer product) (5)

Given a current value of the weight vector w̄, the weight update ∆w̄

will be a function of the outer product of the input pattern with
itself.

Note that learning is incremental; that is, a weight update is per-
formed each time the neuron is exposed to a training pattern ξ̄.

We can compute an expectation for ∆w̄ if we take into account the
distribution over patterns, P (ξ̄ ).
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An Aside:
(
w̄T ξ̄

)
ξ̄ =

(
ξ̄ ξ̄T

)
w̄

(
w̄T ξ̄

)
ξ̄ = (w1ξ1 + w2ξ2 + · · ·+ wNξN)


ξ1
ξ2
...
ξN



=


w1ξ21 + w2ξ1ξ2 + · · · + wNξ1ξN
w1ξ2ξ1 + w2ξ22 + · · · + wNξ2ξN

...
w1ξNξ1 + w2ξNξ2 + · · · + wNξ

2
N



=


ξ21 ξ1ξ2 · · · ξ1ξN
ξ2ξ1 ξ22 · · · ξ2ξN
... ... . . . ...

ξNξ1 ξNξ2 · · · ξ2N



w1

w2
...
wN


=

(
ξ̄ξ̄T
)
w̄

Or just
(
w̄T ξ̄

)
ξ̄ = ξ̄

(
w̄T ξ̄

)
= ξ̄

(
ξ̄T w̄

)
= ξ̄ξ̄T w̄ =

(
ξ̄ξ̄T

)
w̄.
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The Correlation Matrix

Taking the expectation of Eq 5 under the input distribution P (ξ̄):

〈∆w̄〉 = η
〈
ξ̄ ξ̄T

〉
w̄

≡ η C w̄ (6)

where we have defined the correlation matrix as

C ≡
〈
ξ̄ ξ̄T

〉
(7)

=


〈ξ2i 〉 〈ξ1ξ2〉 · · · 〈ξ1ξN〉
〈ξ2ξ1〉 〈ξ22〉 · · · 〈ξ2ξN〉

... ... . . . ...
〈ξNξ1〉 〈ξNξ2〉 · · · 〈ξ2N〉



and N is the number of inputs to our Hebbian neuron.
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More on the Correlation Matrix

Similar to the covariance matrix

Σ =
〈(
ξ̄ − µ̄

) (
ξ̄ − µ̄

)T〉
(8)

C is the second moment of the input distribution about the origin

(Σ is the second moment of the input distribution about the mean)

If µ̄ = 0̄, then C = Σ.

Like Σ, C is symmetric. Symmetry implies that all eigenvalues are

real and all eigenvectors are orthogonal.

Additionally, because C is an outer product, it’s positive-definite.

This means that all eigenvalues are not just real, they’re also all

non-negative.
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The Stability of Hebbian Learning

Recalling Eq 6,

〈∆w̄〉 = η C w̄

From a mathematical perspective, this is a discretized version of a
linear system of coupled first-order differential equations,

dw̄

dt
= C w̄ (9)

whose natural solutions are

w̄(t) = eλt ū (10)

where λ is a scalar and ū is a vector independent of time. If we
wanted to solve this system of equations, we’d still need to solve for
both λ and ū.

There turn out to be multiple pairs {λ, ū}; then w̄(t) is a linear
combination of terms like the one in Eq 10.

Note that if any λi > 0, w̄(t) blows up.

14



Hebbian Learning Blows Up

To see that Eq 10 represents solutions to Eq 9,

C w̄ =
dw̄

dt

C
(
eλt ū

)
=

d

dt

(
eλt ū

)
= λ eλt ū

⇒ C ū = λ ū (11)

So the λi’s are the eigenvalues of the correlation matrix C!

1. C is an outer product ⇒ all λ ≥ 0.

2. From Eq 10, if any λ > 0 then w̄ →∞.

3. The λi’s cannot all be zero (true only for the zero matrix).

So plain Hebbian learning blows up.
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Plain Hebbian Learning: Conclusions

We’ve shown that for zero-mean data, the weight vector aligns itself
with the direction of maximum variance as training continues.

This direction corresponds to the eigenvector of the correlation ma-
trix C with the largest corresponging eigenvalue. If we decompose
the current w̄ in terms of the eigenvectors of C, w̄ =

∑
i αi ūi, then

the expected weight update rule

〈∆w̄〉 = η C w̄

= η C
∑
i

αi ūi

= η
∑
i

αi λi ūi (12)

will move the weight vector w̄ towards eigenvector ūi by a factor
proportional to λi. Over many updates, the eigenvector with the
largest λi will drown out the contributions from the others.

But because of this mechanism, the magnitude of w̄ blows up.
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Stabilizing Hebbian Learning

How to keep w̄ from blowing up?

We could renormalize w̄:

w̄
(τ+1)
∗ = w̄(τ) + ∆w̄(τ) (13)

w̄(τ+1) =
w̄

(τ+1)
∗

‖w̄(τ+1)
∗ ‖

(14)

This ensures that w̄ always has unit length.

But it obliges us to give up our claim that learning is local — every

synapse (wi) must know what every other synapse of the unit is

doing.
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Oja’s Rule

An alternative, suggested by Oja, is to add weight decay.

The weight decay term is proportional to proportional to V 2 (recall

V = w̄T ξ̄ is the (output) activation of our Hebbian neuron).

∆w̄ = η V
(
ξ̄ − V w̄

)
(15)

w̄ approaches unit length, without any additional explicit effort.

But it retains the property that it points in the direction of maximum

variance in the data (the largest principal component).
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Sejnowski’s Hebbian Covariance Rule

∆w̄ = η (V − 〈V 〉)
(
ξ̄ − 〈ξ̄ 〉

)
(16)

Then under the input distribution P (ξ̄),

〈∆w̄〉 = η
〈
(V − 〈V 〉)

(
ξ̄ − 〈ξ̄ 〉

)〉
= η 〈V ξ̄ − V 〈ξ̄ 〉 − ξ̄〈V 〉+ 〈V 〉〈ξ̄ 〉〉
= η

(
〈V ξ̄ 〉 − 〈V 〉〈ξ̄ 〉 − 〈V 〉〈ξ̄ 〉+ 〈V 〉〈ξ̄ 〉

)
= η

(
〈V ξ̄ 〉 − 〈V 〉〈ξ̄ 〉

)
= η

(
〈
(
w̄T ξ̄

)
ξ̄ 〉 − 〈

(
w̄T ξ̄

)
〉〈ξ̄ 〉

)
= η

(
〈ξ̄ξ̄T 〉 − 〈ξ̄〉〈ξ̄T 〉

)
w̄ (17)

Subtracting the mean allows ∆w̄ to be negative, reducing the weight

vector.
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Principal Component Analysis (PCA)

A tool from statistics for data analysis.

Can reveal structure in high-N-dimensional data that is not otherwise

obvious.

Like Hebbian learning, it discovers the direction of maximum vari-

ance in the data. But then in the (N − 1)-dimensional subspace

perpendicular to that direction, it discovers the direction of maxi-

mum remaining variance, and so on for all N .

The result is an ordered sequence of principal components. These

are equivalently the eigenvectors of the correlation matrix C for zero-

mean data, ordered by magnitude of eigenvalue in descending order.

They are mutually orthogonal.
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PCA: Batch Algorithm

Because of this, eigenvalue decomposition is an effective means of

performing principal component analysis, if we can afford to retain

all the data and do the computation offline.

This is typically the case with PCA.

[nData,nDim] = size(xi);

xi0 = xi - ones(nData,1) * mean(xi,1);

C = cov(xi0);

[u,lambda] = eig(C);

21



PCA Decorrelates Data

In producing the N principal components (which are orthogonal),

PCA provides an alternate, complete, orthonormal basis of N-space.

ξ̄ =
N∑
i=1

ξi ēi =
N∑
i=1

ζi ūi (18)

ξ1 ē1 + ξ2 ē2 = ζ1 ū1 + ζ2 ū2 (19)

In this basis, the data are uncorrelated.

ū2
ξ̄

ζ1
ξ2

ē2 ξ̄

ξ1 ē1

ζ2

ū1
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The Karhunen-Loève Transform (KLT)

How do we get the ζi in Eq 18? Recall that the ūi’s are orthogonal:

ūTj ξ̄ = ūTj

N∑
i=1

ζi ūi

=
N∑
i=1

ζi ū
T
j ūi

= ζj (20)

Let’s organize the ūi’s as columns of a square matrix U. Then to

transform all the elements of ξ̄ at once:

ζ̄ =


ζ1
ζ2
...
ζN

 =


· · · ūT1 · · ·
· · · ūT2 · · ·

...
· · · ūTN · · ·


︸ ︷︷ ︸

UT


ξ1
ξ2
...
ξN


︸ ︷︷ ︸

ξ̄

(21)
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PCA: Geometric Interpretation

The Karhunen-Loève transform operates on zero-mean data; it is a

function of the covariance matrix Σ only.

The covariance matrix is a second-order statistic. This makes PCA

a second-order method; it ignores higher-order statistics of the data.

We start with the original covariance matrix in the original orthonor-

mal basis.

PCA applies a set of rotations to the original orthonormal basis,

resulting in another orthonormal basis, such that the off-diagonal

entries of the covariance matrix become zero and the diagonal entries

of the covariance matrix take on the maximum values possible.
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Data Whitening/Sphering

The Karhunen-Loève Transform ζ̄ = UT ξ̄ decorrelates data. This

means that covariance matrix of {ζ̄} is diagonal.

We can additionally ensure the transformed data has unity covari-

ance by scaling each dimension of ζ̄ (the eigenvalues of a diagonal

Σ are the variances) by the inverse of its standard deviation:

ψ̄ =



1√
λ1

0 · · · 0

0 1√
λ2
· · · 0

... ... . . . ...
0 0 · · · 1√

λN


︸ ︷︷ ︸√

Λ−1

UT ξ̄ (22)

Used extensively everywhere. In particular, used as a preprocessing

step when training backprop networks.
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Data Compression with PCA

If we wanted to transmit our original zero-mean dataset {ξ̄}, we

could send the zero-mean, diagonal-covariance dataset {ζ̄} if the

receiver knew the KL transform UT we used to decorrelate it.

Suppose that several, say P , of the eigenvalues were very small, ie.

that the contribution of the corresponding eigenvectors was (almost)

statistically insignificant.

Then we wouldn’t need to send the coefficients ζN−P+1 through ζN
of every datapoint for (almost) perfect reconstruction of the original

datapoint ξ̄.

This results in a compression factor of N−P
N (plus the overhead of

communicating the N ×N transform if necessary).
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PCA with Neural Networks

We’ve seen that Hebbian learning, with appropriate provisions for

preventing blow up, extracts the largest principal component.

Let’s take a look at two different neural network architectures ca-

pable of extracting more of them.

1. Cascading multiple Hebbian neurons.

2. Autoencoder networks (we’ve already seen these before).
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The Hebbian Neuron, Revisited

An alternate diagram of a Hebbian neuron:

ξ1

Σ

V

w1

w2

w3

ξ3

ξ2
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Extracting Multiple Principal Components

Algorithm:

1. Subtract the contribution of the first principal component.

2. Drive the difference into another Hebbian neuron.

3. This extracts the next principal component.

4. Subtract its contribution. Goto step 2.

With N Hebbian neurons, we’ll get all N principal components.

Embodied in Sanger’s rule:

∆wij = η Vi

ξj − i∑
k=1

Vkwkj

 (23)

This is a generalization of Oja’s rule.
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Sanger’s Rule in Action

ξ1

ξ3

ξ2

− − −

−

− −

− −

−

w11 w11

w12

w13 w13

w12

w21

w22

w23 w33

w32

w31w21

w22

w23 w33

w32

w31

1 2 3

V3V2V1
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pcademo

In matlab/pca: pcademo.

Set the flag zeromean = 1 (or, incorrectly, leave zeromean to be zero

for non-zero-mean data).

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

3 epochs, |W1|=1.000, |W2|=0.738, angle=93.59 deg.
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Autoencoder Networks

We’ve already seen another neural network implementation of PCA,

which we trained with backprop. It consisted of exclusively linear

units.

L units

M units

L units

The network tries to reproduce the input in the output, inducing an

short encoding in the hidden layer. This encoding retains the maxi-

mum amount of information about the input in a smaller dimensional

space such that the input can be reconstructed.
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Autoencoder Networks Do PCA

It turns out that the M hidden units extract the first M principal

components.

Autoencoder networks can be used for dimensionality reduction,

compression, etc.

Because all units are linear, there is a single global minimum.

Baldi (1989) has shown that there are also multiple saddle points.
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Cottrell (1988): Image Compression

Applied the autoencoder PCA algorithm

to the compression of an image.

Training data consisted of 8 × 8 randomly

selected patches from anywhere in the

image. Tested on entire image applying it

consecutively to all 8 × 8 non-overlapping

patches.

Used logistic non-linearity in the units; but

claim that although the hidden units do

not compute the principal components, the

space they do compute is spanned by the

16 principal components.
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Cottrell (1988): Results

The original is on the left. The right figure is a reproduction using

8 hidden units and 32 quantization levels in the hidden units. With

16 hidden units and no quantization, it is hard to tell the difference.
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Linsker (1988): Self-Adaptive Feature
Detection in Visual Cortex

Constructed a multi-layered ar-

chitecture with Hebbian neurons

to simulate early processing

stages in the visual system.

Each cell excited by an overly-

ing neighborhood of cells in the

previous layer.

Layer A

Layer B

Layer C

Layer D

ENVIRONMENTAL INPUT (IF ANY)
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Linsker (1988): Modified Hebb Rule

All cells linear, computing:

V = a1 +
∑
j

wj ξj (24)

Update rule:

∆wi = a2V ξi + a3ξi + a4V + a5 (25)

Cells in each layer trained to maturity before training next layer.

Layer A exposed only to white noise, to understand how feature-

analyzing cells could emerge even before birth in mammals.
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Linsker (1988): Findings

Found that cells in Layer B, once matured, compute the local aver-

age of the activity in the overlying region of Layer A.

Due to neighborhood overlap, if one cell’s activity in Layer B happens

to be high, its neighbors’ activities are also high.

In Layer C, center-surround type cells emerge — responding maxi-

mally to a bright spot in layer B surrounded by a dark region, and

vice versa.

In Layer D, orientation-selective cells emerge — responding maxi-

mally to a bright edge against a dark background, and vice versa.
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Linsker (1988): Conclusions

Receptive field map of a computed orientation-selective cell:

This layered construction of feature detectors is collectively due to
each cell’s individual efforts to maximize the variance of its output.
Each cell’s output optimally preserves the information contained in
its set of input activities.
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A Limitation of the Principle of Variance
Maximization

One possibility: when the variance due to noise is high. If used for

dimensionality reduction, may “accidentally” eliminate useful com-

ponents and keep uninformative ones.

ū2

ū1
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A More Serious Limitation

Recall that PCA looks at the covariance matrix only. What if the

data is not well described by the covariance matrix?

The only distribution which is uniquely specified by its covariance

(with the subtracted mean) is the Gaussian distribution. Distribu-

tions which deviate from the Gaussian are poorly described by their

covariances.
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Faithful vs Meaningful Representations

Even with non-Gaussian data, variance maximization leads to the

most faithful representation in a reconstruction error sense (recall

that we trained our autoencoder network using a mean-square error

in an input reconstruction layer).

The mean-square error measure implicitly assumes Gaussianity, since

it penalizes datapoints close to the mean less that those that are

far away.

But it does not in general lead to the most meaningful representa-

tion.

We need to perform gradient descent in some function other than

the reconstruction error.
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A Criterion Stronger than Decorrelation

The way to circumvent these problems is to look for components

which are statistically independent, rather than just uncorrelated.

For statistical independence, we require that

p(ξ1, ξ2, · · · , ξN) =
N∏
i=1

p(ξi) (26)

For uncorrelatedness, all we required was that

〈ξiξj 〉 − 〈ξi 〉〈ξj 〉 = 0 , i 6= j (27)

Independence is a stronger requirement; under independence,

〈g1(ξi)g2(ξj) 〉 − 〈g1(ξi) 〉〈g2(ξj) 〉 = 0 , i 6= j (28)

for any functions g1 and g2.
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Independent Component Analysis (ICA)

Like Principal Component Analysis, except that we’re looking for a
transformation subject to the stronger requirement of independence,
rather than uncorrelatedness.

In general, no analytic solution (like eigenvalue decomposition for
PCA) exists, so ICA is implemented using neural network models.

To do this, we need an architecture and an objective function to
descend/climb in.

Leads to N independent (or as independent as possible) components
in N-dimensional space; they need not be orthogonal.

When are independent components identical to uncorrelated (prin-
cipal) components? When the generative distribution is uniquely
determined by its first and second moments. This is true of only
the Gaussian distribution.
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Neural Network for ICA

Single layer network:

Patterns {ξ̄} are fed into the input layer.

Inputs multiplied by weights in matrix W.

Output logistic (vector notation here):

ȳ =
1

1 + eW
T ξ̄

(29)
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Objective Function for ICA

Want to ensure that the outputs yi are maximally independent.

This is identical to requiring that the mutual information be small.
Or alternately that the joint entropy be large.

H(p) = entropy of distribution p of first
neuron’s output

H(p|q) = conditional entropy

I(p; q) = H(p)−H(q|p)
= H(q)−H(p|q)
= mutual information

Gradient ascent in this objective function is called infomax (we’re
trying to maximize the enclosed area representing information quan-
tities).
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Blind Source Separation (BSS)

The most famous application of ICA.

Have K sources {sk[t]}, and K signals {xk[t]}. Both {sk[t]} and

{xk[t]} are time series (t is a discrete time index).

Each signal is a linear mixture of the sources

xk[t] = Ask[t] + nk[t] (30)

where nk[t] is the noise contribution in the kth signal xk[t], and A is

a mixture matrix.

The problem: given xk[n], determine A and sk[n].
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The Cocktail Party

Want to separate individual voices from a cocktail party. Here’s a

2-speaker equivalent:
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ica1,ica2,ica3

In matlab/pca.

Also go to http://web.media.mit.edu/~paris/ica.html. This page has

links to most of the people around the world working on ICA and

BSS.
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