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Updates

• Now consistent with use of δ as discount (in slides) instead of old β.

Assignment 4: SARSA(λ)

This assignment is a straight forward implementation of the tabular
SARSA(λ) algorithm. The domain is a simple ‘grid world’: an X×Y Carte-
sian grid illustrated by Figure 1. A robot at state (x, y) can move around
the grid using four actions: north (y increasing), south (y decreasing), east
(x increasing), or west (x decreasing). The robot’s task is to move along the
shortest path from a random initial position to the goal position (xg, yg).

We will model some noise in the robot’s movement. Whatever direction
the action specifies, there is a:

• 0.85 probability of moving 1 unit in that direction;

• 0.1 probability of not moving;

• 0.05 probability of moving 2 units in that direction.

If the robot bumps into a wall it should stay in the position where it bumped
into the wall. For example, if the robot is in state (x, 1), and it chooses
to move south, then it has probability 0.85 + 0.05 = 0.9 of ending in state
(x, 0) and probability 0.1 of staying in state (x, 1). These probabilities are
not used by the SARSA(λ) algorithm directly, but they are necessary for
you to construct the simulator which SARSA(λ) needs to generate sample
state/action trajectories.

The reward is 0 for all states except (xg, yg) where the reward is 1. Reach-
ing the goal terminates the episode. The new episode begins with the agent
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Algorithm 1 SARSA(λ).

1: Given:

• SARSA policy Pr[a|s,w]

• δ, λ ∈ [0, 1) (λ may be 1 for episodic tasks)

• Step size α

• Arbitrary starting state s0, and initial action a0 sampled from
Pr[a|s,w]

• e(s, a) = 0

2: for each transition (s, a) → s′, a′ generated according to the MDP and
policy Pr[a|s,w] do

3: Compute d(s, s′) = r(s) + δQ(s′, a′)−Q(s, a)
4: e(s, a)← e(s, a) + 1
5: for all (s̄, ā) do

6: Q(s̄, ā)← Q(s̄, ā) + αd(s, s′)e(s̄, ā)
7: e(s̄, ā)← δλe(s̄, ā)
8: end for

9: s← s′; a← a′

10: end for
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Figure 1: A 7×4 grid world, with the robot located in state (5,3) and the goal
located in state (1,1). One possible shortest route to the goal is illustrated.
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located in a random state (chosen uniformly) excluding the goal state. Don’t
forget to reset the eligibility trace at the end of each episode.

Different levels of exploration and different discount factors will result
in different values, but the greedy policy should be an optimal policy given
sufficient episodes. Don’t get too fancy with policies that reduce exploration
over time. It can be hard to get right and should not impact the optimality
of the final greedy policy.

You can use any reasonably common language, including Matlab. Your
program (or Matlab function) should be called sarsa and expect the follow-
ing parameters in order:

• integers X, Y : size of the grid world;

• integers xg, yg: location of the goal state;

• floating point λ ∈ [0, 1] : SARSA(λ) parameter;

• floating point δ ∈ [0, 1) : discount factor;

• floating point α ∈ [0,∞) : step size;

• integer E : number of episodes to run.

For example,

sarsa 20 20 1 1 0.5 0.95 0.01 1000

means run 1000 episodes of SARSA(0.5) in a 20×20 grid world, with the goal
located at state (1, 1) and a discount factor of δ = 0.95, step size α = 0.01.
Your program should produce some output at the end of each episode as a
progress indicator. After the episode limit is reached your program should
output a line for each state

V(x,y) = v a

where x, y are the state coordinates, v is the value, and a is the greedy
action for that state (which is not necessarily the policy you implemented for
SARSA(λ) to follow). For example

V(0,0) = 0.9025 north

V(0,1) = 0.95 east
...

You should submit source code,1 a Makefile (if necessary), and a text file

1I’ll be running code on a Linux machine.
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called readme.txt containing any extra instructions for running your code
and brief answers to the following questions:

• Which exploration method did you employ?

• The task is episodic so we can compute long-term averages instead of
discounted sums, but what happens if we use discount δ = 1 in this
domain?

• Using this reward function, and given a particular discount factor, what
meaning can we attach to the value of each state?

See http://www-anw.cs.umass.edu/~rich/book/the-book.html for in-
formation about SARSA(λ). Please contact me (Doug) for help or clarifica-
tion. If you are confused, odds are everyone else is as well.
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