
Efficient Pattern Mining based Cryptanalysis
for Privacy-Preserving Record Linkage

Anushka Vidanage, Thilina Ranbaduge, Peter Christen
The Australian National University, Canberra, Australia

{anushka.vidanage, thilina.ranbaduge, peter.christen}@anu.edu.au

Rainer Schnell
University Duisburg-Essen, Germany

rainer.schnell@uni-due.de

Abstract—Privacy-preserving record linkage (PPRL) is the
process of identifying records that correspond to the same
entities across several databases without revealing any sensitive
information about these entities. One popular PPRL technique
is Bloom filter (BF) encoding, with first applications of BF based
PPRL now being employed in real-world linkage applications.
Here we present a new type of cryptanalysis attack method that
can re-identify sensitive attributes values that are encoded in BFs.

Our method applies maximal frequent itemset mining on a
BF database to first identify sets of frequently co-occurring bit
positions that correspond to encoded frequent q-grams (character
substrings extracted from plain-text values). Using a probabilistic
language model, we then identify additional q-grams by applying
pattern mining on subsets of BFs that encode a previously
identified frequent q-gram. Experiments on real-world databases
show that our attack can successfully re-identify sensitive values
even when each BF in an encoded database is unique.

Index Terms—Bloom filter, re-identification, maximal frequent
itemset mining, data linkage, probabilistic language model.

I. INTRODUCTION

Data analytics projects in domains ranging from national
security and healthcare to social science research often re-
quire records about individuals to be linked across different
databases [1]. Because unique entity identifiers are rarely
available in all databases to be linked, the linking of records
generally relies upon identifying personal details (such as
names, addresses and dates of birth) [1]. Known as quasi-
identifiers (QIDs) [2], values in such attributes are in general
sufficiently well correlated with entities to allow accurate
linkage. Using such personal information however often leads
to privacy and confidentiality concerns [2], [3].

Research into privacy-preserving record linkage (PPRL)
aims to link records in different databases that refer to the same
entities across while ensuring the privacy of these entities [2].
The idea behind PPRL is to conduct the linkage based on
encode QID values. At the end of the PPRL process the
participating parties only learn which of their records are
matched (are highly similar), but they cannot learn any other
information about the other database(s) [2].

One widely used privacy technique for PPRL is Bloom filter
(BF) encoding [4] because it allows accurate and efficient
PPRL of large databases, as we describe in Section ??.

This work was funded by the Australian Research Council under
DP130101801 and DP160101934. P. Christen likes to acknowledge the sup-
port of ScaDS Dresden/Leipzig (BMBF grant 01IS14014B) and the University
of Duisburg-Essen, where parts of this work were conducted.

However, recent research has shown that basic BFs are vulner-
able to attacks that can successfully re-identify some values
encoded in a BF database [5]–[10]. These attacks exploit the
frequency counts and bit patterns in a set of BFs, and how
these correlate to frequent plain-text values to identify BF bit
positions that can encode certain q-grams. This then enables
the re-identification of values from a plain-text database.

In this paper we present a novel attack method on BF
encoding for PPRL that employs a maximal frequent itemsets
mining approach. Our attack does not require any knowledge
of the parameters used in the BF encoding process. We
illustrate the basic idea of our attack in Figure 1. This attack is
a substantial improved version of our previous attack method
in [5]. We extend our attack by using a probabilistic language
model to expand the set of identified q-grams by applying
pattern mining on subsets of BFs that are known to encode
a certain previously identified frequent q-gram. Based on
the identified q-grams we then re-identify plain-text values
encoded in individual BFs. An evaluation on two real data
sets shows that our attack method can identify bit positions of
q-grams with high precision, and it can re-identify plain-text
values even when each BF in an encoded database is unique. In
such a scenario no previous attack would have been successful.

II. RELATED WORK

The first attack method on BFs for PPRL, proposed by Kuzu
et al. [8], employed a constraint satisfaction problem (CSP)
solver which assigns values to variables such that a set of
constraints is satisfied. The attack was evaluated on a real
patient database where it was successful in re-identifying four
out of 20 frequent names correctly [9]. Niedermeyer et al. [10]
more recently proposed an attack based on the counts of q-
grams extracted from frequent German surnames which they
were able to manually re-identify the most frequent ones. Kroll
and Steinmetzer [7] extended this attack into a cryptanalysis
of several attributes, which was able to correctly re-identify
44% of plain-text encoded in BFs. However, both these attack
methods cannot be used with all hashing approaches on BFs.

Christen et al. [6] recently proposed a novel attack method
that aligns frequent BFs with frequent plain-text values. The
attack was able to correctly re-identify the most frequent plain-
text values in a large database efficiently. This attack however
requires both frequent BFs and frequent plain-text values.

maude
mary
max

john
joan

p 1 p 5 p 10 p 13

b

b

b

b

b

1

2

3

4

5

VPlain−text database

Q−gram counts:

3: ma

2: jo

1: an, ar, au,

ax, de, hn, oa,

oh, ry, ud

but not known to the attacker)

(only shown for illustration,

0

0

0

0

0

0 0 0 0 0

0 0 0

0 0 0 0

0 0

0

0 0 0 0

0

0

0

0

0 0

0

0

0

0

0

0

1

1

1

1 1

1

1

1

1

1

1 1

jo ar oh ry jo ar au ma axoh
de

oa oa ma au

1 111 100 0 0

1 11 1 0000000000

an

0

hn

1 0

0

1

0

1 0

1

0

ud
ax

ry

0

0

1

1

ud
an

de

0

0

1

0

1

hn

BEncoded Bloom filter database

Fig. 1. An example illustrating the basic idea of our proposed attack method.
We first identify that bit positions p5 and p13 have co-occurring 1-bits in the
same three BFs (b1, b3 and b4) and therefore must encode ‘ma’ which is
the only q-gram that occurs in three plain-text values. Next, we find that p1
and p10 must encode ‘jo’ because they have co-occurring 1-bits in the same
two BFs (b2 and b5) and ‘jo’ is the only q-gram that occurs in two plain-text
values. We now know that BFs b2 and b4 can only encode ‘john’ and ‘joan’,
while b1, b3 and b4 can encode either ‘maude’, ‘mary’ or ‘max’.

III. BACKGROUND

We now briefly describe BF encoding and the frequent
pattern mining algorithm we used in our approach.

Bloom Filter Encoding: A BF b is a bit array of length
lb = |b| with all bits initialized to 0 [11]. k independent hash
functions, H = {h1, . . . , hk}, are used to map each element
s in a set s into b by setting the bit positions b[hj(s)] = 1,
with 1 ≤ j ≤ k, 1 ≤ hj(s) ≤ lb, and ∀s ∈ s. In PPRL, where
commonly name and address values are used, the set s can be
generated from character q-grams [1] extracted from strings. A
set based similarity function, such as the Dice coefficient [1],
can be used to calculate the similarity between two BFs [4].
Hashing of q-grams often leads to collisions [12], which can
improve privacy but results in false positives [4].

Pattern Mining Techniques: The way BFs are generated
leads to some specific aspects of how pattern mining can
be applied in our attack: (1) We assume each BF in an
encoded BF database is unique and therefore each itemset is
unique, and (2) we are only interested in the maximal (longest)
frequent itemsets which have an expected length of k, the
number of hash functions used to encode q-grams into BFs.

Various algorithms that have been proposed over the years
to efficiently mine frequent patterns from large databases
however not all pattern mining techniques are suitable for
our attack. We investigated several algorithms with regard
to the requirements of our attack, and based on our set-up
experiments we found Max-Miner [13] was one of the best
performing algorithms in terms of efficiency and we therefore
use it in our attack.

IV. A PATTERN MINING BASED ATTACK

We first summarize our attack method, as illustrated in
Figure 1 and detailed in Algorithms 1 to 4. In Table ?? we
summarise the notation of inputs and outputs as used and/or
generated by these algorithms. We use bold letters for BFs,
sets, and lists (with upper-case bold letters for sets and lists
of BFs, sets, and lists), and normal type letters for integers
and strings. Lists are shown with square and sets with curly
brackets, where lists have an order while sets do not.

As with existing attacks on BFs for PPRL, we assume an
adversary has access to an encoded BF database, B, where

Notation of inputs and outputs as used by Algorithms 1 to 4
B: List of BFs from the sensitive encoded database, one BF per record
V: List of plain-text values from a public database, one string per record
lq : Length of substrings to extract from plain-text values
d: Min. percentage difference between two most frequent q-grams
m: Min. partition size (a subset of BFs in B) as a number of BFs
F: List of identified frequent q-grams with their BF bit positions
A+: Lists of must have q-gram sets assigned to BFs in B
A−: Lists of cannot have q-gram sets assigned to BFs in B
Q: List of q-gram sets, one per plain-text value in V
Bc: Column-wise storage of BF database B
kest: Estimated number of hash functions used to encode q-grams
L: Language model as one graph Gf per frequent q-gram qf ∈ F
FE : Expanded list of identified q-grams and their BF bit positions
A+

E : Expanded lists of must have q-gram sets assigned to BFs in B

A−
E : Expanded lists of cannot have q-gram sets assigned to BFs in B

nm: Minimum number of required identified q-grams in a BF from B
R: List of re-identified plain-text values from V for BFs from B

it is unknown which plain-text value(s) are encoded in a BF;
and a plain-text database, V, that contains values from one or
several attributes. An attacker can guess which attributes are
encoded in B and what value was used for q based on the
distribution of 1-bits of BFs in B [14].

In the first step of our attack we identify sets of frequently
co-occurring bit positions in B that can encode q-grams that
are frequent in V, as well as the number of hash functions (k)
that was used to encode values into BFs. In the second step we
then identify additional q-grams that have a high conditional
probability of co-occurring with one of the frequent q-grams
identified in the first step. In the third step we use all identified
q-grams to find plain-text values v ∈ V that can be encoded
in a BF b ∈ B based on the bit positions of where the q-
grams identified in the first two steps must or cannot occur.
Our attack exploits the way BFs are constructed as follows:

Assuming a q-gram q occurs in nq < n records in a plain-
text database V that contains n = |V| records, and k ≥ 1
independent hash functions are used to encode q-grams from
V into the encoded database B of n BFs, i.e. |V| = |B|.
Then, (1) each BF bit position that can encode q must contain
a 1-bit in at least nq BFs in B, and (2) if k > 1 then up to k
bit positions must contain a 1-bit in the same subset of BFs
Bq ⊆ B, with nq = |Bq|, that encode q.

Our pattern mining based attack method relies on a set of
bit positions that have frequently co-occurring 1-bit patterns.
However, because there can be possible collisions of the k
hash functions when a q-gram is hashed into BFs [11], [12],
potentially less than k bit positions will encode a certain q-
gram. Therefore less than k bit positions might be co-occurring
frequently for a certain frequent q-gram.

Our attack should therefore be able to clearly identify with
high precision up to k frequently co-occurring bit positions
that encode the same q-gram, as we experimentally validate
in Section V.

Identifying Co-occurring Bit Positions: The first step
of our attack (proposed in [5]), as detailed in Algorithm 1,
identifies the sets of frequently co-occurring bit positions in

Algo. 1: Identify frequent q-grams and co-occurring BF bit positions
1: Bc = ConvColWise(B)
2: lb = |Bc|
3: Q = GenQGramSets(V, lq)
4: F = [], A+ = [], A− = [], m = {}, n = {}, k = []
5: r = {b : 1 ≤ b ≤ |B|}, c = {p : 1 ≤ p ≤ lb}
6: Q = [(|B|, c, r,m,n)]

7: while |Q| > 0 do:
8: (psi, ci, ri,mi,ni) = Q.pop()
9: q1, f1, q2, f2 = GetTwoMostFreqQGrams(Q,mi,ni)
10: di = 2(f1 − f2)/(f1 + f2) · 100
11: if di ≥ d then:
12: si = |B| · (f1 + f2)/(2|V|)
13: fi = GetMaxFreqCoOccurBitPos(Bc, si, ci, ri)
14: if |fi| > 0 then:
15: F.append((q1, fi))
16: k.append(|fi|)
17: ci = ci \ fi
18: r+i , r−i = UpdateRowFilter(fi, ri)
19: ∀b ∈ r+ : A+[b] = A+[b] ∪ {q1}
20: ∀b ∈ r− : A−[b] = A−[b] ∪ {q1}
21: if |r+i | ≥ m then:
22: Q.append([(r+i |, ci, r

+
i ,mi ∪ {q1},ni))

23: if |r−i | ≥ m then:
24: Q.append((|r−i |, ci, r

−
i ,mi,ni ∪ {q1}))

25: Q.sort largest first()
26: kest = mode(k)
27: return F, A+, A−, Q, Bc, kest

Plain text database V

F = [om, to]

70
my

30
ni

70
my on

130

ny
100

om
270 400

tony: 100

tom: 200

tomy: 70

toni: 30

0.25

0.3250.259
0.175

0.075

GQ−gram graphs

Q−gram counts:

400: to

270: om

130: on

100: ny

30: ni

70: my

om and Gto

to

Fig. 2. An example q-gram graph generation from four plain-text values
containing six q-grams, where ‘om’ and ‘to’ are frequent q-grams identified in
step one of our attack. Edges between q-grams show conditional probabilities
of the destination q-gram assuming the source q-gram occurs in a value in
V. For each q-gram in F, in step two of our attack we select the not-frequent
q-grams with the highest conditional probabilities, such as ‘my’ for ‘om’ and
‘on’ for ‘to’. As described in Section ??, we then apply pattern mining on
subsets of BFs in B where we know they contain a frequent q-gram to identify
the bit positions that can encode a selected not-frequent q-gram.

the BF database B that correspond to the frequent q-grams
that occur in the plain-text database V.

Language Model Based Q-gram Set Expansion:
In this second step of our attack we expand the list F by

identifying not frequent q-grams and their bit positions that
have a high conditional probability of co-occurring with one
of the frequent q-grams in F in values in V. As illustrated
in Figure 2, conceptually we build a star graph Gf for each
frequent q-gram qf ∈ F, where the center node is the frequent
q-gram qf as identified in the first step of our attack, and all
leaf nodes are the other q-grams qi that co-occur with qf in
any value vj ∈ V. The node attributes are the number of
values in V that contain a certain q-gram qi, calculated as
fi = |{qi ∈ qj : qj ∈ Q}|, where qj is the q-gram set for
value vj as generated in line 3 in Algorithm 1.

A directed edge, qf → qi in Gf represents the conditional
probability pf,i of qi occurring in a value vj ∈ V given the
frequent q-gram qf occurs in vj , calculated as pf,i = fi/ff .

Algo. 2: Generate language model for q-gram set expansion
1: L = []
2: for qf ∈ F do:
3: Gf = (V = {qf}, E = ∅)
4: for qj ∈ Q do:
5: if qf ∈ qj then:
6: Gf [qf] = Gf [qf] + 1
7: for qi ∈ qj \ {qf} do:
8: if qi /∈ G.V then:
9: Gf .V = Gf .V ∪ {qi}; Gf [qi] = 0
10: Gf [qi] = Gf [qi] + 1
11: for qi ∈ Gf .V \ {qf} do:
12: Gf .E = Gf .E ∪ {(qf , qi)}
13: Gf [qf , qi] = Gf [qi] / Gf [qf]
14: L.append([qf ,Gf])
15: return L

For example, in Gto in Figure 2, the conditional probability
that ‘on’ occurs given ‘to’ occurs is 130/400 = 0.325.

Algorithm 2 details the steps for generating the language
model L.

Once the language model L is generated, we can use it to
expand the set of identified q-grams. The idea of our expansion
step is that for each frequent q-gram, qf , and its corresponding
graph, Gf , we select the other q-grams qi ∈ Gf .V that have
the highest conditional probabilities of co-occurring with qf .
We then try to identify the bit positions where a q-gram qi
could have been hashed to based on the subset of BFs in B
where we know (from Algorithm 1) that qf was hashed into.
This subset of BFs that can encode qf , named Bf , are those
BFs that have a 1-bit in all bit positions identified for qf , as
available in the list F generated in Algorithm 1. We then apply
maximal frequent pattern mining on this subset Bf of BFs
with the aim to identify the bit positions of where qi can be
hashed into. The expected frequency (support count) of 1-bits
of co-occurring bit positions for qi needs to correspond to the
conditional probability pf,i of qi occurring in a value vj ∈ V
where we know qf occurs in, calculated as si = pf,i · |Bf |.
We describe this approach in detail in Algorithm 3.

In Algorithm 3 we now describe the detailed steps involved
in the q-gram set expansion step based on the language model
L as generated in Algorithm 2.

Plain-text Value Re-identification:
As detailed in Algorithm 4, the final step of our attack aims

to re-identify values from V that could have been encoded
into BFs in B using the lists of identified q-grams and their
bit positions, FE , and the lists A+

E and A−
E of must have and

cannot have q-gram sets for BFs, as generated in Algorithm 3.
We only consider plain-text values and BFs that contain at
least nm must have q-grams, because considering a single
or only a few identified q-grams would result in too many
plain-text values that could match a BF (for example, nearly
4,000 surnames in the experimental NCVR data set of 224,061
records contain the q-gram ‘sm’).

V. EXPERIMENTS AND RESULTS

We evaluated our attack using the real North Car-
olina Voter Registration (NCVR) database (http://dl.ncsbe.gov/
data/), where we used one snapshot from April 2014 as B and

http://dl.ncsbe.gov/data/
http://dl.ncsbe.gov/data/

Algo. 3: Identify further q-grams and co-occurring BF bit positions
1: FE = F, A+

E = A+, A−
E = A−, Q = []

2: c = {p : 1 ≤ p ≤ |Bc|} \ {∪p : ∀p ∈ fi : ∀fi ∈ F}
3: for (qf ,Gf) ∈ L do:
4: rf = {b : 1 ≤ b ≤ |B| : ∀p ∈ ff : B[b][p] = 1 : ff ∈ F}
5: ff = Gf [qf]
6: Q.append((ff , qf ,Gf , rf))
7: Q.sort most freq first()
8: while |Q| > 0 do:
9: (ff , qf ,Gf , rf) = Q.pop()
10: Gf .V.sort most freq first()
11: for [(qi, pf,i), (qi+1, pf,i+1)] ∈ Gf .V \ {qf} do:
12: di = 2(pf,i − pf,i+1)/(pf,i + pf,i+1) · 100
13: if di ≥ d then:
14: si = |rf | · (pf,i + pf,i+1)/2
15: fi = GetMaxFreqCoOccurBitPos(Bc, si, c, rf)
16: if 0 < |fi| ≤ kest then:
17: FE .append((qi, fi))
18: c = c \ fi
19: r+i , r−i = UpdateRowFilter(fi, rf)

20: ∀b ∈ r+i : A+
E [b] = A+

E [b] ∪ {qi}
21: ∀b ∈ r−i : A−

E [b] = A−
E [b] ∪ {qi}

22: else: // dj < d
23: exit for loop
24: return FE , A+

E , A−
E

Algo. 4: Re-identify plain-text values in Bloom filters
1: IB = [], R = []
2: IQ = GenV alQGramInvIndex(V,Q)

3: for b ∈ A+
E do:

4: q+ = A+
E [b], q− = A−

E [b]
5: for (qi, fi) ∈ FE do:
6: if ∃p ∈ fi : B[b][p] = 0 then:
7: q− = q− ∪ {qi}
8: IB [(q+,q−)].add(b)
9: for (q+,q−) ∈ IB do:
10: if |q+| ≥ nm ∨ |IB [(q+,q−)]| = 1 then:
11: v = {∀qi ∈ q+ : ∩IQ[qi]} \ {∀qi ∈ q− : ∪IQ[qi]}
12: for b ∈ IB [(q+,q−)] do:
13: for v ∈ v do:
14: R[b] = R[b] ∪ {v}
15: return R

k=20 k=30 k= opt (68)
0.0

0.2

0.4

0.6

0.8

1.0
(b) First name, Last name

Precision

Recall

k=10 k=15 k= opt (21)
0.0

0.2

0.4

0.6

0.8

1.0
(d) First name, Last name, Street address, City

Precision

Recall

k=20 k=30 k= opt (68)
0.0

0.2

0.4

0.6

0.8

1.0
(f) First name, Last name

Precision

Recall

k=10 k=15 k= opt (21)
0.0

0.2

0.4

0.6

0.8

1.0
(h) First name, Last name, Street address, City

Precision

Recall

Fig. 3. Precision and recall results for the NCVR database for the identified
frequent q-grams in F from Algorithm 1 (top row, plots (a) to (d)) and in
FE from Algorithm 3 (bottom row, plots (e) to (h)) with different numbers
of hash functions k, as described in Section V.

a second from June 2014 as V. We extracted pairs of records
that correspond to the same voter but had name and/or address
changes over time, resulting in two files of 222,251 and 224,06
records, respectively. We encoded different combinations of
the attributes first name, last name, street address and city
into BFs. For combinations of three and four attributes, all

values in V and all bit patterns in B were unique.
We used the cryptographic long term key BF encoding [14]

with double and random hashing [14], with q=2, lb=1,000 and
different values for k as shown in Figure 3. We calculated the
optimal number, opt, of hash functions such that the average
number of 1-bits in a BF is 50% to minimize the false positive
rate in BFs [15]. We set the minimum percentage difference as
d=[1.0, 5.0], the minimum partition size m=[2,000, 10,000],
and the minimum q-gram tuple size nm=3 as these provided
good results in set-up experiments.

We present the quality of the identified frequent q-grams in
F and FE from Algorithms 1 and 3 as the precision and recall
of how many bit positions were correctly identified for a q-
gram in F or FE averaged over all q-grams. For Algorithm 4,
we evaluated the quality of re-identified values in R as the
percentages of (1) exact matches of a plain-text value with
the true value encoded in a BF, (2) partial matches where
not all words in a value matched (for example, first and last
name were the same but city was different), and (3) wrong
matches where no word matched. We only considered BFs
that had 10 or less plain-text values assigned to them in R,
and we present averaged results for 1-to-1, with |R[b]| = 1,
and 1-to-m (many), with 1 < |R[b]| ≤ 10, re-identifications.

We compared our attack method with the attack by Chris-
ten et al. [6] (the only other attack that does not require
knowledge of the BF encoding parameters) which aligns
frequent BFs and plain-text values to re-identify the most
frequent plain-text values, as well as the initial version of
our current attack method [5]. We implemented all methods
using Python 2.7 and ran experiments on a server with 64-
bit 2.4 GHz CPUs, 128 GBytes of memory and running
Ubuntu 16.04. The programs and data sets are available from:
https://dmm.anu.edu.au/pprlattack.

Discussion: In Figure 3 we show precision and recall results
for the q-grams identified in F and FE . As can be seen, both
precision and recall of the identified frequent q-grams in F
are high, above 0.88, for different values of k and different
encoded attribute combinations. This validates that our attack
can successfully identify bit positions of frequent q-grams with
high accuracy even when each BF in an encoded database
is unique. The precision of q-grams in FE stays above 0.8
for different values of k and different attribute combinations.
However, as we discussed in Section IV, the recall of bit
positions of the additional q-grams identified in the second
step of our attack drops because we mark a bit position as
assigned once a q-gram hashed to it has been identified.

The lower recall in Figure 3 (e) and (f) for one and two
encoded attributes (compared to three and four) is because we
are able to identify more frequent q-grams already in the first
step of our attack, and therefore less bit positions are left in
the second step to be assigned to additional q-grams (in the
column filter set, c, in line 2 of Algorithm 3).

Table I shows the re-identification results from the third step
of our attack (Algorithm 4). Compared to the frequency based
attack by Christen et al. [6], our attack can exactly or partially
re-identify a considerable percentage of encoded plain-text

https://dmm.anu.edu.au/pprlattack

TABLE I
RE-IDENTIFICATION PERCENTAGES ON NCVR OF EXACT (E), PARTIAL

(P) AND WRONG (W) MATCHES OF PLAIN-TEXT VALUES FROM
ALGORITHM 4, AVERAGED OVER PARAMETERS DESCRIBED IN

SECTION V, AND COMPARED TO OUR EARLIER ATTACK METHODS.

Two attributes Three attributes Four attributes
E / P / W E / P / W E / P / W

Christen et 1-to-1 0.0 / 0.0 / 100.0 0.0 / 0.0 / 100.0 0.0 / 0.0 / 100.0
al. (2018) [6] 1-to-m 13.5 / 0.0 / 86.5.0 0.0 / 0.0 / 100.0 0.0 / 0.0 / 100.0

Christen et 1-to-1 20.7 / 30.9 / 48.4 0.2 / 61.0 / 38.8 0.5 / 73.2 / 26.3
al. (2018) [5] 1-to-m 27.5 / 46.5 / 26.0 0.4 / 83.5 / 16.1 0.5 / 87.9 / 11.6

Our new 1-to-1 52.6 / 16.3 / 31.0 0.6 / 54.3 / 45.1 0.3 / 48.2 / 51.5
method 1-to-m 55.8 / 22.3 / 21.9 0.6 / 76.0 / 23.4 0.3 / 76.4 / 23.3

TABLE II
COMPARISON OF THE NUMBER OF EXACT, PARTIAL, AND WRONG RE-

IDENTIFICATIONS BETWEEN THE INITIAL VERSION OF OUR ATTACK [5]
AND THE NEW METHOD CONDUCTED ON THE NCVR DATABASE.

Num. 1-to-1 matches 1-to-m matches
attr. Exact Partial Wrong Exact Partial Wrong
Two 2,010 / 10,956 577 / 2,546 823 / 3,918 5,368 / 18,037 2,424 / 7,825 1,831 / 9,250

Three 2 / 111 187 / 6,825 128 / 3,915 15 / 163 2,052 / 17,644 420 / 7,898
Four 75 / 88 8,837 / 8,995 2,976 / 6,680 147 / 189 24,911 / 36,796 3,112 / 13,980

values. While some re-identification percentages are lower
compared to the initial attack version [5] (for three and four
attributes), as the numbers of re-identified plain-text values in
Table II show, our new attack method is able to re-identify a
substantially higher number of plain-text values. We expected
the numbers of correct exact re-identifications for three and
four attributes to be very low because less than 1,800 of over
222,000 combined values between the two NCVR snapshots
are exact matches.

These results show that basic BFs, even when each BF in an
encoded database is unique, can successfully be attacked using
our pattern mining method. Our work highlights the need to
improve BF encoding, and to develop new encoding methods
for PPRL that do not exhibit the weaknesses of basic BFs.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a pattern mining based attack method
on BF encoding as used for PPRL which can successfully re-
identify encoded q-grams and plain-text values even when all
BFs in a database are unique. Given that BF based PPRL is
now employed in real-world applications [3], it is important
to study the limits of BF encoding. Our attack helps to
make BF based PPRL more secure because it allows data
custodians to ensure their encoded databases are not vulnerable
to such attacks. As future work we plan to improve the
second step of our attack by analyzing the differences in
bit patterns between BFs to identify additional q-grams with
high accuracy to allow an improved re-identification of plain-
text values in the third step. We will also explore how BF
hardening techniques [14], such as balancing or XOR-folding,
will influence the feasibility of our attack method.

REFERENCES

[1] P. Christen, Data matching. Springer, 2012.
[2] D. Vatsalan, Z. Sehili, P. Christen, and E. Rahm, “Privacy-preserving

record linkage for Big Data: Current approaches and research chal-
lenges,” in Handbook of Big Data Technologies. Springer, 2017.

[3] J. Boyd, S. Randall, and A. Ferrante, “Application of privacy-preserving
techniques in operational record linkage centres,” in Med Data Privacy
Handbook, 2015.

[4] R. Schnell, T. Bachteler, and J. Reiher, “Privacy-preserving record
linkage using Bloom filters,” BMC Med Inform Decis Mak, 2009.

[5] P. Christen, A. Vidanage, T. Ranbaduge, and R. Schnell, “Pattern-
mining based cryptanalysis of Bloom filters for privacy-preserving
record linkage,” in PAKDD, Melbourne, 2018.

[6] P. Christen, T. Ranbaduge, D. Vatsalan, and R. Schnell, “Precise and fast
cryptanalysis for Bloom filter based privacy-preserving record linkage,”
IEEE TKDE (accepted 29 Sep), 2018.

[7] M. Kroll and S. Steinmetzer, “Automated cryptanalysis of Bloom filter
encryptions of databases with several personal identifiers,” in BIOSTEC,
Lisbon, 2015.

[8] M. Kuzu, M. Kantarcioglu, E. Durham, and B. Malin, “A constraint
satisfaction cryptanalysis of Bloom filters in private record linkage,” in
PET, Waterloo, 2011.

[9] M. Kuzu, M. Kantarcioglu, E. Durham et al., “A practical approach
to achieve private medical record linkage in light of public resources,”
JAMIA, vol. 20, no. 2, pp. 285–292, 2013.

[10] F. Niedermeyer, S. Steinmetzer et al., “Cryptanalysis of basic Bloom
filters used for privacy preserving record linkage,” JPC, 2014.

[11] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[12] M. Mitzenmacher and E. Upfal, Probability and computing: Randomized
algorithms and probabilistic analysis. Cambridge Uni. Press, 2005.

[13] R. Bayardo, “Efficiently mining long patterns from databases,” ACM
SIGMOD Record, vol. 27, no. 2, pp. 85–93, 1998.

[14] R. Schnell and C. Borgs, “Randomized response and balanced Bloom
filters for privacy preserving record linkage,” in DINA, Barcelona, 2016.

[15] D. Vatsalan and P. Christen, “Privacy-preserving matching of similar
patients,” JBI, vol. 59, pp. 285–298, 2016.

	Introduction
	Related Work
	Background
	A Pattern Mining based Attack
	Experiments and Results
	Conclusions and Future Work
	References

