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Abstract
String kernels which compare the set of
all common substrings between two given
strings have recently been proposed by Vish-
wanathan & Smola (2004). Surprisingly,
these kernels can be computed in linear time
and linear space using annotated suffix trees.
Even though, in theory, the suffix tree based
algorithm requires O(n) space for an n length
string, in practice at least 40n bytes are re-
quired – 20n bytes for storing the suffix tree,
and an additional 20n bytes for the annota-
tion. This large memory requirement cou-
pled with poor locality of memory access, in-
herent due to the use of suffix trees, means
that the performance of the suffix tree based
algorithm deteriorates on large strings. In
this paper, we describe a new linear time
yet space efficient and scalable algorithm for
computing string kernels, based on suffix ar-
rays. Our algorithm is a) faster and easier to
implement, b) on the average requires only
19n bytes of storage, and c) exhibits strong
locality of memory access. We show that our
algorithm can be extended to perform linear
time prediction on a test string, and present
experiments to validate our claims.

1. Introduction
Many problems in machine learning require a data
classification algorithm to work with discrete data.
Common examples include biological sequence analy-
sis and Natural Language Processing (NLP). In these
applications data is given as a string (Durbin et al.,
1998), an annotated sequence, or a combination of a
string and its parse tree (Collins & Duffy, 2001).
In order to apply kernel methods, one defines a mea-
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sure of similarity between discrete structures via a fea-
ture map φ : X → H. Here X is the set of discrete
structures (e.g. the set of all documents), and H is a
Reproducing Kernel Hilbert Space (RKHS). The ker-
nel associated with H satisfies

k(x, x′) = 〈φ(x), φ(x′)〉H

for all x, x′ ∈ X . The success of a kernel method em-
ploying k depends both on the faithful representation
of discrete data and an efficient means of computing k
(Schölkopf & Smola, 2002).
Recent research has focussed on defining meaningful
kernels on strings. Many ideas based on the use of
substrings (Herbrich, 2002), gapped substrings (Lodhi
et al., 2002), k-length substrings (Leslie et al., 2002a),
and mismatch penalties (Leslie et al., 2002b) have been
proposed. In the same vein, Vishwanathan & Smola
(2004) proposed string kernels which use the set of
all substrings of a string as their feature map. In a
nutshell, each string is mapped to a feature vector
which represents all its possible substrings (and their
frequency of occurrence), and the kernel is defined as
a dot product between these feature vectors. By us-
ing different weights for different substrings a family
of kernels can be derived. Even though the number of
common substrings could be quadratic in the size of
the input strings, Vishwanathan & Smola show that
these kernels can be computed in linear time by con-
structing and annotating a suffix tree.
A suffix tree is a data structure which compactly rep-
resents the set of all suffixes of a string. Although,
theoretically, suffix trees can be constructed in linear
time and require linear storage, the best known prac-
tical implementations consume around 20n bytes of
storage for a n length string (Gusfield, 1997). The
algorithm for computing string kernels due to Vish-
wanathan & Smola (2004) stores annotations which
consume up to 20n bytes of additional storage. Suf-
fix trees and their annotated counterparts suffer from
poor locality of memory access, i.e., navigating the
tree requires memory access from different blocks of
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secondary storage. If the entire tree does not fit into
main memory caching schemes, frequently employed
by operating systems to speed up secondary memory
access, are rendered ineffective. Consequently, com-
puting string kernels using suffix trees does not scale
to large problems involving a few Megabytes (MB) of
text.
In this paper, we address the above problem by de-
signing a space efficient and scalable algorithm using
suffix arrays. Suffix arrays are alternatives to suffix
trees which were introduced independently by Manber
& Myers (1993) and Gonnet et al. (1992). The suf-
fix array of a n length string requires only 4n bytes
of storage. Almost all search operations on a suffix
tree can also be performed on a suffix array by incur-
ring an additional O(log(n)) additive or multiplicative
penalty. Recently, Abouelhoda et al. (2004) showed
that an Enhanced Suffix Array (ESA) – which essen-
tially is a suffix array and a set of auxiliary tables
– can be used to replace a suffix tree without incur-
ring the log penalty. The ESA is space efficient, yet
almost all operations on a suffix tree, including top-
down and bottom-up traversal, can also be performed
on the ESA. Furthermore, since the ESA is stored and
accessed as a set of arrays (as opposed to a tree) it en-
joys strong locality of memory access properties. We
extend the ESA in order to compute string kernels in
linear time.
After training a Support Vector Machine (SVM), pre-
diction on a test string x involves computing f(x) =∑

i αiyik(xi, x). Here, xi are the so-called support vec-
tors, yi the corresponding labels, and αi are the coef-
ficients of expansion. Vishwanathan & Smola (2004)
show that if x is of length m, then computing f(x) re-
quires O(m) time (independent of the number of sup-
port vectors or their size). All the support vectors are
concatenated and inserted into a suffix tree, and the
leaves associated with a support vector xi are weighed
with the corresponding αi. Computing f(x) simply
involves parsing the test string through this tree. We
show that our algorithm can also be extended similarly
to perform linear time prediction.

2. Kernel Definition
We begin by introducing some notation. Let A be a
finite set of characters which we call the alphabet, e.g.
A = {A,C,G,T}. Any x ∈ Ak for k = 0, 1, 2 . . . is
called a string. A∗ represents the set of all strings
defined over the alphabet A. The sentinel character
$ /∈ A is lexicographically smaller than all the elements
in A. An enhanced string is a string with the sentinel
character appended at the end.
We use |x| to denote the length of a string x, while

u = x[i : j] with 1 ≤ i ≤ j ≤ |x| denotes a substring of
x between locations i and j (both inclusive). We also
write u v x to denote that u is a substring of x. A
substring of the form x[1 : i] is called the i-th prefix,
while a substring of the form x[i : |x|] is called the i-th
suffix. We use the shorthand x[i] to denote the i-th
suffix of x. These definitions can also be extended to
enhanced strings.
Let numy(x) denote the number of occurrences of y in
x (that is the number of times y occurs as a substring
of x). The family of kernels we will be studying are
defined by (Vishwanathan & Smola, 2004):

k(x, x′) :=
∑

svx,s′vx′

wsδs,s′

=
∑

s∈A∗

ws nums(x) nums(x′). (1)

That is, we count the number of occurrences of every
substring s in both x and x′ and weigh it by ws, where
the latter may be a weight chosen a priori or after
seeing data. Furthermore, kernels on trees can also be
computed by first reducing them to strings and then
computing kernels on the string representation. For
details we refer the reader to Vishwanathan & Smola
(2004).

3. String Kernels with Suffix Trees
In this section, we briefly describe how string kernels
(1) can be computed efficiently using suffix trees. The
aim of our discussion here is to point out the major
steps involved in kernel computation. In the next sec-
tion we will show how these operations can be effi-
ciently performed on a suffix array. Before describing
the algorithm we need to introduce some notation, and
explain a few concepts.
A suffix tree is a compacted trie that stores all suffixes
of a given text string (Gusfield, 1997). Well known lin-
ear time algorithms for constructing suffix trees exist
(see Gusfield, 1997, and references therein).
Given a string x, we construct the suffix tree S(x)
of the enhanced string x$. The presence of the sen-
tinel character $ ensures that every suffix of x$ is
unique. nodes(S(x)) denotes the set of all nodes, while
root(S(x)) denotes the root of S(x) (see figure 1).
Each edge of S(x) is associated with a substring of
x$. If w denotes the path from the root to a node we
label the node as w. For a node w, Tw denotes the
subtree rooted at that node, lvs(w) denotes the num-
ber of leaves of Tw, and parent(w) denotes its parent
node. Let a be a character and aw be a node in S(x).
An auxiliary unlabeled edge aw → w is called a suf-
fix link (see figure 1). Every internal node in S(x)
has a suffix link (Giegerich & Kurtz, 1997, Proposi-
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tion 2.9). In fact, many suffix tree building algorithms
routinely construct the suffix links as an intermedi-
ate step towards constructing the suffix tree. We de-
note by words(S(x)) the set of all non-empty strings w
such that wu ∈ nodes(S(x)) for some (possibly empty)
string u. This means that words(S(x)) is the set of all
possible substrings of x$ (Giegerich & Kurtz, 1997).
For every t ∈ words(S(x)) we define ceil(t) as the node

Figure 1. Figure denotes the suffix tree of the string
aaabbabb$. The dotted lines (e.g. from node abb to bb)
represent suffix links. The floor and ceil nodes correspond-
ing to the string ab are also depicted. Observe that bb
occurs twice in the string aaabbabb$, and the subtree Tbb

has two leaves.

w such that w = tu and u is the shortest (possibly
empty) substring such that w ∈ nodes(S(x)). That
is, it is the immediate next node on the path lead-
ing up to t in S(x) (see figure 1). Finally, for every
t ∈ words(S(x)) we define floor(t) as the node w such
that t = wu and u is the shortest non-empty substring
such that w ∈ nodes(S(x)). That is, it is the last
node encountered on the path leading up to t in S(x)
(see figure 1). For an internal node w it is clear that
ceil(w) = w, and floor(w) is the parent of w. For any
t ∈ words(S(x)), lvs(ceil(t)) gives us the number of
occurrence of t in x$ (Giegerich & Kurtz, 1997).
Given strings x, y the matching statistics of y with
respect to x are given by v ∈ N|y| and c, c′ ∈
nodes(S(x))|y|. If we use vi, ci, c′i to denote the
i-th component of v, c and c′ respectively and de-
fine v̂i := i + vi − 1, then vi, is the length of the
longest substring of x matching a prefix of y[i] while
ci = ceil(y[i : v̂i]), and c′i = floor(y[i : v̂i]) (see table 1).
Every substring which occurs in both x and y must
be a prefix of y[i : v̂i] for some i. To see this consider
an arbitrary substring z which occurs in both x and
y. This implies that z = y[i : j] for some i and j. But
the longest prefix of y[i] which matches a substring in
x is y[i : v̂i]. Therefore, j ≤ v̂i and z is a prefix of y[i :

Table 1. The matching statistics of string aabbb with re-
spect to aaabbabb$ is depicted here. The floor and the
ceiling nodes are with respect to the suffix tree depicted in
figure 1. Observe, for instance, that for i = 2, the string
abb is the largest prefix of abbb which occurs as a substring
of aaabbabb$.

i 1 2 3 4 5
y[i : v̂i] aabb abb bb bb b
vi 4 3 2 2 1

ci aabbabb$ abb bb bb b

c′i aa a b b root

v̂i]. Furthermore, by reading off lvs(ceil(z)) in S(x)
we can determine the number of occurrences of the
substring z in x. The following theorem exploits both
these observations in order to compute string kernels
efficiently.

Theorem 1 (Vishwanathan & Smola (2004))
Let x and y be strings, and v, c, and c′ be the matching
statistics of y with respect to x. For any t = uv with
u = floor(t) in S(x) assume that

W (x, t) =
∑

z∈prefix(v)

wuz − wu (2)

can be computed in constant time. Then the kernel (1)
can be computed in O(|x|+ |y|) time as

k(x, y) =
|y|∑
i=1

[val(c′i) + lvs(ci) ·W (x, y[i : v̂i])] (3)

where

val(t) := val(parent(t)) + lvs(t) ·W (x, t), (4)

and val(root) := 0.

A large number of weight functions satisfy the require-
ment that (2) can be computed in constant time. See
section 5.4 of Vishwanathan & Smola (2004) for more
details. For our purposes, we simply assume that given
any substring of x the function W (x, ·) returns the as-
sociated weight in constant time.
Efficient computation of string kernels requires us to
pre-compute and store val(c′i) for each internal node of
the suffix tree. Note that the val of a node is simply
the val of its parent plus the contributions due to all
strings which end on the edge connecting the node to
its parent. This can be computed in constant time by
virtue of Equations (2) and (4). In order to annotate
each internal node of S(x) with its val we simply per-
form a top down traversal of the tree and propagate
val from parent to child nodes.
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The final task that remains is to compute matching
statistics of y with respect to x. Surprisingly, this can
be done in linear time by using a suffix tree (Chang &
Lawler, 1994). The key observation is that if y[i : v̂i] is
a substring of x then y[i + 1 : v̂i] is also a substring of
x, and therefore vi+1 ≥ vi−1. Besides this, the largest
prefix of y[i + 1] which matches a substring of x must
have y[i + 1 : v̂i] as a prefix. In other words, once we
have parsed the string y up to a certain position we
never need to revisit the parsed positions again.
Briefly, the matching statistics algorithm of Chang &
Lawler (1994) works as follows: Given c′i the algorithm
first finds the intermediate node p′i+1 := floor(y[i + 1 :
v̂i]). This is done by walking down the suffix link of
c′i and then walking down the edges corresponding to
the remaining portion of y[i+1 : v̂i]. Now, to find c′i+1

the algorithm searches for the longest matching prefix
of y[v̂i + 1] in S(x), starting from node p′i+1. v1, c1,
and c′1 are found by simply walking down S(x) to find
the longest prefix of y which matches a substring of x.
Given the suffix tree S(x), the total time complexity
of the algorithm is O(|y|).
In summary, two main suffix tree operations are re-
quired to compute string kernels, a top down traversal
for annotation and a suffix link traversal for computing
matching statistics. We will show in the next section
that both these operations can be performed efficiently
on a suffix array.

4. String Kernels with Suffix Arrays
In this section we describe suffix arrays and show how
string kernels can be computed efficiently using suffix
arrays. Our notation closely follows Abouelhoda et al.
(2004).
The suffix array (Manber & Myers, 1993; Gonnet et al.,
1992) of a string x of length n = |x|, denoted by
suftab, is an array of integers corresponding to the
lexicographically sorted suffixes of x (see table 2). If
n < 232 then each entry of suftab is an integer be-
tween 0 and 232 − 1, and 4n bytes of storage suffice.
In the sequel we always assume that n < 232.
In a suffix tree, the leaves which represent suffixes
of the string, are lexicographically sorted. There-
fore, there is a one-to-one relationship between the
leaves of the suffix tree and the suffix array. In fact,
until recently, linear time algorithms for suffix array
construction constructed a suffix tree, and read off
the sorted suffixes from the leaves (Manber & Myers,
1993). Recently, several linear time direct algorithms
have been proposed, however, in practice, super-linear
algorithms generally tend to be faster and more mem-
ory efficient (Maniscalco & Puglisi, 2005). MSufSort1

1http://www.michael-maniscalco.com/msufsort.htm

due to Maniscalco & Puglisi (2005), which we use in
our experiments, is one of the fastest known practical
implementations.
A suffix array has less structure than a suffix tree,
yet, almost all operations on a suffix tree can also
be performed on a suffix array by incurring an ad-
ditional additive or multiplicative O(log(n)) penalty
(Manber & Myers, 1993). Recently, Abouelhoda et al.
(2004) proposed a data structure which they call the
Enhanced Suffix Array (ESA). By storing extra in-
formation along with the suffix array almost all suf-
fix tree algorithms can be implemented on the ESA
without incurring any additional penalty. In particu-
lar, the ESA stores two extra tables, the lcptab and
childtab. Furthermore, we use a valtab which stores
the annotations required for string kernel computa-
tion. All the three tables are explained below.

Table 2. Suffix array and lcp-table of the string aaabbabb$

suftab[i] suffix lcptab[i]
1 9 $ 0
2 1 aaabbabb$ 0
3 2 aabbabb$ 2
4 6 abb$ 1
5 3 abbabb$ 3
6 8 b$ 0
7 5 babb$ 1
8 7 bb$ 1
9 4 bbabb$ 2

4.1. Longest Common Prefix
The Longest Common Prefix (LCP) of two strings is
the longest prefix which occurs in both the strings.
For example, given strings aabccca and aabaccb their
LCP is aab. The LCP table lcptab is an auxiliary ta-
ble which can be computed in linear time (Manzinni,
2004). It stores the length of the LCP between adja-
cent suffixes in suftab (see table 2). The lcptab plays
a crucial role in our algorithm.
Since lcptab stores integers between 0 and n it can
be stored in 4n bytes. But, in practice, most of the
entries of lcptab are less than 255. We exploit this
observation to store the LCP table in a two stage data
structure. All values less than 255 are stored in a n
byte array, and all values greater than or equal to 255
are looked up from a secondary array. This approach
consumes only slightly more than n bytes on the aver-
age (Abouelhoda et al., 2004).
The LCP of a set of strings is defined as the longest
prefix which occurs in every string of the set. An in-
terval in a suffix tree is defined as a tuple (i, j) with
1 ≤ i < j ≤ n. The LCP of an interval (i, j), denoted

http://www.michael-maniscalco.com/msufsort.htm
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as LCP(i, j), is defined as the LCP of the set of strings
x[suftab[i]], . . . x[suftab[j]]. It is easy to see that the
length of LCP(i, j) is given by mini<k≤j lcptab[k].
There is a close relation between the internal nodes
in a suffix tree, and intervals in a suffix array. To
see this, consider an internal node w in the suffix tree
S(x). Every suffix of x which has w as its prefix is a
leaf of the subtree Tw. Furthermore, the LCP of this
set of suffixes is exactly given by w. Therefore, the
node w is uniquely characterized by this set. Since
the suffix array is sorted lexicographically, the suffixes
in this set occur contiguously in suftab. Let (i, j) be
the largest interval such that LCP(i, j) = w then, we
call (i, j) the w-lcp interval and denote it by w-(i, j) .
Since, LCP(i, j) = |w| we have that lcptab(k) ≥ |w|
for all i < k ≤ j.

4.2. Child Table
Since each internal node of the suffix tree corresponds
to an interval of the suffix array, the parent-child re-
lationship between nodes in the suffix tree is now rep-
resented as a parent-child relationship between inter-
vals of the suffix array. The child table is an auxiliary
array which compactly represents these relationships
(Abouelhoda et al., 2004).
Consider an internal node w of the suffix tree S(x).
To identify the children of w it is sufficient to iden-
tify the subtrees hanging off w. To identify the sub-
trees we need to identify the left-most leaf, right-most
leaf, and all those leaves in Tw whose LCP with their
immediate predecessor is exactly equal to w (see fig-
ure 2). These leaves correspond to indices in the in-
terval w-(i, j) whose lcptab entry is exactly equal to
|w|. If w has k + 1 children, then there are exactly
k such indices denoted by i1, . . . , ik. The child table
conceptually is an array of pointers2. The pointer at i
points to i1, while the pointer at il points to il+1 for
1 ≤ l < k, and the last pointer ik is set to NULL.
In other words, k non-NULL pointers are sufficient to
encode the k children of w. Since there are at most n
internal nodes in S(x) at most 4n bytes of storage are
required. By storing relative indices, and using a two
stage storage scheme analogous to lcptab we reduce
the average storage requirements to n bytes (Abouel-
hoda et al., 2004). Given childtab enumerating the
child intervals can be done via a function getchildren
which requires at most O(| A |) time (i.e., constant
time, since | A | is assumed constant). Furthermore,
one can also compute the label on the edge connecting
w to its parent via a function getedge. Loosely speak-
ing, this function computes the difference in the LCP

2The child table is actually an array of indices. For
clarity of exposition, and with some abuse of terminology,
we describe the entries as pointers.

Figure 2. The node depicted as an unfilled circle is an in-
ternal node w of the suffix tree S(x). The leftmost child of
Tw is labeled N1. The child table entry for this node points
to the leftmost leaf of next subtree (node N2) and so on.
The leftmost leaf of the last subtree (node N3) points to
NULL. Note that the nodes N2 and N3 are the only leaf
nodes in Tw whose LCP with their immediate predecessor
is exactly equal to w.

values of w and its parent (Abouelhoda et al., 2004).

4.3. Storing Values in Internal Nodes
In order to compute the string kernel we need to com-
pute and store val for each internal node of the tree
(see (4)). Since the suffix array does not store the in-
ternal nodes of the suffix tree we need to devise a new
scheme to compute and store these annotations.
valtab is an array of n floats which stores these an-
notations succinctly. Since a float occupies 4 bytes,
valtab requires 4n bytes of storage. First, we need to
associate each internal node of the suffix tree (or the
corresponding interval (i, j) of the suffix array) to an
unique index. Note that we cannot use either i or j
because more than one intervals might have i as their
first index or j as their last index. Instead, we asso-
ciate each internal node with the leftmost leaf of its
second child. Such a node always exists and is unique.
For example, the internal node in figure 2 is associated
with the leaf node N2.
In terms of the suffix array, let w be the internal node
and w-(i, j) be the corresponding w interval. Then,
w is associated with the first index in w-(i, j) whose
lcptab entry is |w|. Since the child table already
stores a pointer to this location, one can write a func-
tion getpos which takes an interval as input and re-
turns this location in constant time.
The algorithm for computing valtab is outlined in
Algorithm 1. Essentially, we perform a breadth first
search and propagate the val from a parent node to
each one of its children. Recall that W (x, ·) is a func-
tion which given a substring of x returns the associated
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weight in constant time.

Algorithm 1 Algorithm for populating valtab

Input: x, suftab, childtab
Initialize: valtab[i]← 0 for all i
Initialize: q.push([1, n])

while q not empty do
next← q.head() and q.pop()
edge← getedge(next)
pos← getpos(next)
valtab[pos]← valtab[pos] + W (x, edge)
childlist← getchildren(next)
for child ∈ childlist do

q.push(child)
childpos← getpos(child)
valtab[childpos]← valtab[pos]

end for
end while

4.4. Suffix Link Table
Implementing the matching statistics algorithm of
Chang & Lawler (1994) requires suffix links. Recall
that suffix links are axillary edges which point from
a node labeled aw to the node labeled w. In a suffix
array the suffix link of the lcp interval aw-(i, j) is the
lcp interval w-(i′, j′). A suffix link table slinktab is
an auxiliary data structure which stores the indices i′

and j′ for each interval (i, j) corresponding to an in-
ternal node of the suffix tree. Since there are at most
n internal nodes we need to store at most 2n indices
which in turn requires 8n bytes of storage. By using a
variant of the Chang & Lawler (1994) algorithm, and
performing a breadth first search one can compute the
slinktab in O(n) time and space. Looking up indices
in this table requires constant time (Abouelhoda et al.,
2004).
An alternative method is to do a simple binary search
on the suffix array. To compute the suffix link of a node
aw, we begin with the interval [1, n] and successively
search for the largest interval whose LCP is exactly
equal to w. This can be done by a binary search and
requires O(|w| log(n)) time. For large texts we use a
bucket table buctab to speed up computations. Given
a number d, we compute a hash function which lexico-
graphically sorts all the strings of length d or less and
associates them to their position in the sorted order.
For each substring z of x such that |z| ≤ d, we com-
pute its hash value, the first index i such that z occurs
as a prefix of x[suftab[i]], and the last index j such
that z occurs as a prefix of x[suftab[j]] 3 and store
this information in buctab. d is chosen such that the

3Strictly speaking, j need not be stored. It can be com-
puted by using the lexicographical neighbor of z which oc-

Table 3. Average storage requirements of suftab and aux-
iliary arrays.

x n
suftab 4n
lcptab n

childtab 4n
valtab 4n
buctab n
lvstab 4n

storage requirements of buctab is less than n bytes. If
|w| ≤ d then we can directly look up the suffix link in-
terval from the bucket table. For |w| > d let u denote
the d length prefix of w. We use buctab to look up
the largest interval (i, j) such that LCP(i, j) = u. Now
it is enough to run the binary search on the interval
(i, j). Typically, |w| is small and j− i� n. Therefore,
this hybrid scheme works well in practice (Abouelhoda
et al., 2004).

4.5. Our Algorithm
Now we are in a position to describe our algorithm for
computing string kernels using suffix arrays. Given a
pair of strings x and y we first construct its suffix ar-
ray suftab and the auxiliary tables lcptab, childtab,
valtab, and buctab. The average storage require-
ments of each of these tables is summarized in table
3. We then run a variant of the (Chang & Lawler,
1994) algorithm on the suffix array (see section 4.7.2
Abouelhoda et al., 2004), and use (3) to compute the
kernel.

5. Linear Time Prediction
Let X̂ = {x1, x2, . . . , xm} denote strings in the training
set, X be the master string obtained by concatenating
the strings in X̂, and K denote the kernel matrix, i.e.,
Kij := k(xi, xj). Given a coefficient vector α ∈ Rm,
computing the j-th entry of Kα entails computing

[Kα]j =
m∑

i=1

αik(xi, xj). (5)

Using (1) we can rewrite [Kα]j as

[Kα]j =
m∑

i=1

∑
svxi

∑
s′vxj

αiwsδs,s′

=
∑
svxi

∑
s′vxj

(
m∑

i=1

αiws

)
δs,s′ . (6)

In (1) a substring s is assigned a weight ws whereas in
(6) the same substring is assigned a weight

∑m
i=1 αiws.

curs in x.



Fast and Space Efficient String Kernels using Suffix Arrays

This suggests the following simple strategy: Every leaf
of S(X), which corresponds to a the suffix of xi is as-
signed a weight αi. All we need to do now is define
lvs(w) of a node w as the sum over the weights of the
leaves in the subtree Tw. The string kernel algorithm
described in Section 3 can be run unchanged to com-
pute Kα in linear time.
To implement this algorithm on a suffix array, we need
to make two changes: construct the enhanced suffix ar-
ray of X, and use an auxiliary array lvstab for storing
the weights on the leaves. This array occupies 4n bytes
of storage.

6. Experiments
To test the efficacy of our algorithm we perform ex-
periments4 using data from project Gutenberg (http:
//www.gutenberg.org/). We randomly sampled 40
books, the first 20 are labeled as corpus X̂ and the
next 20 are labeled corpus Ŷ. All experiments were
run on a Linux machine with 3.6GHz processor and
1GB RAM. For all our kernel computations we use a
constant weight function (see Eq. (5.9) Vishwanathan
& Smola, 2004). In other words, a matching substring
of length l is given weight l.
In our first experiment, we study the effect of increas-
ing pattern sizes on kernel evaluation time. To pro-
duce our fixed length text we concatenate the strings
in X̂ and use the first 8MB. Similarly, we concate-
nate strings in Ŷ and use varying length prefixes as
our pattern. Using two variants of our algorithm we
compute the kernel between the text and the pattern.
The first variant (SA-SL) uses a slinktab and hence
consumes 8n bytes of extra storage, while the second
(SA-NSL) uses the hybrid scheme described in Section
4.4. The kernel evaluation time, averaged over 10 runs,
is plotted in Figure 3(a), and contrasted with the time
required by the suffix tree based algorithm (ST). For
small patterns (size < 10KB) the suffix array based
methods do not exhibit a significant advantage, but as
the size of the pattern increases they tend to exhibit
better scaling behavior. For a pattern of size 4MB
they are almost three orders of magnitude faster, and
for a 8MB pattern the suffix tree based method did
not even finish in reasonable time.
In our second experiment we study the effect of in-
creasing text sizes on kernel evaluation time. To pro-
duce our fixed length pattern we again concatenate
strings in Ŷ and use the first 128KB 5. Increasing
text lengths are produced by concatenating strings in
X̂ and using varying length prefixes. As before, we re-

4http://sml.nicta.com.au/code/sask
5The pattern size was chosen to ensure that the suffix

tree based algorithm finished in reasonable time.

port the kernel evaluation time averaged over 10 runs
for the three algorithms in Figure 3(b). The suffix
tree based algorithm suffers from a high overhead and
is around 70 times slower than our suffix array based
method. While both algorithms seemingly exhibit sim-
ilar scaling behavior, the constants involved are very
different.
Our third experiment studies the effect of the num-
ber of support vectors on the prediction algorithm de-
scribed in Section 5. We use the first 10K verses from
the Bible6(average 145 characters per verse) as our
support vectors, and the book Peter Pan (274KB),
from project Gutenberg, as our pattern. Each sup-
port vector is uniformly given a weight of αi = 1, and
we compute the value of Kα. Besides the suffix tree
and suffix array based methods we also used a direct
method. This method explicitly computes Kα by first
computing the elements of K and then multiplying
them with the vector α. The run-times of all the above
methods are plotted in Figure 3(c). As expected, the
direct method exhibits poor scaling behavior as com-
pared to the suffix tree or suffix array based methods.
The suffix array based methods are two to three orders
of magnitude faster than the suffix tree based meth-
ods. As the number of support vectors increases the
time required to populate lvstab increases. For each
suffix in suftab we need to identify the corresponding
support vector. The slightly worse scaling behavior,
as the number of support vectors increases, can be at-
tributed to this look-up.

7. Outlook and Discussion
We presented a suffix array based algorithm for com-
puting the string kernels. Our algorithm is memory
efficient and scalable as demonstrated empirically. In
particular, on large strings our algorithm is up to three
orders of magnitude faster that the suffix tree based
method. We also showed that our algorithm can be
used to compute the product of the kernel matrix with
an arbitrary coefficient vector in linear time. Sim-
pleSVM (Vishwanathan et al., 2003) is a Quadratic
Programming solver which can exploit this property
to train a SVM on a large text corpus. Future work
will concentrate on studying this link further.
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