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ordering of variable dependencies in the actual network. The program succeeded
in reconstructing the correct Bayesian network structure almost exactly, with the
exception of one incorrectly deleted arc and one incorrectly added arc.
Constraint-based approaches to leaming Bayesian network structure have
also been developed (e.g., Spirtes et al. 1993). These approaches infer indepen-
dence and dependence relationships from the data, and then use these relation-
ships to construct Bayesian networks. Surveys of current approaches to learning
Bayesian networks are provided by Heckerman (1995) and Buntine (1994).

6.12 THE EM ALGORITHM

In many practical learning settings, only a subset of the relevant instance features
might be observable. For example, in training or using the Bayesian belief network
of Figure 6.3, we might have data where only a subset of the network variables
Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup have been
observed. Many approaches have been proposed to handle the problem of learning
in the presence of unobserved variables. As we saw in Chapter 3, if some variable
is sometimes observed and sometimes not, then we can use the cases for which
it has been observed to learn to predict its values when it is not. In this section
we describe the EM algorithm (Dempster et al. 1977), a widely used approach
to learning in the presence of unobserved variables. The EM algorithm can be
used even for variables whose value is never directly observed, provided the
general form of the probability distribution governing these variables is known.
The EM algorithm has been used to train Bayesian belief networks (see Heckerman
1995) as well as radial basis function networks discussed in Section $.4. The EM
algorithm is also the basis for many unsupervised clustering algorithms (e.g.,
Cheeseman et al. 1988), and it is the basis for the widely used Baum-Welch
forward-backward algorithm for learning Partially Observable Markov Models
(Rabiner 1989),

6.12.1 Estimating Means of k£ Gaussians

The easiest way to introduce the EM algorithm is via an example. Consider a
problem in which the data D is a set of instances generated by a probability
distribution that is a mixture of & distinct Normal distributions. This problem
setting is illustrated in Figure 6.4 for the case where k == 2 and where the instances
are the points shown along the x axis. Each instance is generated using a two-step
process. First, one of the ¥ Normal distributions is selected at random. Second,
a single random instance x; is generated according to this selected distribution.
This process is repeated to generate a set of data points as shown in the figure. To
simplify our discussion, we consider the special case where the selection of the
single Normal distribution at each step is based on choosing each with uniform
probability, where each of the k Normal distributions has the same variance o2, and
where o2 is known. The learning task is to output a hypothesis & = {u, ... )
that describes the means of each of the k distributions. We would like to find
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FIGURE 6.4 :
Instances generated by a mixture of two Normal distributions with identical variance o. The instances

are shown by the points along the x axis. If the means of the Normal distributions are unknown, the
EM algorithm can be used to search for their maximum likelihood estimates.

a maximum likelihood hypothesis for these means; that is, a hypothesis # that
maximizes p(D|h).

Note it is easy to calculate the maximum likelihood hypothesis for the mean
of a single Normal distribution given the observed data imstances x1,x2, ..., Xm
drawn from this single distribution. This problem of finding the mean of a single
distribution is just a special case of the problem discussed in Section 6.4, Equa-
tion (6.6), where we showed that the maximum likelihood hypothesis is the one
that minimizes the sum of squared errors over the m training instances. Restating
Equation (6.6) using our current notation, we have

pagr =argmin ¥ (5 — p)’ (6.27)
H i=l

In this case, the sum of squared errors is minimized by the sample mean
1 ni
=— ; 6.28
L = ;x: (6.28)

Our problem here, however, involves a mixture of k different Normal dis-
tributions, and we camnnot observe which instances were generated by which dis-
tribution. Thus, we have a prototypical example of a problem involving hidden
variables. In the example of Figure 6.4, we can think of the full description of
each instance as the triple {x;, z:1, zi2), where x; is the observed value of the ith
instance and where z;; and z;2 indicate which of the two Normal distributions was
used to generate the value x;. In particular, z;; has the value 1 if x; was created by
the jth Normal distribution and 0 otherwise. Here x; is the observed variable in
the description of the instance, and z;; and z;; are hidden variables. If the values
of z;1 and z;2 were observed, we could use Equation (6.27) to solve for the means
w1 and ps. Becanse they are not, we will instead use the EM algorithm.

Applied to our k-means problem the EM algorithm searches for a maximuim
likelihood hypothesis by repeatedly re-estimating the expected values of the hid-
den variables z;; given its current hypothesis {11 ...z), then recalculating the
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:ll)z;xim%m lil_c}t;,lghoocé hypothesis using these expected values for the hidden vari-
8. We will first describe this instance of the EM aleorit

EM algorithm in its general form. orihm, and later state the
Applied to the problem of estimatin i

) e pro g the two means for Figure 6.4. the

EM algoqtl?lp first initializes the hypothesis to 2 = (4, Ha), where 51 and ,u,; arg

arbitrary 1n1t1zf11 values. It then iteratively re-estimates % by repeating the following
two steps until the procedure converges to a stationary value for k.

Step 1: Caiculate the expected value E[z;] of each hidden variable Zij» ASSUming
the current hypothesis # = {141, 12} holds. "

Step 2: Calculate a new maximum likelihood hypothesis A’ = {1, 15}, assuming
the value taken on by cach hidden variable zij 18 its expected value E [zi]

calculated in Step 1. Then replace the h .
. ypothesis 7 = , b
new hypothesis ' = (‘uj],ufz) and iterate. {ey, po) y the

Let us examine how both of these ste i i
ps can be implemented in practice.
Stt?P 1 must caleulate the expected value of each zj. This E[z;] is just tﬁe pr(;:‘r?—
ability that instance x; was generated by the jth Normal distribution

Elz;] = Zp(x = xilu = ;)
Dot PO =300 = 1)

e*ﬁ(xi —p;)%
2~ n—p)?
Zn:] e 272

Thus the first step is implemented b ituti
. y substituting the current val
the observed x; into the above expression. ¢ vees it i) and
In the second step we use the Elz;] cale i i
] ond . i ulated during Step 1 to derive a
newlmamln_um'lﬂ(ehhood hypothesis 7’ = (11> #5). As we will diicuss later, the
maximum likelihood hypothesis in this case is given by ' ’

iy Elzy] x;
ie1 Elz;]

Note this expression is similar to the sample mean from Equati i
used to estimate p for a single Normal dirs)tribution‘ Our ngwat;?grégizfz 3:321::
the Welghte‘d sample mean for yu;, with each instance weighted by the ex ectagio
Elz; ]Ttllllat ltt, was generated by the jth Normal distribution, ’ "
. the above algorithm for estimating the means i
fhsmbutmns illustrates the essence of thi:; EM approaé)li E}Tlft;lxc?ll;:erﬁfhk No(t)hnersl,?:
is 1'136d lo estimate the unobserved variables, and the expected valuesygf these
variables are then used to calculate an improved hypothesis. It can be proved that
on each iteration through this loop, the EM algorithm increases the likelihood

Hj <

- P(Dijh) unless it is at a local maximum, The alpori
. €ss | . orithm thus
maximum likelihood hypothesis for (u;, Hal. ¢ oS to t loed
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6.12.2 General Statement of EM Algorithm

Above we described an EM algorithm for the problem of estimating means of a
mixture of Normal distributions. More generally, the EM algorithm can be applied
in many settings where we wish to estimate some set of parameters 6 that describe
an underlying probability distribution, given only the observed portion of the full
data produced by this distribution. In the above two-means example the parameters
of interest were 8 = (i1, t3), and the full data were the triples {(x;, z:1, zi2) of
which only the x; were observed. In general let X = {x|, vy Xy denote the
observed data in a set of m independently drawn instances, let Z = {z1...., Zm}
denote the unobserved data in these same instances, and let ¥ = X U Z denote
the full data. Note the unobserved Z can be treated as a random variable whose
probability distribution depends on the unknown parameters 6 and on the observed
data X. Similarly, ¥ is a random variable because it is defined in terms of the
random variable Z. In the remainder of this section we describe the general form
of the EM algorithm. We use # to denote the current hypothesized values of the
parameters 8, and 7’ to denote the revised hypothesis that is estimated on each
iteration of the EM algorithm,

The EM algorithm searches for the maximum likelihood hypothesis K by
seeking the #' that maximizes E[ln P(Y|h")]. This expected value is taken over
the probability distribution governing ¥, which is determined by the unknown
parameters 6. Let us consider exactly what this expression signifies. First, P(¥|h")
is the likelihood of the full data ¥ given hypothesis 4’. It is reasonable that we wish
to find a 4’ that maximizes some function of this quantity. Second, maximizing
the logarithm of this quantity In P(Y|4) also maximizes P(Yik'), as we have
discussed on several occasions already. Third, we introduce the expected value
E[ln P(Y|k')] because the full data ¥ is itself a random variable. Given that
the full data ¥ is a combination of the observed data X and unobserved data
Z, we must average over the possible values of the unobserved Z, weighting
each according to its probability. In other words we take the expected value
Elln P(Y|#')] over the probability distribution governing the random variable Y.
The distribution governing ¥ is determined by the completely known values for
X, plus the distribution governing Z.

What is the probability distribution governing ¥? In general we will not
know this distribution because it is determined by the parameters ¢ that we are
trying to estimate. Therefore, the EM algorithm uses its current hypothesis # in
place of the actual parameters ¢ to estimate the distribution governing Y. Let us
define a function Q(#’|k) that gives E[ln P(¥Y|#)] as a function of #', under the
assumption that & = # and given the observed portion X of the full data Y.

Q') = ENn p(Y [k} |k, X]

We write this function Q in the form Q(#'|k) to indicate that it is defined in part
by the assumption that the current hypothesis £ is equal to 6. In its general form,
the EM algorithm repeats the following two steps until convergence:
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Step 1: Estimation (E) step: Calculate Q(h'|h) using the current hypothesis & and
the observed data X to estimate the probability distribution over ¥.

Q(i'|h) < E[ln P(Y|k')|h, X]

Step 2: Max_imfzation (M) step: Replace hypothesis . by the hypothesis 4’ that
maximizes this @ function.

A <« argmax Q(k'|h)
hﬂ

' When the function Q is continuous, the EM algorithm converges to a sta-
nonary. point of the likelihood function P(¥Y|#'). When this likelihood function
h_as a single maximum, EM will converge to this global maximum likelihood es-
umatfa for A'. Otherwise, it is guaranteed only to converge to a local maximum
In this respect, EM shares some of the same limitations as other optimizatior;

methods such as gradient descent, line search, and conjugate gradient discussed
in Chapter 4.

6.12.3 Derivation of the k Means Algorithm

To 1]_lustrate the general EM algorithm, let us use it to derive the algorithm given in
Sfectlon 6.12.1 for estimating the means of a mixture of k¥ Normal distributions. As
discussed above, the k-means problem is to estimate the parameters 8 = {j1;.. .‘uk)
that define the means of the & Normal distributions. We are given the observed
dat:d X = {{x;)}. The hidden variables Z = {{z;1,..., z;¢)) in this case indicate
which of the & Normal distributions was used to generate x;.

To apply EM we must derive an expression for Q(h|#’) that applies to
our k-means problem. First, let us derive an expression for In p(¥|#"). Note the

probability p(y;|#') of a single instance y; = (x;, zi1, . . .zixy of the full data can
be written

J
PO = plxt, 2t vy zialh') = ¢ 727 Ly i)

o

To verify this note _that only one of the z;; can have the value 1, and all others must
be 0. Therefore, this eXpression gives the probability distribution for x; generated .
by the selected Normal distribution. Given this probability for a single instance

g(ty,-i{"t’), the logarithm of the probability In P(Y|#') for all m instances in the
ata is

mPE W)y =[] pOnl)
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Finally we must take the expected value of this In P(¥|h") over the probability .
distribution governing ¥ or, equivalently, over the distribution governing the un-
observed components z; of Y. Note the above expression for In P(Y|#) is a linear
function of these z;. In general, for any function f(z) that is a linear function of
z, the following equality holds

ELf(]1= f(ELz]D

This general fact about linear functions allows us 1o write

m 1 1 & o
2, (‘“ T 27 L IE TR ﬂ

i=1

Elln P(Y|A")]

1l

|
\ i In 1 R i Elz:: 100 — i)
— /2:,1_0_2 a2 P TR Redd J

To summarize, the function Q(A’|k) for the £ means problem is
Q(h'|h) = i s zk: Elzi/)06 — 1))
— /23_[,0,2 20-2 P 2 i )

where #' = (@], ..., u;) and where Elzy] is calculated based on the current
hypothesis & and observed data X. As discussed eatlier

e—ﬁ(xi—.u-j)z

Elzg] = — — (6.29)

Thus, the first (estimation) step of the EM algorithm defines the QO function
based on the estimated Efz;] terms. The second (maximization) step then finds

the values pf, ..., that maximize this @ function. in the current case
argmax Q(k'|h) = argmax i 1n~—1— — —L i Elzi 1(x; — ,u’-)z
W W o VIma? 207 P Y !
m ok -
= arg;nin Z Z Elz)0u — 1)) (6.30)
=1 =1

Thus, the maximum likelihood hypothesis here minimizes a weighted sum of
squared errors, where the contribution of each instance x; to the error that defines
p; is weighted by E [z;/]. The quantity given by Equation (6.30) is minimized by
setting each w} to the weighted sample mean

2 it Elzyl x
i1 Elzy]

Note that Equations (6.29) and (6.31) define the two steps in the k-means
algorithm described in Section 6.12.1.

e (6.31)



