
Accurate privacy-preserving record linkage for databases with missing values

Sirintra Vaiwsri, Thilina Ranbaduge, Peter Christen

School of Computing, The Australian National University, Canberra, Australia

Rainer Schnell

University of Duisburg-Essen, Duisburg, Germany

Abstract

Privacy-preserving record linkage is the process of matching records that refer to the same entity across sensitive
databases held by different organisations. This process is often challenging because no unique entity identifiers, such
as social security numbers, are available in the databases to be linked. Therefore, quasi-identifying attributes such
as names and addresses are required to identify records that are similar and likely refer to the same entity. Such
quasi-identifiers are however often not allowed to be shared between organisations due to privacy and confidentiality
concerns. Besides variations and errors in the values used for linking, quasi-identifiers can have missing values.
A popular approach to link sensitive data in a privacy-preserving way is to encode quasi-identifying values into
Bloom filters, bit vectors that allow approximate similarities between values to be calculated. However, with existing
Bloom filter encoding approaches, missing values can lead to missed true matches because they affect the similarities
calculated between Bloom filters. We propose a novel approach to consider missing values in privacy-preserving
record linkage by adapting Bloom filter encoding based on the patterns of missingness identified in the databases being
linked. We build a lattice of missingness patterns, and then generate partitions of Bloom filters over this lattice. In each
partition the non-missing quasi-identifying attributes are assigned different weights during the Bloom filter generation
process. This results in more accurate similarity calculations between Bloom filters and leads to better linkage quality.
To prevent dictionary and frequency based attacks, in our approach each partition is encoded independently. We
evaluate our approach on large real databases that contain different amounts and patterns of missing values, showing
that our approach can substantially outperform both Bloom filter encoding that does not consider missing values, and
an earlier Bloom filter based approach for linking sensitive databases that do contain missing values.

Keywords: Missing data, Privacy, Entity resolution, Data linkage, Bloom filter encoding

1. Introduction

Organisations in many domains increasingly collect
large databases containing millions of records, where
these records contain detailed information about people,
such as customers, patients, tax payers, or travellers.
Often such databases need to be shared and integrated to
facilitate advanced analytics and processing [1]. Record
linkage [2] is one major task that needs to be con-
ducted when databases are to be integrated. Record
linkage aims to identify and match records that refer

Email addresses: sirintra.vaiwsri@anu.edu.au (Sirintra
Vaiwsri), thilina.ranbaduge@anu.edu.au (Thilina Ranbaduge),
peter.christen@anu.edu.au (Peter Christen),
rainer.schnell@uni-due.de (Rainer Schnell)

to the same entities in different databases [1]. In many
application domains, unique entity identifiers (such as
social security numbers) are not available in the data-
bases to be linked, and therefore the linkage needs to be
conducted based on the available quasi-identifying at-
tributes. These commonly contain personal identifying
information, such as names, addresses, dates of birth,
and so on. Data quality aspects such as typographical
errors, variations, and changes of values over time, are
common in most quasi-identifying attributes used for
linkage. As a result, approximate comparison functions
are required when records are being compared [1].

One major data quality aspect that so far has only
seen limited attention in record linkage is missing val-
ues [3, 4, 5, 6, 7]. Missing values can occur for a variety
of reasons and they can have different characteristics, as

Preprint submitted to Information Systems November 5, 2021

ID FN LN CT ZC FN LN CT ZC
r1 peter sydney 2001 1 0 1 1
r2 pete miller 2001 1 1 0 1
r3 david archdale 2703 1 0 1 1
r4 william chiancon clyde 1 1 1 0
r5 allison flowers 1 1 0 0
r6 austin kalista clayton 9417 1 1 1 1
r7 paul burgaw 2825 1 0 1 1
r8 joseph goodman mooresville 2811 1 1 1 1
r9 linda morning 2255 1 1 0 1

M[1111] = {r6, r8}
M[1110] = {r4}
M[1101] = {r2, r9}
M[1011] = {r1, r3, r7}
M[1100] = {r5}

1011

1111

1100

1110 1101

Figure 1: A small example database with nine records, where some
have missing values, the resulting missingness patterns (top right,
where 0 indicates a missing value) and missing pattern table, M (bot-
tom left), and the resulting lattice of missingness patterns (bottom
right) connecting patterns with Hamming distance 1. ID refers to the
record identifier, and FN, LN, CT, and ZC to the quasi-identifying
attributes first name, last name, city, and zipcode, respectively.

we discuss in Section 3. If records have missing values
in the quasi-identifying attributes used for linkage, then
the similarities calculated between records will likely
be lower, potentially affecting the final linkage qual-
ity. If alternatively those records or quasi-identifying
attributes that have missing values are not used for a
linkage, then linkage quality will again likely suffer [6].

Besides linkage quality, privacy is increasingly also
of concern when databases that contain personal infor-
mation are to be linked across organisations [8]. Certain
types of linkages might not be possible if the databases
contain sensitive information about individuals (such
as patients or tax payers) that cannot be shared with
other organisations. Privacy-preserving record linkage
(PPRL) is concerned with the development of tech-
niques that facilitate the linkage of sensitive databases
across organisations without the need of any sensitive
plaintext data to be exchanged or shared [9].

PPRL techniques generally encode the values in the
sensitive quasi-identifying attributes used for linkage
before they are being sent to the organisation that con-
ducts the linkage [10]. The outcome of a PPRL protocol
will only be the set of linked record identifiers, but no
sensitive identifying information of these records. No
database owner involved in a PPRL protocol should be
able to learn anything about the attribute values in the
records of any of the other databases being linked, and
the organisation conducting the linkage or any external
party (even a malicious adversary) must not be able to
learn anything about the databases being linked [9].

One popular PPRL technique that is now being used
in practical applications world-wide [11, 12, 13] is

Bloom filter (BF) encoding [14]. As we describe in Sec-
tion 3, BFs are bit vectors into which elements of a set
are hashed [15] to facilitate efficient similarity calcula-
tions between values.

To the best of our knowledge, only one approach has
so far investigated how to overcome the challenge of
missing values in the PPRL process. The basic idea
of the approach by Chi et al. [4] is to find the records
that are closest (k-nearest neighbours) to a given record
that has a missing value, and to use similarities cal-
culated between the available attribute values to esti-
mate the similarity a missing value would have had with
the corresponding value in another record. This ap-
proach works best if there are groups of records that
have similar attribute values, such as people in a house-
hold that have the same last name and address. While
this approach has shown to be able to improve linkage
quality in the presence of missing values in such sit-
uations, its drawbacks are that it is sensitive with re-
gard to the blocking technique employed, and the use of
attribute-level BFs makes it vulnerable to cryptanalysis
attacks [16, 17, 18], as we show in Section 9.3.

Contributions: We propose a novel PPRL protocol
based on BF encoding for linking databases that contain
missing values in the quasi-identifying attributes being
encoded. We first identify the patterns of occurrences of
missing values across all records in a database, and use
these patterns to generate a lattice structure that repre-
sents the different patterns of missingness, as shown in
Fig. 1. Using a secure set intersection protocol [19] we
then find the common missingness patterns in the data-
bases to be linked, and group lattice nodes to generate
partitions of BFs that need to be compared.

We then present two methods in a three-party sce-
nario to link these partitions in a privacy preserving
way: (1) an iterative method that requires multiple com-
munication steps but that needs less record pairs to be
compared, and (2) a batch method that only requires
one communication step but leads to a larger number of
record pair comparisons. To improve the privacy of our
approach, we employ bit sampling from BFs based on
matching weights calculated for the quasi-identifying
attributes being compared [20], and different random
permutations for the different partitions of BFs.

Using an extensive evaluation on large real-world
databases we show that our approach can achieve high
linkage quality even with significant amounts of missing
values. Our approach substantially outperforms both
traditional BF encoding [20] (that does not consider
missing values) as well as the k-nearest neighbour miss-
ingness approach for PPRL proposed by Chi et al. [4].

2

2. Related work

First computer based techniques for record linkage
were proposed by Newcombe et al. [21] who compared
records and classified record pairs into matches and
non-matches using probabilities calculated based on the
likelihood that two records refer to the same person.
These ideas were formalised by Fellegi and Sunter in
1969 [22], and their method to calculate match and non-
match weights is still in use today [2].

Missing data has always been a challenge for link-
ing records across databases because missing values
in quasi-identifying attributes can result in lower link-
age quality. Ong et al. [7] introduced three methods
to improve the accuracy of linking records with miss-
ing values in the context of probabilistic record link-
age [22]. These methods either redistribute the match-
ing weights of attributes that contain missing values to
non-missing attributes, estimate the similarity between
attributes when values are missing in a record, or use
a set of additional quasi-identifier attributes to calculate
similarities if a primary quasi-identifier is missing.

Goldstein and Harron [6] developed an approach to
link attributes of interest for a statistical model between
an administrative (primary) database and one or more
other (secondary) databases that contain the attributes
of interest. The approach exploits relationships between
attributes that are spread across different databases, and
treats the linkage between these databases as a missing
data problem. The approach uses multiple imputation
to combine information from records in the different
databases belonging to the same individual, and incor-
porates match weights to correct selection bias.

Ferguson et al. [5] proposed an approach to im-
prove record linkage when the databases to be linked
contain missing values by using a modification of the
Expectation-Maximisation (EM) algorithm [23] that
considers both the imputation of missing values as well
as correlations between values. An evaluation of this ap-
proach on real databases containing nearly 800,000 pa-
tient records showed that it can improve linkage quality
compared to when missing values are not considered.

Aninya et al. [3] analysed how different blocking
techniques are affected by missing values in the at-
tributes used for blocking [1]. Six blocking techniques
were evaluated experimentally on large voter databases.
Results showed that those blocking techniques that in-
sert each record into multiple blocks, such as canopy
clustering and suffix array indexing [1], performed best
when the attributes used for blocking contained missing
values, with suffix array indexing being the overall best
performing technique.

The first PPRL approach was developed by French
health researchers in the 1990s using one way hash-
ing [24], where quasi-identifying values were hashed
such that matching hashcodes mean the corresponding
quasi-identifying values were the same. However, this
approach only allowed for exact matching of values.
Since the early 2000s different PPRL techniques have
been developed, some based on secure multi-party com-
putation (SMC) [25] while others applied perturbation
to the quasi-identifying values to be compared. For de-
tails we refer the reader to the surveys by Vatsalan et
al. [9] and Gkoulalas-Divanis et al. [10].

The idea behind SMC based techniques is to encrypt
quasi-identifying attribute values in such a way that en-
crypted values can be compared and similarities be-
tween records can be calculated securely [26]. While
SMC based techniques are provably secure, they gener-
ally have much higher computational and/or communi-
cation costs or they are only capable of exact matching
of values [9], making them less applicable for the link-
ing of large real-world databases.

Perturbation based techniques, on the other hand, are
often more efficient and they allow approximate simi-
larities to be calculated between encoded values [27],
such as string similarities for names and addresses [1].
However, these advantages often come at a cost of some
information leakage, or the vulnerability of perturba-
tion based techniques with regard to attacks that aim to
reidentify the sensitive values contained in an encoded
database [16, 17, 18, 28]. The currently most widely
used perturbation technique for PPRL is Bloom Filter
(BF) encoding [14], which we use in our approach and
formally describe in Section 3.3.

As we discussed in Section 1, only the approach by
Chi et al. [4] can deal with missing values in the context
of PPRL. For a record with a missing value in a quasi-
identifying attribute, this approach considers the most
similar k-nearest neighbouring records in the same data-
base to calculate similarity estimates. The approach is
based on attribute-level BFs [8] which have shown to be
vulnerable to several cryptanalysis attacks [16, 17, 18],
and it requires groups of records with high similarities,
such as families and households in census records. We
evaluate this approach as a baseline in Section 8 and fur-
ther discuss its advantages and weaknesses as compared
to our approach.

3. Background

In this section we first describe different types of
missing data, and introduce the concept of a lattice
structure which is a key component of our approach.

3

We then describe Bloom filter encoding as it has been
used in the context of PPRL.

For notation, throughout this paper we use italics type
letters for integers, strings, and BFs; bold lowercase let-
ters for lists and sets; and uppercase bold letters for lat-
tices, and for lists and sets of lists and sets. Lists are
shown with square and sets with curly brackets, where
lists have an order while sets do not.

3.1. Missing data

Missing values are a common issue in many real-
world databases. There are various reasons why missing
values can occur, ranging from equipment malfunction
or data items not considered to be important, to dele-
tion of values due to inconsistencies, or even the refusal
of individuals to provide information for example when
filling in Web forms or answering surveys [8]. Missing
data can be categorised into different types [29].

Data missing completely at random (MCAR) are
missing values that occur without any patterns or corre-
lations at all with any other values in the same record or
database. With data missing at random (MAR) one can
assume that a missing value can be predicted by other
data in the same record and/or database. As an example,
for a record of a surgeon in an employment database,
her salary could be predicted by averaging the salaries
of all other surgeons in that database. Data missing not
at random (MNAR) do occur for some specific reasons,
for example if a patient in a medical study suffered from
a stroke and therefore did not return to re-examinations
then there will be missing values for this patient in the
study’s database. Finally, structurally missing data are
values that are missing because they should not exist,
and missing is their correct value. For example, young
children should not have an occupation.

Any of these types of missing data can occur in
the quasi-identifying attributes used to link databases.
While data imputation can be applied with the aim
to fill such missing values before the databases are
linked [2, 29], in our work we assume that not all miss-
ing values can be imputed. Specifically, imputation is
not possible for missing values of types MCAR and
structurally missing. For example, if a first name is
missing for an individual, then neither middle name,
last name, nor address can help predict the missing first
name value (assuming no external database is accessible
where a complete record of that person is available).

3.2. Lattice structure to represent missingness patterns

A lattice is an abstract structure used in various appli-
cation areas, including database management, data min-

ing, data warehousing, and information retrieval, to rep-
resent multi-dimensional data [30]. As shown in Fig. 1,
a lattice consists of elements of a set where there exists
a partial order such that two elements of the set have a
unique supremum and a unique infimum.

In our approach we build a lattice from the missing-
ness patterns of the quasi-identifying attributes used for
a linkage as identified in a database. Each such pattern
is represented as a bit vector that becomes a node in
the lattice, where a 0 represents a missing value while
a 1 represents a non-missing value in a certain attribute.
The bit vector 1111 in Fig. 1, for example, represents
all records that have no missing values in four quasi-
identifying attributes.

These missingness bit patterns are arranged into a
lattice where all bit patterns with a certain Hamming
weight (number of 1-bits) form one layer of the lattice,
and an edge connects two nodes if their Hamming dis-
tance is up to a threshold dt ≥ 1 (they differ by up to
dt bit values). The lattice generated from a database
is potentially incomplete if not all possible missingness
patterns occur in a database, as we discuss further in
Section 5.3 and illustrate in Figs. 5 and 6. These lattices
allow us to identify common missingness patterns that
occur in both databases to be linked, and they are the
basis of how we generate partitions of BFs.

3.3. Bloom filter encoding

The Bloom filter (BF) technique was introduced by
Bloom in 1970 [15] as an efficient method for check-
ing the element membership in a set. In 2009, Schnell
et al. [14] proposed to use BFs as an encoding tech-
nique for PPRL because it allows for efficient approx-
imate matching between the encoded quasi-identifying
attribute values from different databases thereby pre-
serving the privacy of sensitive values.

A BF, b, is a bit vector of length l = |b| bits that
can encode the elements of a set s using k hash func-
tions that each maps s ∈ s to a bit position in the range
[1, . . . , l]. Initially all bits of a BF are set to zero. In
PPRL, the sets to be encoded are generated from the
quasi-identifying attribute values to be compared, such
as the names, addresses, and dates of birth of individ-
uals [14]. Most of these values are strings, which are
converted into character substrings of length q (known
as q-grams), as shown in Fig. 2. Techniques to en-
code numerical values [31, 32] as well as hierarchical
codes [33] have also been proposed, and our approach
to handle missing values in PPRL works on any of these
encoding techniques.

To encode an element s ∈ s into a BF b, the element is
hashed using the k hash functions hi, with 1 ≤ i ≤ k, and

4

1

11

1

1 0 0

0 0 10 1

pe et te er

pe et te

Number
of 1−bits:

1

0

common 1−bits:
Number of

= 5

= 4

= 4

pete

peter

b

b ==)b b
2 x

+
4

(5 4) 0.89
1 2

1

2

1

2 sim (

x

x

c

D
,

0 1

Figure 2: Example Dice coefficient similarity calculation between two
BFs. The names ‘peter’ and ‘pete’ are converted into bigrams (q = 2)
and encoded into two Bloom filters b1 and b2 of length l = 8 bits using
k = 2 hash functions. Hash collisions occur in b1 at bit positions 1, 5,
and 7, and in b2 at positions 1 and 5, as shown in italics.

the bit positions where the element is hashed into are
set to 1: b[hi(s)] = 1, with 1 ≤ hi(s) ≤ l. To calculate
an approximate similarity between two BFs, a set-based
similarity function such as the Dice coefficient can be
used [1, 14]. The Dice coefficient similarity, simD, be-
tween two BFs b1 and b2 is calculated as:

simD(b1, b2) =
2 × c

(x1 + x2)
, (1)

where c is the number of 1-bits in common (at the same
positions) between the two BFs, and x1 and x2 are the
total number of 1-bits in b1 and b2, respectively. As also
shown in Fig. 2, hash collisions can occur when differ-
ent elements are hashed into the same bit position in a
BF by different hash functions. While such hash col-
lisions affect the similarity calculations between BFs,
they also provide privacy because there is no one-to-one
mapping of the hashed elements to bit positions [8].

While BF encoding was shown to have weaknesses
that can be exploited by cryptanalysis attacks [16, 17,
18, 28], hardening techniques are being developed to
make BF encoding more secure and resilient with regard
to such attacks [8, 34].

In a PPRL protocol, the database owners (DOs) en-
code the values in their quasi-identifying attributes into
BFs, and then send these BFs to a linkage unit (LU) [9],
the organisation that is undertaking the linkage. Alter-
natively, the DOs can exchange their BFs among them-
selves to identify pairs of BFs with high similarities.

There are different ways of how quasi-identifying
attribute values can be encoded into BFs. One ap-
proach is to use attribute-level BF (ABF) [14], where
one BF is generated per quasi-identifying attribute used
for the linkage (for example, one BF for first name, one
for last name, and so on). One advantage of this ap-
proach is that individual similarities can be calculated
per attribute which allows more detailed classification
of record pairs based on different weights assigned to
different attributes, as is for example used in the prob-

abilistic record linkage approach [22]. However, one
major drawback of using ABFs is that attribute values
that are common in a database being encoded (such as
the names of large cities or common last names) will
lead to common BFs that have the same bit pattern.
Frequency-based attacks can be mounted that can iden-
tify the values encoded in such commonly occurring
BFs [16, 17, 18, 35].

Alternatively, values from several quasi-identifying
attributes can be encoded into one BF. Two main such
methods have been developed. The first is known as
cryptographic long-term key (CLK) [36], where a sin-
gle BF is generated per record and all attribute values
are hashed into this BF. The second method is known
as record-level BF (RBF) [20], where in the first step
individual ABFs are generated, one per attribute used
for the linkage. Different numbers of bits are sam-
pled from these ABFs based on weights assigned to at-
tributes, where these weights can be calculated using the
probabilistic record linkage approach [22] or based on
domain knowledge. The sampled bits are concatenated
into one BF, which is randomly permuted to improve
privacy, before being sent to a LU for comparison.

In our approach we adapt the RBF method. We also
first generate ABFs and combine them into one BF per
record. To deal with missing values in quasi-identifying
attributes, as we describe in Section 5.4, we how-
ever employ different attribute weightings for groups
of records with different missingness patterns, where
we redistribute the weights assigned to the attributes
with missing values to non-missing attributes [7], and
then select certain numbers of bits based on the up-
dated weights. We finally apply different permutations
to records with different missingness patterns to pre-
vent frequency [16, 17, 35] and pattern mining based
attacks [28]. We illustrate our approach in Fig. 3 for
two records with different missing patterns.

4. Protocol overview

Our proposed PPRL approach for missing data in-
volves three parties, the two database owners (DOs) and
a linkage unit (LU). Each DO has a database, DA and
DB, respectively, which they aim to link without having
to share the sensitive quasi-identifying attribute values
in their own database with any other party. The LU is
used to conduct the linkage where it only identifies the
matching record pairs between the two databases.

As outlined in Fig. 4, the DOs first agree on the pa-
rameters to be used in the protocol. Then they individ-
ually generate a set of attribute-level BFs (ABFs) [14]

5

1 10 0 00 1 0 1 10 1 1 0101 1 0 1 0 0 1 10 1 1 0 0 0 0 1 0 00 11 1 10 00 101 0

1 1 0 1 1 00 1 0 1

1 0 1 1 1 001 0 1

1

01 0 1 11 01 1

1 00 11 1 0 1 1

Attribute weights: w= [0.8, 0.9, 0.4, 0.2]

w
1

= [1.1, 0, 0.7, 0.5] s
1

= [5, 0, 3, 2] r
2

= [pete, miller, , 2001] s
2

= [4, 5, 0, 1]

1 0 0 0 1 0 00 11 0

0

0

00

w
2

= [0.93, 1.03, 0, 0.33]

sydney
sy yd dn ne ey 20 00 et tepe

miller
mi lellet te erpe

peter 2001
01

pete
il erMissing

last name city

5bits 3bits 2bits 4bits 5bits 1bit

Attributes: [first name, last name, city, zipcode]

r
1

= [peter, , sydney, 2001]

20 00 01
2001

Missing

Bits sampling and concatenation

Permutation Permutation

Bits sampling and concatenation

Figure 3: Record-level BF generation for records r1 and r2 from Fig. 1 that have different missigness patterns (r1 has a missing last name while
r2 has city missing). First, attribute-level BFs of length l = 10 are generated, and based on the attribute weights in w and the missingness pattern,
weights are redistributed from the attribute with a missing value to other attributes that do contain values, shown as w1 and w2. This results in
different numbers of selected bits per attribute, s1 and s2. Finally, different permutations are applied. We describe this process in Sections 4 and 5.

receive matches
Send records /

receive matches
Send records /

Batch method
Iterative /

ABF generation

Lattice generation

Partition grouping

Batch method
Iterative /

Database

 Lattice Database

 ABFs

 Partitions

AD

LU

 Secure set intersection

 Lattice

 Partitions

 ABFs

Database

Database

BD

 Agreement of paramenters

ABF generation

Lattice generation

Partition grouping

Figure 4: Overview of our proposed protocol for privacy-preserving record linkage for databases with missing values, as described in Section 4.
The two databases, DA and DB, and the linkage unit (LU) are shown in blue, while pink boxes show the main steps of our approach. The shaded
areas are the common steps performed by each database owner as described in Section 5.

for each record in their database, where one ABF is gen-
erated for each of the non-missing quasi-identifying at-
tributes in a record that is used for the linkage.

Next, the DOs individually generate local lattices, LA

and LB, where each represents the unique missingness
patterns that occur in the quasi-identifying attributes in
their own database. Each such pattern will represent one
or multiple records in a database depending upon how
missing values occur in records. We describe this pro-
cess in detail in Sections 5.2 and 5.3. The DOs then par-
ticipate in a secure set intersection (SSI) protocol [19] to
identify the common missingness patterns between their
corresponding databases, resulting in the lattice of com-
mon patterns, LC . A SSI will hide information about the
not common patterns of a DO from the other DO, and
thereby prevent the DOs from being able to potentially
reidentify each other’s sensitive attribute values, as we
discuss in Section 7.1. We define a common missing-
ness pattern, mC , as a pattern that occurs in LC .

Each DO now generates partitions that consist of
records that have one or more missingness patterns. As
we describe in Section 5.4, for each of these partitions,
based on the missingness patterns of that partition, dif-
ferent bits will be selected (as illustrated in Fig. 3) from
the ABFs of the records in that partition and concate-
nated into one BF per record. Different permutations

of bit positions are then applied on these record BFs
to improve privacy. At the core of each partition is a
common missingness pattern, mC ∈ LC . Neighbour-
ing missingness patterns, mN , are grouped into one or
more partitions based on the local and common lat-
tice structures with grouping being either done upwards,
downwards, or in both directions, as we discuss in Sec-
tion 5.4. Based on these grouping methods the BF of
each record will be added to one or multiple partitions.

The generated partitions are then compared by the LU
where we propose two linkage methods, an iterative and
a batch method, to identify matching record pairs as we
describe in Sections 6.1 and 6.2, respectively.

In the iterative linkage method, the DOs agree upon
an order of how the partitions are to be matched. Each
DO sends a partition consisting of a set of BFs to the
LU, which can then calculate the Dice coefficient sim-
ilarity (following Eq. 1) between pairs of BFs, poten-
tially using a blocking technique [9, 37] to speed-up
the comparison process. The LU returns the classified
matched record pairs (based on their BF similarities and
a similarity threshold, st) back to the DOs, which then
remove matched records from the next partition to pre-
vent redundant comparisons. The DOs send the next
partition to the LU, and the process is repeated until all
partitions have been sent to the LU for comparison.

6

Algorithm 1: Common steps performed by the Database Owners

Input:
- D: Database to be encoded - n: Max. num. of missing attributes in aL
- aL: List of linkage attributes - wt : Weight threshold
- aR: List of required attributes - l: ABF length
- w: List of attribute weights - dt : Hamming distance threshold
- H: List of hash functions - q: Q-gram length
- g: Grouping method
Output:
- A: Inverted index of ABFs
- M : Missing pattern table
- P: Inverted index of partitions (grouped patterns)

1: A = {},P = {},M = {} // Initialise data structures
2: LL = {} // Initialise local lattice
3: for r ∈ D do: // Loop over each record in the database
4: br = [] // Initialise list for ABFs of the current record r
5: for a ∈ aL do: // Loop over linkage attribute list
6: ba = genABF(r.a, q,H, l) // Generate the ABF for attribute a
7: br .append(ba) // Add ABF to list
8: A[r.id] = br // Add ABF list of record r to inverted index
9: mr = genMissPattern(r, aL, aR) // Generate missing value pattern for r
10: if (|aL | − HW(mr)) ≤ n then: // Check number of non-missing values
11: M[mr] = M[mr].add(r.id) // Add identifier for r to pattern mr
12: LL = genLattice(M) // Generate the local lattice for the database
13: LC = secS etIntersect(LL) // Find common patterns across databases
14: P = groupPattern(LL,LC ,w, g, dt ,wt) // Group patterns into partitions
15: return A, M, P

One drawback of this iterative method is that it re-
quires multiple rounds of communication between the
DOs and the LU. This might not be possible in certain
application scenarios (especially when multiple data-
bases need to be linked [27]) where full encoded data-
bases need to be transmitted to the LU in a single com-
munication step. In contrast to the iterative linkage
method, in the batch linkage method, which we describe
in Section 6.2, all partitions are combined into one en-
coded database by each DO, respectively, and then sent
to the LU.

5. Encoding and missing pattern processing steps

Each DO first performs the common steps outlined in
Algorithm 1 and described in the following subsections.

5.1. Attribute-level Bloom filter generation
Based upon the parameters settings that have been

agreed upon by the DOs, for each record r in its data-
base D, in line 6 of Algorithm 1, using the function
genABF(), a DO generates an attribute-level BF (ABF)
for each attribute value r.a in the list of quasi-identifying
attributes aL to be used in the linkage process. An ABF
of length l bits is generated by encoding r.a (converted
into its set of q-grams) using the list of hash functions,
H, that have been agreed upon by the DOs. If the at-
tribute value r.a is missing an empty BF with only 0-
bits is returned by genABF(). Each ABF is added to the
list br of ABFs for record r, and this list is then inserted

into the inverted index, A (in line 8), with the record’s
identifier, r.id. This inverted index will be used in later
steps of the protocol when partitions are generated.

5.2. Missing pattern table generation

For each record r ∈ D, in line 9 of Algorithm 1 we
generate its missingness pattern (a bit vector), mr, based
on the list of attributes that are used for the linkage, aL

(for which ABFs were generated). We allow for a sub-
set of required attributes aR ⊂ aL to be defined. These
are the attributes that cannot be missing, for example
because they contain crucial information that is needed
to link records, such as first and last names of individu-
als. If values in these attributes would be missing then
it will not be possible to accurately link records.

For each quasi-identifying attribute in aL, the func-
tion genMissPattern() generates a 0-bit if the value is
missing in record r, or a 1-bit if it exists in r. The func-
tion returns a bit vector mr of length |aL|. If any of the
required attributes in aR is missing, then genMissPat-
tern() will return a missigness pattern consisting of only
0-bits, which means a record will not be considered fur-
ther in the linkage process. Similarly, if more than n
attribute values are missing (the number of 1-bits, cal-
culated using the function HW() which returns the Ham-
ming weight of a bit vector, is too low), a record will
not be considered either (lines 10 and 11 in Algorithm
1). The parameter n and the list of required attributes
aR can be used to control the linkage quality for those
records that contain many missing values.

Each DO builds a table M of these missingness pat-
terns (implemented as an inverted index), where the
keys are the unique patterns, and for each pattern we
have a set of all record identifiers, r.id, of the records
with that pattern (line 11), as illustrated in Fig. 1.

5.3. Lattice generation and finding common patterns

Each DO now uses its missing pattern table, M, to
create a local lattice structure, LL, that represents the
patterns of missing values in its database (line 12 in
Algorithm 1). Patterns are sorted in descending order
based on their numbers of missing values. While the
length of the missingness patterns is determined by the
linkage attributes that have been encoded and are used
to compare records, aL, the shape of the lattices being
generated is determined by the parameters aR, and n.
Assuming |aL| − n > 1 (more than one attribute needs to
contain a value), then the lower part of lattices will be
incomplete, as can be seen for example in Fig. 5. There
can however be situations where a single attribute value
can be useful to meaningfully link records of the same

7

C

11111

11110 11011 10111

1101011100

11000 10010

10011

11111

11110 11011

11100 10011

11000 10010

11100

11110

10110 10011

11011

11111

11000 10010 10001

L
BA

L L

Figure 5: Local, LA and LB, and the common LC (center), lattices where at least one common missingness pattern occurs in each layer of the
common lattice. We set the maximum number of attributes that can be missing to n = 3 and the Hamming distance threshold to dt = 2.

C

11110 11011

11100 11010

11000 10010

11110

11111

11011

11000 10010 11000 10010 10001

10110 10011

11110 11011

1111111111

L
A B

L L

Figure 6: Local and common (center) lattices where the common lattice has missing layers.

entity. An example can be a mobile phone number at-
tribute, where (even if all other attributes are missing),
two records with the same mobile phone number likely
refer to the same person.

The DOs then participate in a secure set intersection
(SSI) protocol [19], where the elements of the sets to be
intersected are the missingness bit patterns in the local
lattice, LL, of each DO. The output of the SSI protocol
is the set of bit patterns that occur in the local lattices of
both DOs, which form a new lattice of all common bit
patterns, LC (line 13 in Algorithm 1).

The generated common lattice, LC , can be cate-
gorised into one of four types, which are (1) all missing
value patterns are common (which means LC ≡ LL for
the local lattices of all DOs); (2) some missingness pat-
terns are common across all local lattices, where there
are common patterns in each layer of the generated lat-
tices (at least one pattern with a certain number of 1-
bits occurs in common); (3) some patterns are common
across all local lattices, however there are some layers
in LC that have no common patterns; and (4) none of the
patterns from the local lattices occur in common. Our
approach works with types (1) to (3), while for type (4)
(no common patterns) it would be difficult to identify a
way of how records with different missingness patterns
can be compared to obtain meaningful similarities be-
tween encoded records.

Figs. 5 and 6 show examples of types (2) and (3),
where blue nodes show common missingness patterns
between the two databases, red nodes show not com-
mon missingness patterns, and red dashed lines show a
layer with no common missingness patterns. Solid links
connect nodes to their upper and lower layers, and the
dashed boxes show an example of the upper and lower
grouping methods (as we describe next) with a Ham-
ming distance threshold dt = 2.

5.4. Grouping missingness patterns into partitions

A missingness pattern in the common lattice, mC ∈

LC , is the basis of how partitions are formed, where
records are inserted into one or more partitions based
on their missingness patterns. Records in the same par-
tition will then be compared across the databases, as we
discuss in Sections 6.1 and 6.2.

In Algorithm 2 we expand line 14 from Algorithm 1,
where the function groupPattern() is called. To allow
a comparison of records that have a similar missingness
patterns, for a common pattern mC , its neighbouring pat-
terns from the local lattice, mN ∈ LL are grouped into a
set mN based on the number of bits that differ between
their missingness patterns (the Hamming distance be-
tween two patterns). The sets of ABFs that correspond
to the records in those grouped patterns then form a par-
tition, P, as we formally describe in Definition 1.

8

Algorithm 2 : Grouping patterns into partitions

Input:
- LL: Local lattice of a database - g: Grouping method
- LC : Common lattice - wt : Weight threshold
- w: List of attribute weights - dt : Hamming distance threshold
Output:
- P: Inverted index of partitions (grouped patterns)

1: P = {} // Initialise inverted index of partitions (grouped patterns)
2: for mC ∈ LC do: // Loop over common missingness patterns
3: P[mC] = [mC] // Start the partition with the common pattern itself
4: mN = getNeighbours(mC ,LL, g, dt) // Get neighbours of mC
5: for mN ∈ mN do: // Loop over neighbours of the common pattern
6: wN = sumDi f f Weight(w,mC ,mN) // Sum weights of bits that differ
7: if wN ≤ wt then: // Check if weight is at most the weight threshold
8: P[mC].add(mN) // Add neighbouring pattern to the current partition
9: return P

Definition 1 (Partition). Given mC ∈ LC , and one or
more mN ∈ LL, and where mC and each mN represent a
set of records, rC ∈ D and rN ∈ D, respectively, in the
database D, and where rC ∩ rN = ∅ for all mN ∈ LL.
We define a partition as P = rC ∪ rN that represents the
patterns mC and one or more patterns mN .

Generally, multiple local missingness patterns, mN ,
are grouped with a common pattern to form a partition.
Note that the set of neighbouring patterns can include
both common and not common patterns. The records
represented by a missingness pattern are likely grouped
into several partitions based on the grouping method, g,
used in Algorithm 2. The grouping of patterns can either
be performed by grouping a given neighbouring pattern
mN to one or more common patterns mC in the same
and upper lattice layers only (g = upper), to common
patterns in the same and lower lattice layers only (g =

lower), or to common patterns in the same, upper, and
lower lattice layers (g = both). We discuss these three
grouping methods in more detail below.

For example in Fig. 5, in LA, for the common pat-
tern 11111 and with dt = 2, the following other patterns
will be its neighbouring patterns with grouping upper:
11010, 10011, 11100, 11110, 11011, and 10111. On
the other hand, in Fig. 6, in LA for the common pattern
11100 and grouping lower (and again dt = 2) the fol-
lowing other patterns will be its neighbouring patterns:
11111, 11110, 11011, 10111, 11010, and 10011.

We assume that the patterns in a lattice are ordered
based on their numbers of 1-bits (or their Hamming
weight, calculated using the function HW()) with de-
creasing numbers of 1-bits. Based on the selected
grouping method, g, and a maximum Hamming dis-
tance (calculated using the function HD() which returns
the number of bits that differ between two patterns), for
each common pattern we can define its neighbourhood
of other local missingness patterns as follows.

Definition 2 (Pattern neighbourhood). For a com-
mon missingness pattern mC and Hamming distance
threshold dt ≥ 1, the set mN contains the local missing-
ness patterns mN ∈ LL, with mN , mC , where the num-
ber of bits that differ between mC and a mN ∈ mN is not
larger than dt. Depending upon the grouping method,
g, used, mN will be limited to:

• g = upper: mN = {mN ∈ LL : HD(mN ,mC) ≤ dt

∧ HW(mN) ≤ HW(mC)}

• g = lower: mN = {mN ∈ LL : HD(mN ,mC) ≤ dt

∧ HW(mN) ≥ HW(mC)}

• g = both: mN = {mN ∈ LL : HD(mN ,mC) ≤ dt}

With g = upper, a neighbouring pattern mN is grouped
with a common pattern mC in the same and upper lat-
tice layers, where a mC has the same or less missing
attribute values. When using this grouping method, the
larger number of missing attribute values in records with
pattern mN means their corresponding BF will contain
more 0-bits compared to records with pattern mC .

With g = lower, a neighbouring pattern mN is grouped
with a common pattern mC in the same and lower lattice
layers, where a mC has the same or more missing at-
tribute values. When this grouping method is used, only
the attribute values that are not missing in the pattern
mC are included in the BFs generated for this partition,
while non-missing attributes in the records with pattern
mN are not included into these BFs. Less detailed infor-
mation from a smaller number of attributes is encoded
into BFs, and this can potentially lead to several records
having the same or similar values in these attributes.

Finally, g = both generates partitions that include
neighbouring patterns that are in the same, above, and
below layers of a common pattern in the lattice struc-
ture. The generated partitions will be larger than for the
two other grouping methods, and each record is likely
inserted into more partitions. Only those attributes with
no missing value in the common pattern, mC , are en-
coded into BFs. Therefore, the neighbouring patterns in
lower lattice layers will have more 0-bits in their corre-
sponding BFs, while for neighbouring patterns in upper
lattice layers not all of their non-missing attributes will
be encoded into BFs.

In line 4 in Algorithm 2, this set of neighbouring
missingness patterns, mN , is generated. Each neigh-
bouring pattern mN ∈ mN is further assessed (in lines
6 to 8) based on the weights assigned to attributes.
An attribute weight list, w, is defined by the DOs to
identify the importance of each attribute in aL, where

9

Algorithm 3: Iterative linkage method

Input:
- A: Inverted index of ABFs - w: List of attribute weights
- M : Missing pattern table - st : Similarity threshold
- P: Inverted index of partitions
Output:
- R: Inverted index of matched record pairs

1: R = {} // Initialise inverted index of matched record pairs
2: c = {} // Initialise inverted index of matched record IDs
3: P = sortPartByNumMiss(P) // Sort partitions
4: for (mC ,mp) ∈ P do: // Loop over partitions
5: Bp = {} // Initialise the inverted index of BFs for this partition
6: for m ∈ mp do: // Loop over missing patterns in partition
7: rm = M[m] // Get record identifiers with this pattern
8: r′m = remCompRec(rm, c) // Remove records already matched
9: for r.id ∈ r′m do: // All records with this pattern
10: br = A[r.id] // List of ABFs for this record
11: br = genBF(br ,mC ,w) // Generate the BF for this record
12: b′r = permBF(br ,mC) // Partition specific BF permutation
13: r.eid = encrRecID(r.id,mC) // Encrypt record ID
14: Bp[r.eid] = b′r // Add to index of BFs of this partition
15: sendToLU(Bp, st) // Send the BFs to the LU for matching
16: Rp = receiveFromLU() // Receive matched record pairs
17: for (r1.eid, r2.eid) ∈ Rp do: // Process matched record pairs
18: s = Rp[(r1.eid, r2.eid)] // Get record pair similarity
19: r1.id, r2.id = decrRecIDs(r1.eid, r2.eid,mC) // Get original IDs
20: R[(r1, id, r2.id)] = s // Add to all matches
21: c.add(r1.id) // Add to set of matched records
22: return R

a higher weight means the attribute is more relevant
for the linkage process. For example, the DOs might
assign a higher weight to a first name attribute com-
pared to a gender attribute because first name is gen-
erally more important to identify records that refer to
the same individual than gender. The weights in w
can either be set based on domain expertise or using
the match weight calculations employed in probabilis-
tic record linkage [2, 22].

The weight threshold, wt, ensures that only those
records that have common linkage attributes (based
on their weights) are included into the same partition.
Therefore, two patterns, mC and mN , that have common
non-missing attributes with low weights, for example
only gender and age, will not be grouped into a parti-
tion. The calculation of the weight wN in the function
sumDiffWeight() (in line 6 of Algorithm 2) first iden-
tifies the attributes with missing values that differ be-
tween mC and mN by applying the bit-wise XOR oper-
ation (⊕) on these bit patterns: md = mC ⊕ mN . Any
1-bit in the bit vector md corresponds to an attribute in
aL that is either missing in mC or mN , but not both. We
then calculate wN by summing all attribute weights in w
where the corresponding bit in md is set to 1:

wN =

|aL |∑
i=1

w[i] if md[i] = 1,
0 otherwise.

(2)

If the summed weight wN is below the weight thresh-
old wt for a neighbouring pattern mN , then mN will be
added to the partition (in line 8 in Algorithm 2). The
weight threshold wt therefore determines how different
the records in the missingness patterns grouped into the
same partition can be with regard to the attributes that
have missing values. A smaller weight threshold wt

means that the patterns mN and mC need to be more sim-
ilar in order to be grouped into the same partition.

For example, let us assume wt = 0.5 and the five
quasi-identifying attributes first name, last name, street
address, city, and zipcode are assigned the weights 0.8,
0.9, 0.6, 0.4, and 0.2, respectively. As shown in the lat-
tice of database DA, LA, in Fig. 6, assuming we have
a grouping method g = upper and a Hamming dis-
tance threshold of dt = 1, then the two (not common)
neighbouring patterns 11100 and 11010 can possibly be
grouped with the common pattern 11110. We can cal-
culate the weights of the corresponding different bits as:
• 11110 ⊕ 11100 = 00010→ wN = 0.8×0+0.9×0+0.6×

0 + 0.4 × 1 + 0.2 × 0 = 0.4

• 11110 ⊕ 11010 = 00100→ wN = 0.8×0+0.9×0+0.6×
1 + 0.4 × 0 + 0.2 × 0 = 0.6

As a result, the weight wN = 0.4 for mN = 11100 (with
missing city and zipcode) is the only one below the
threshold wt = 0.5, and therefore only this pattern is
added to the partition formed by the common missing-
ness pattern 11110 (with missing zipcode).

Algorithm 2 is performed by each DO individually.
Its output is a set of partitions, P, where each record
in a database occurs in one or more partitions (unless
the record contains more than n missing values or an at-
tribute in aR is missing). In the following two sections
we describe how these partitions, together with the en-
coded BFs of all records, as generated in Algorithm 1,
can be used to link the encoded databases in either an
iterative fashion or using a batch approach.

6. Linkage steps

Based on the partitions generated, we now describe
two different methods of how the DOs communicate
with the LU, and how the LU compares the record pairs
in the partitions it receives from the DOs.

6.1. Iterative linkage

The aim of the iterative linkage method is to en-
sure that each record pair is compared only once in the
matching process, even if a certain record occurs in sev-
eral partitions. To achieve this goal, each DO performs
the iterative steps outlined in Algorithm 3.

10

This iterative linkage method loops over the parti-
tions, P, generated in Algorithm 2, where these parti-
tions are sorted (in line 3 of Algorithm 3) with increas-
ing number of missing values in their keys mC (their
common missingness pattern). This is because parti-
tions with less missing values allow for more meaning-
ful comparison of records given they contain more non-
missing quasi-identifying attribute values.

We then loop over these sorted partitions, where in
line 4 in Algorithm 3 we retrieve the key of a partition,
its common missing pattern mC , and the list of all pat-
terns that were grouped into this partition, mp. We ini-
tialise a list Bp which will hold all record BFs that will
be generated for this partition (line 5), and then loop
over all missing patterns, m, in the partition. For each
such pattern, we retrieve the identifiers of all records
with that pattern (as the list rm) from the missing pat-
tern table M. To prevent a previously matched record
to be compared again, in line 8 we remove any record
identifier from rm that is in the set of matched records,
c. In line 9 we then loop over the set r′m of not yet
matched records with a given missingness pattern m, re-
trieve their corresponding list of ABFs, br, and generate
one BF br per record using the function genBF() in line
11, which as input also takes the missingness pattern mC

of this partition, and the list of attribute weights, w.
To ensure the BFs in all partitions are generated with

the same length, we distribute the weights of those
attributes that have missing values to other attributes
that are non-missing, based on the missingness pattern,
mC [7]. This weight distribution is calculated as:

w′[a] = w[a] +

∑
w[am]

HW(m)
, (3)

where w[a] is an attribute weight, w[am] is the weight of
a missing value attribute am, HW() calculates the Ham-
ming weight, and m is a missingness pattern.

For example, for a given record let us assume the at-
tributes first name (FN), last name (LN), and city (CT)
are non-missing, while street address (SA) and zipcode
(ZC) are missing. The attributes were originally as-
signed the weights 0.8 (FN), 0.9 (LN), 0.6 (ST), 0.4
(CT), and 0.2 (ZC), respectively. The weights 0.6 and
0.2 of street address and zipcode are distributed to the
other three attributes as:

w′[FN] = 0.8 + (0.6 + 0.2)/3 = 1.067,

w′[LN] = 0.9 + (0.6 + 0.2)/3 = 1.167,

w′[CT] = 0.4 + (0.6 + 0.2)/3 = 0.667.

After distributing the weights of missing value at-
tributes, we sample bits from each corresponding ABF
to generate the final record BF [20]. For each non-

missing attribute a we calculate its number of bits, s[a],
to be sampled as (rounded to the nearest integer):

s[a] =

⌊
w′[a]∑
a w′[a]

× l
⌉
, (4)

where w′[a] is the weight for attribute a adjusted us-
ing Eq. 3, and l is the length of an ABF. Continuing
the above example and assuming an ABF length of l =

1,000 bits, the number of sampled bits will be 368 for
first name, 402 for last name, 230 for city, 0 for street
address and zipcode (because they are missing), result-
ing in the final record BF again of length l = 1,000 bits.

The generated BFs for all records in a partition are
then permuted in line 12 of Algorithm 3, where the per-
mutation is conducted in a way agreed by the DOs but
kept secret from the LU. The partition’s common miss-
ingness pattern, mC , is used as the seed (for example of
a pseudo random number generator [8]) upon which the
permutation is based. As a result, it will be very diffi-
cult for the LU to successfully apply a frequency or pat-
tern mining based cryptanalysis attack [16, 17, 28, 35]
across the BFs from different partitions.

Furthermore, to prevent that the LU can identify the
BFs that correspond to the same record across partitions
(using the record identifiers, r.id), in line 13 we gener-
ate a partition specific encrypted record identifier, r.eid.
Only these encrypted record identifiers are sent to the
LU together with their partition specific BFs, as well as
the similarity threshold st used to decide if compared
BFs are matches or not (line 15 in Algorithm 3).

Once the LU has compared and linked the BFs in a
partition, as we describe in Section 6.3, it returns a set of
matched record pairs (with their similarities) from that
partition, Rp, in line 16. The DOs then loop over these
matches, get the similarity s of a matched record pair,
and convert the encrypted record identifiers back to their
original values (line 19). They then add the pair to the
set R of all matches in line 20, and the identifier of the
local record of the pair (assumed to be r1) to the set c
of matched record identifiers. This means a matched
record will not be included in any following partitions.

6.2. Batch linkage

The aim of the batch linkage method, as detailed in
Algorithm 4, is to limit the communication between the
DOs and the LU to one single exchange of messages.
This in contrast to iterative linkage which requires one
communication step per partition.

In line 3 of Algorithm 4 we loop over the partitions,
P, generated in Algorithm 2 and retrieve the common
missing pattern, mC , and the list of all patterns that were

11

Algorithm 4: Batch linkage method

Input:
- A: Inverted index of ABFs - w: List of attribute weights
- M : Missing pattern table - st : Similarity threshold
- P: Inverted index of partitions
Output:
- R: Inverted index of matched record pairs

1: B = {} // Initialise the inverted index of BFs
2: E = {} // Initialise the inverted index of record ID mappings
3: for (mC ,mp) ∈ P do: // Loop over partitions
4: for m ∈ mp do: // Loop over missing patterns in partition
5: rm = M[m] // Get record identifiers with this pattern
6: for r.id ∈ rm do: // All records with this pattern
7: br = A[r.id] // List of ABFs for this record
8: br = genBF(br ,mC ,w) // Generate the BF for this record
9: b′r = permBF(br ,mC) // Partition specific BF permutation
10: r.eid = encrRecID(r.id,mC) // Encrypt record ID
11: E[r.eid] = (r.id,mC) // Keep record ID mapping
12: B[r.eid] = b′r // Add to inverted index of BFs
13: sendToLU(B, st) // Send the BFs to the LU for matching
14: R′ = receiveFromLU() // Receive matched record pairs
15: R = getBestMatches(R′,E) // Extract best matching record pairs
16: return R

Algorithm 5: Blocking and linking RBFs

Input:
- B1: Index of encrypted record identifiers and BFs from first DO
- B2: Index of encrypted record identifiers and BFs from second DO
- st : Similarity threshold
Output:
- R: Matched record pairs

1: R = {} // Initialise inverted index of matched record pairs
2: G1 = genBlocks(B1) // Generate blocks for BFs from first DO
3: G2 = genBlocks(B2) // Generate blocks for BFs from second DO
4: Gc = G1 ∩G2 // Get the common blocks
5: for g ∈ Gc do: // Loop over common blocks
6: for (r1.eid, b1) ∈ B1[g] do: // Loop over BFs in block from first DO
7: for (r2.eid, b2) ∈ B2[g] do: // Loop over BFs in block from second DO
8: s = simD(b1, b2) // Dice similarity, Eq. 1, between BFs
9: if s ≥ st do: // Check if record pair is a match
10: R[(r1.eid, r2.eid)] = s // Add record pair to matches
11: return R // Send matched record pairs to DOs

grouped into this partition, mp. The pattern mC is used
as the key of this partition. We then loop over all pat-
terns, m, in the partition (line 4). For each such pattern,
we retrieve the identifiers of all records with that pat-
tern (as the list rm) from the missing pattern table M
in line 5. To get all records with a given missing pat-
tern m, we loop over the list rm (line 6), and for each
record we retrieve its list of ABFs, br, to generate one
BF br per record using the function genBF() according
to the missing pattern mC and the list of attribute weights
w. The function genBF() applies the weight distribution
discussed for the iterative method in Section 6.1. The
generated BF is then permuted in line 9, using the com-
mon pattern mC as the seed of the permutation function,
and a partition specific encrypted record identifier, r.eid,
is generated as we described in Section 6.1. The map-
ping of original to encrypted record identifier is stored
in the mapping table E in line 11. The permuted BF
with its corresponding encrypted identifier is then added

to the inverted index of all BFs, B, in line 12.
Once all record BFs are generated and added to B,

then the DO sends B with the similarity threshold, st,
to the LU to conduct matching (line 13). The LU com-
pares and matches the BFs received from the DOs as we
describe in Section 6.3, and returns all matched record
pairs, R′, together with their similarities in line 14.

From the matched record pairs, R′, the DOs receive
from the LU, in line 15 of Algorithm 4, they use the
function getBestMatches() to identify the best matching
record pairs in R′. This is achieved in a similar way
as is shown in lines 17 onward in Algorithm 3 for the
iterative linkage method. This function uses the map-
ping table E to obtain the original record identifiers and
partition keys to group the matched record pairs into
their partitions. Record pairs with the smallest num-
ber of missing values are then identified as the final best
matches first, resulting in the set of best matching record
pairs, R, which is returned in line 16 of Algorithm 4.

6.3. Record pair comparison by the linkage unit

In Algorithm 5 we outline the steps the LU performs
for linking a pair of such lists of BFs. First, the LU
applies a blocking technique on the BFs received from
both DOs (lines 2 and 3), where we assume this block-
ing technique is a black box that groups records into
blocks [9, 37]. In line 4 the LU then identifies the com-
mon blocks that occur in the lists of BFs from both
databases, and in line 5 it loops over these blocks, g.
The nested loops in lines 6 and 7 retrieve all encrypted
record identifiers, r1.eid and r2.eid, and their corre-
sponding BFs, b1 and b2 in a block g and iterates over
all possible pairs of records in the block. The LU com-
pares the BFs for a record pair using the Dice coefficient
similarity function, simD(), given in Eq. 1, and if the re-
sulting similarity s is at least the threshold st then a pair
is classified as a match and added to the set of matches
R with its similarity s. Finally, the LU sends the set of
classified matches back to the DOs in line 11.

7. Analysis

We now analyse our approach with regard to privacy,
linkage quality, and scalability. We focus on the specific
aspects of grouping records with different missingness
patterns into partitions, encoding these partitions us-
ing different weights assigned to non-missing attributes,
and applying partition specific permutations of bit posi-
tions. For general discussions about the privacy of BF
encoding for PPRL we refer the reader to Durham et
al. [20] and Christen et al. [16, 8].

12

7.1. Privacy
We now analyse what the parties involved in our

approach can learn from the data they receive from
each other. In line with many other PPRL proto-
cols [9, 37, 38], we assume all parties follow the honest-
but-curious (HBC) adversary model [25], where how-
ever the DOs are not colluding with the LU [4].

The DOs first agree on the values of the parameters to
be used in the linkage process. While aL (list of linkage
attributes) and w (list of attribute weights) allow each
DO to learn about the common attributes in the data-
bases being linked and their importance, no sensitive in-
formation about individual records is being revealed in
this step. None of the parameters needed to generate the
BFs, nor the method of how the permutation of BFs is
conducted, and neither the similarity threshold, st, used
to classify compared RBFs as matches or non-matches,
will reveal any sensitive information.

The DOs then individually generate their own table
of missingness patterns and their local lattice, which is
used to identify the common patterns by employing a
secure set intersection protocol [19]. From this proto-
col, each DO learns which missingness patterns occur
in the database of the other DO, as well as the patterns
that cannot occur in the other database (the patterns in
the local lattice of a DO that do not occur in the com-
mon lattice). A DO does however not learn how many
records the other database contains for each pattern, nor
any sensitive information about individual records in the
other database. Knowing the patterns that are local to
the other database might leak some information that a
DO can try to exploit, as we discuss below.

The encoding of sensitive quasi-identifying attribute
values, first into ABFs [14] and then into RBFs [20], is
conducted individually by each DO. It has been shown
that RBFs are more secure than ABFs with regard to
several cryptanalysis attacks [16, 17, 18, 28]. In our ap-
proach we employ an adapted RBF method where, like
the original RBF approach [20], we sample bits and per-
mute the final BFs. However, while in the original RBF
method the full databases are encoded in the same way
(same bit positions sampled and same permutation of bit
positions applied to all BFs), in our approach we apply
different sampling (based on weight redistribution) and
different bit position permutations to each partition.

For an adversary who aims to reidentify the sensitive
values encoded in the partitions of BFs sent from the
DOs to the LU, our approach of partitioning a database
reduces the amount of frequency information available
in a full encoded database because of the partitioning
process. Given most known cryptanalysis attacks on BF
encoding for PPRL exploit frequent bit patterns in a set

of BFs [16, 17, 18, 28], our approach will therefore be
more secure compared to the original RBF approach be-
cause bit patterns in BFs cannot be analysed across par-
titions. Furthermore, in the batch approach, where all
partitions are concatenated into one single set of BFs be-
fore being sent to the LU, the LU cannot identify which
subset of BFs corresponds to a partition.

During the iterative linkage approach, and as the fi-
nal step of the batch linkage approach, the LU sends the
encrypted identifiers of those record pairs classified as
matches (with a similarity of at least st, as outlined in
Algorithm 5) back to the DOs. Because the DOs know
how the record BFs were constructed, how record iden-
tifiers were encrypted, and how missingness patterns
were grouped into a partition, they can analyse these
matched record pairs and their similarities. As with any
other PPRL protocol, for any record pair with a similar-
ity of s = 1 (an exact match), both DOs learn that they
have a record in common where all compared quasi-
identifying attributes are the same (depending upon the
missingness pattern of records in a partition). However,
as we discuss below, such information leakage does not
happen if several patterns are grouped into a partition.

For each record pair that has a similarity s < 1 (an ap-
proximate match) there are several possible cases how
this similarity was obtained. If upper grouping has been
applied (as we discussed in Section 5.4), then a similar-
ity s < 1 can occur because one of the two records has
a missing value in an attribute where the record from
the other database did not have a missing value. For
lower grouping, a similarity s < 1 means that not all at-
tribute values in the common pattern (the partition key)
were the same, because the values in some not missing
attributes from a record in a neighbouring missingness
pattern were not compared. For grouping both either of
these situations can occur.

For example, assume the common missingness pat-
tern mC = 11111 and the neighbouring pattern mN =

10111 have been grouped into a partition (using upper),
and the following three records, one (r1) from database
DA, and two (r2 and r3) from database DB:

r1 peter smith sydney 2000 nsw
r2 peter sydney 2000 nsw
r3 pedro smythe sydney 2010 nsw

The similarities for both record pairs (r1,r2) and
(r1,r3) will be below 1. For both pairs, the DO of data-
base DA cannot learn which of the above situations oc-
curred for each of the two pairs because it does not know
the missingness pattern of records from the other data-
base. Therefore, once grouping of patterns is applied to

13

form partitions, the uncertainty of what patterns records
have is making it more difficult for a curious DO to try
to identify the values in the record of the other DO in
any matching record pair that has a similarity s < 1.

One exception to this improved privacy is with group-
ing lower. Because with this method likely a smaller
number of attributes is encoded into BFs, there is a
higher chance that record pairs end up with a similar-
ity of s = 1. In the above example, if last name is not
compared, then the record pair (r1,r2) will end up with
a similarity of s = 1. As a result, the DOs will learn
which values in a subset of attributes are the same in
record pairs that have a similarity s = 1. The LU will
learn nothing besides that a record pair has a similarity
of s = 1 on a subset of attribute values, however it is not
able to learn this subset nor the actual compared values.

For grouping upper, the inclusion of BFs based on
records that have missing values, as in the above exam-
ple, will mean certain BFs will have less 1-bits com-
pared to others. However, given the generally wide
range in the lengths of name and address values (with
the exception of zipcodes), a curious LU will not be able
to distinguish those BFs that correspond to records with
a missing value in an attribute from those that do have
shorter values across their attributes. Furthermore, even
if the LU could identify which records do have a miss-
ing value, the use of BFs and sampling of bit positions
does mean no information about the not missing values
in that record is being revealed [20].

To summarise the privacy characteristics of the three
proposed grouping methods, grouping both will lead to
the largest partitions, each including several missing-
ness patterns, and therefore likely results in the high-
est uncertainty about which pattern a certain record has.
Grouping upper also provides increased uncertainty be-
cause the missingness pattern of a record still cannot
be determined with certainty if a partition does contain
several patterns. Only if a partition consists of the com-
mon missingness pattern only can a DO determine that
an exact match with similarity s = 1 means all not miss-
ing attribute values are the same in a pair of compared
records. Finally, the grouping lower method provides
the least privacy protection because less attributes are
being compared, and it will be more likely that exact
matches will occur for record pairs.

7.2. Linkage quality
As with any record linkage method, a major aspect

that determines linkage quality is the choice of suitable
quasi-identifying attributes that can be used for a link-
age [1]. The patterns of how missing values occur in
the attributes used for linkage will be the biggest factor

influencing linkage quality [3, 4, 5, 6]. In our approach,
based on the set aL of attributes used for linkage (given
as input to Algorithm 1), the maximum number of miss-
ing values, n, in this set, and the set of attributes that
cannot be missing, aR, a user can customise a linkage
based on their knowledge of both data quality and miss-
ingness patterns in the databases to be linked. A thor-
ough data exploration step to assess data quality prior to
conducting a linkage is highly recommended [1].

For PPRL based on BF encoding (assuming textual
attributes are encoded into BFs), the major parameters
that determine linkage quality are l, q, and k [14, 31].
If RBF encoding as proposed by Durham et al. [20] is
employed, as we adopt in our approach, then bit sam-
pling based on weights assigned to attributes, calculated
for example using the probabilistic record linkage ap-
proach [22], will also influence linkage quality.

Specific to our approach of handling missing values
in the attributes used for linkage, the grouping method,
g, and the corresponding Hamming distance and weight
thresholds, dt and wt, will influence how partitions
of BFs are generated, which in turn determines what
record pairs with certain missingness patterns will be
compared. Larger values for dt and wt mean more miss-
ingness patterns are grouped into a partition and there-
fore records are potentially inserted into more partitions.
This leads to more record pairs being compared and
therefore an increased chance for true matching record
pairs to be compared (higher recall), however at the cost
of potentially also more false matching pairs to be clas-
sified as matches (lower precision).

The choice of grouping method, will influence link-
age quality because it determines how records with dif-
ferent missingness patterns are grouped into partitions
and then compared by the LU.

For grouping upper, neighbouring missingness pat-
terns, mN , that are grouped with a common pattern, mC ,
in an upper lattice layer can lead to a decrease of the
number of true matching record pairs (lower recall) but
also to less false matching pairs (higher precision). This
is because the larger number of missing attribute values
in records with pattern mN means their corresponding
encoded BFs contain more 0-bits compared to records
with pattern mC . For example, if pattern mN = 10111
is grouped into a partition with pattern mC = 11111,
then all bits in the BFs that encode records with the pat-
tern 10111 will have only 0-bits for the second attribute.
This will lead to lower Dice coefficient similarities and
therefore potentially missed true matches and also less
false matches.

For grouping lower, neighbouring missing patterns,
mN , that are grouped to a common pattern, mC , in a

14

lower lattice layer (where patterns contain more miss-
ing values) can lead to an increase of the number of true
matching record pairs (higher recall) but also more false
matching pairs (lower precision). Because only the at-
tribute values that are not missing in the pattern mC are
included in the BFs generated for this partition, there
are non-missing attributes in the records with pattern mN

that are not included in these BFs. Less detailed infor-
mation from a smaller number of attributes is encoded
into BFs, potentially leading to several records having
the same or similar values in these attributes. For exam-
ple, assume two records (representing two individuals)
that have the same first and last names and the same ad-
dress, and where only their date of birth attribute has a
different value (such highly similar records are not un-
common in databases that cover large student residen-
cies). If date of birth is the attribute with missing val-
ues in mC , then these two records will become an exact
match with grouping lower, because date of birth is not
encoded in the corresponding BFs of these records.

Finally, grouping both generates partitions that in-
clude neighbouring patterns mN that are above, below,
and in the same level as a pattern mC in the lattice struc-
ture. The generated partitions will be larger than with
the two previous grouping methods, and each record
will potentially be grouped into a larger number of par-
titions. As a result, the linked data set might have an in-
creased number of true matching record pairs (higher re-
call), but potentially also a larger number of false match-
ing pairs (lower precision).

When the iterative linkage method described in Sec-
tion 6.1 is employed, the DOs can order the partitions
being generated and sent to the LU for linkage, mak-
ing sure record pairs with the lowest number of missing
attribute values are compared and matched first. This
ensures high linkage quality because once a compared
record pair is classified as a match, each DO marks
its corresponding record as matched (line 21 in Algo-
rithm 3) and therefore the record will not be considered
in later partitions (and compared with records that might
have more missing values).

With the batch linkage method, the LU compares
pairs of BFs only based on their bit patterns because
it does not know in which partition a BF occurs. This
can potentially lead to wrongly matched record pairs.
The set of all record pairs classified as matches by the
LU, R′, is returned to the DOs (in line 14 in Algo-
rithm 4). Because the DOs know the partitions in which
each BF occurs (based on the mapping table E used in
Algorithm 4), they can (as with the iterative approach),
group record pairs back into partitions and link those
pairs with the smallest number of missing values and

highest similarities first.

7.3. Scalability

In term of scalability, we analyse the complexity of
the main steps of our approach, as shown in the five al-
gorithms. The first step performed by the DOs is the
generation of ABFs and the missingness pattern table.
The complexity of this step is O(|D| · |aL|), where |D|
is the number of records in the database being encoded
and aL is the list of linkage attributes. Once the missing
pattern table, M, is generated, the DOs build their local
lattice. The maximum number of missingness patterns
(lattice nodes) is p =

∑|aL |−n
i=0

(
|aL |

i

)
, based on the param-

eter n which provides the maximum number of allowed
missing attribute values.

Using a secure intersection protocol [19] the local lat-
tices are exchanged between the DOs. The sets to be in-
tersected are of size O(p), where efficient protocols that
have a communication and computation complexity lin-
ear in the sizes of the input sets are available [19]. Once
the common lattice is obtained, each DO generates the
partitions, P, where the number of partitions is limited
by O(p) because each partition has a missingness pat-
tern from the common lattice as its key.

The iterative linkage method, shown in Algorithm 3,
loops over the partitions, and in each partition one BF is
generated per record from a maximum of |aL| attributes
used for linkage. Depending upon the grouping method
used, each record can be inserted into several partitions.
The number of neighbouring patterns to be considered
for a partition depends upon the value of the Ham-
ming distance parameter, dt. A Hamming ball is formed
around a common pattern mC where all neighbouring
patterns mN are included that have HD(mC ,mN) ≤ dt.
For dt = 1, the number of neighbouring patterns is
O(|aL|), for dt = 2 it is O(|aL|

2), and so on. The largest
number of neighbouring patterns to be grouped into a
partition will occur when grouping both is used.

If we assume each record in a database D is inserted
into |aL|

dt partitions, then the iterative linkage method
will have a worst case complexity of O(|aL|

dt · |D|) of the
total number of BFs to be generated by each DO. The
number of partitions to be sent from each DO to the LU
is O(p). In practice, however, the complexity of the iter-
ative linkage method will be much lower because once
a record has been classified as a match, it is not consid-
ered in later iterations. As a result, as more records are
matched, partitions are getting smaller.

The batch linkage method, shown in Algorithm 4,
has the same worst case complexity as the iterative
method. However, because there is only one commu-
nication step, the filtering of matched records used in

15

the iterative method cannot be applied. A single com-
munication step of O(|aL|

dt · |D|) BFs is required from
each DO to the LU.

Finally, the number of comparisons of pairs of BFs
by the LU, as outlined in Algorithm 5, depends upon
the blocking technique employed [8]. In a worst case
scenario we can assume no blocking is conducted and
every possible pair of BFs in a partition is compared.
Assuming p partitions, the number of pairs in the itera-
tive linkage method would be O((|aL|

dt · |D|)2/p), while
for the batch method it would be O((|aL|

dt · |D|)2).

8. Experimental evaluation

We now first describe the setup and then the data sets
we used to evaluate our proposed approach to deal with
missing values in the context of PPRL.

8.1. Experimental setup
In our evaluation we compared our approach with

two baseline approaches. The first baseline is the k-
nearest neighbour (named k-NN) based PPRL approach
for dealing with missing values as proposed by Chi
et al. [4]. In this approach, attribute-level Bloom fil-
ters (ABFs) are generated and used to compare records.
We calculated the ABF weight scores, selected k-NN
records, and performed the linkage as detailed by Chi et
al. [4]. We used k = [3, 5, 10] as the number of near-
est neighbour records that are similar to a record with a
missing value in a certain attribute. We then calculated
the similarities between a record with a missing value
and its k nearest neighbours using the Dice coefficient
similarity (following Eq. 1) between the corresponding
ABFs of the not missing attribute values. We obtained
very similar results for the three values of k and there-
fore we only report the results when using k = 10.

The second baseline is the record-level Bloom filter
(RBF) approach developed by Durham et al. [20]. This
approach does not consider missing values but has been
shown to obtain high linkage quality for data sets with-
out missing values. We first generated ABFs, and then
sampled bits in these ABFs based on either setting all
attribute weights equally to 1 (named EW), or by using
the Fellegi and Sunter [22] weight calculation (named
FS). The sets of sampled bits are then concatenated and
permuted to generate one RBF per record.

For both the baselines and our proposed approach, we
generated ABFs of length l = 1,000 for each attribute
using q-grams of length q = 2, and setting the number
of hash functions to optimal such that around half of all
bits in the ABFs are set to 1 [31]. As with the RBF base-
line, we set the attribute weights, w, in Algorithm 1, to

be either all equal (EW) or to weights calculated using
the approach by Fellegi and Sunter (FS) [22].

We compared the baseline approaches with both the
iterative and batch methods discussed in Section 6,
where we applied the three grouping methods upper,
lower, and both (as per Definition 2). We also ran ex-
periments without any grouping (named No group) to
evaluate the impact of grouping on the obtained link-
age quality. For our linkage methods we set the pa-
rameters dt = [1, 2, 3], wt = [1, 2, 3] for the EW, and
wt = [7, 14, 21] for the FS weighting approach based on
a series of set-up experiments to find suitable weights.

In term of linkage quality, we used precision (ratio
of correctly classified true matches over all classified
matches) and recall (ratio of classified true matches over
all true matches) [39]. We show precision and recall
at different similarity thresholds st ranging from 0.5 to
1.0 in 0.1 steps, and measured results as precision-recall
plots. We also show runtimes to evaluate the scalability
of our approach as compared to the baselines.

To evaluate privacy, we used the cryptanalysis attack
proposed by Christen et al. [16]. This attack aligns fre-
quent BFs and plaintext values in a public database G
with the aim to reidentify the most frequent values en-
coded in these BFs. We assume the LU acts as the ad-
versary and tries to reidentify the attribute values en-
coded in the BFs sent to it by the DOs [16, 17, 18]. We
conducted this attack assuming the worst-case scenario
of the adversary gaining access to a database D of one
DO, where D ≡ G, and trying to reidentify the values in
D by using the BFs of the other DO. However, such an
attack is unlikely in practice since the DOs do not send
their own plaintext databases to any other party.

We implemented all approaches using Python 2.7 and
ran experiments on a server with 2.4 GHz CPUs running
Ubuntu 16.04. We will make our programs and data sets
available to facilitate repeatability.

8.2. Generating data sets with missing values

To provide a realistic evaluation of our approach, we
based all our experiments on a large real-world data-
base, the North Carolina Voter Registration (NCVR)
database as available from: http://dl.ncsbe.gov/.
We used FirstName, MiddleName, LastName, Stree-
tAddress, City, and ZipCode, as the set of linkage at-
tributes, aL, because these are commonly used as quasi-
identifiers in record linkage [1, 9, 14, 20].

To allow the evaluation of our approach on different
database sizes and with data of different quality, we gen-
erated pairs of data sets by extracting records in a snap-
shot of the NCVR database from October 2019 with

16

http://dl.ncsbe.gov/

Table 1: Number of records with missing values in the given attributes for the two data sets 100,000 records, where K = 1,000 records. Both data
sets with 0% or 20% levels of corruption have the same numbers of records with missing values in the given attributes.

Data set FirstName MiddleName LastName StreetAddress City ZipCode

No missing layer, 20% missing 0 / 0 11K / 11K 12K / 12K 6K / 10K 10K / 8K 0 / 0
No missing layer, 50% missing 0 / 0 27K / 27K 30K / 30K 15K / 25K 25K / 20K 0 / 0
With missing layer, 20% missing 0 / 0 13K / 7K 13K / 14K 4K / 13K 11K / 7K 0 / 0
With missing layer, 50% missing 0 / 0 34K / 19K 34K / 34K 11K / 34K 27K / 19K 0 / 0

Table 2: Missingness patterns and their numbers of records in the data
set pairs with 100,000 records, where K = 1,000 records, and the miss-
ingness pattern corresponds to quasi-identifying attributes FirstName,
MiddleName, LastName, StreetAddress, City, and ZipCode.

Pattern Without missing layer With missing layer

20% miss 50% miss 20% miss 50% miss

111111 80K / 80K 50K / 50K 80K / 80K 50K / 50K
101111 2K / 2K 5K / 5K 0 / 0 0 / 0
110111 2K / 2K 5K / 5K 3K / 4K 8K / 8K
111011 2K / 0 5K / 0 0 / 0 0 / 0
111101 2K / 2K 5K / 5K 4K / 3K 8K / 8K
100111 2K / 2K 5K / 5K 3K / 0 8K / 0
101101 2K / 0 5K / 0 3K / 0 8K / 0
101011 0 / 2K 0 / 5K 0 / 3K 0 / 8K
110101 2K / 2K 5K / 5K 0 / 0 0 / 0
110011 0 / 2K 0 / 5K 0 / 3K 0 / 8K
100011 2K / 2K 5K / 5K 3K / 3K 7K / 7K
100101 2K / 0 5K / 0 3K / 0 7K / 0
101001 0 / 2K 0 / 5K 0 / 0 0 / 0
110001 1K / 1K 3K / 3K 0 / 3K 0 / 7K
100001 1K / 1K 2K / 2K 1K / 1K 4K / 4K

7.6 million voter records. We modified the GeCo data
corruptor [40] to generate various data sets with differ-
ent data quality characteristics. During the corruption
process we kept the identifiers (VoterID) of the selected
and modified records, which allowed us to identify true
matches and calculate linkage quality.

We generated pairs of data sets from the NCVR
database that contained 50,000, 100,000, 500,000, and
1,000,000 records, respectively. For each size, we gen-
erated data set pairs that had 100% matching records
(records with the same VoterID), where we then gener-
ated a corrupted version of these data sets by applying
various corruption functions [40] on between 1 to 3 ran-
domly selected attribute values on 20% of all records.
As a result, while 80% of true matching record pairs
were exact duplicates the remaining 20% of pairs were
only approximate matching.

We then introduced missing values into 20% and
50% of records, respectively, for the quasi-identifying
attributes MiddleName, LastName, StreetAddress, and

City. We did not introduce any missing values into
FirstName and ZipCode in order to be able to use these
for blocking (to ensure blocking is not affected by miss-
ing values). Note that true matching record pairs can
have the same or different missingness patterns in their
quasi-identifying attributes.

We introduced different missingness patterns into the
generated data sets to allow us to evaluate our proposed
approach under two scenarios: (1) missing completely
at random (MCAR), and (2) missing at random (MAR),
as we discussed in Section 3.1. For MCAR, for each
missingness pattern we randomly sampled a subset of
records from a data set and introduced missing values
into the corresponding attributes according to that miss-
ingness pattern. This ensures missing values are intro-
duced into records without any patterns or correlations
with any other attribute values in the same record.

For MAR, we introduced missingness patterns ac-
cording to the ZipCode attribute by first randomly sam-
pling subsets of records according to the different Zip-
Code values they have. Next, we selected a missingness
pattern randomly for each such subset of records and
then introduced missing values into the corresponding
attributes according to that pattern. As a result, in the
MAR data sets the missingness patterns are correlated
with the values in the ZipCode attribute.

We also generated pairs of data sets that resulted in
a common lattice that either had all layers in common
or not, corresponding to types (2) and (3) of common
lattices as we illustrated in Figs. 5 and 6.

In total we generated 64 data set pairs, 16 pairs for
each of the four data set sizes. For each size we have
generated eight pairs of MCAR and eight pairs of MAR
data sets, four pairs each where missingness patterns re-
sult in a missing layer and four pairs that had missing-
ness patterns in all lattice layers. Each of these four
pairs consists of two with 0% and 20% corruptions, one
each with 20% and 50% missing values, respectively.

Table 1 shows the number of records containing miss-
ing values in certain attributes in the data sets contain-
ing 100,000 records, and Table 2 shows the numbers of
records with a specific missingness pattern in these data

17

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Iterative dt=1

Iterative dt=2

Iterative dt=3

Batch dt=1

Batch dt=2

Batch dt=3

Group upper / MCAR / No missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group upper / MCAR / Missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group upper / MAR / No missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group upper / MAR / Missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group lower / MCAR / No missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group lower / MCAR / Missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group lower / MAR / No missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group lower / MAR / Missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Group both / MCAR / No missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group both / MCAR / Missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group both / MAR / No missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group both / MAR / Missing layer

Figure 7: Precision and recall of the iterative and batch methods for different Hamming distance thresholds, dt , for the different grouping methods
(row-wise), and with MCAR in the left two and MAR in the right two columns (both with and without missing layers of patterns).

sets. The number of records with a certain missingness
pattern are the same for MCAR and MAR data sets.

9. Results and discussion

We now present and discuss our results, starting with
the linkage quality results we obtained with our ap-
proach compared to the baseline approaches, followed
by a discussion of runtime results. We then assess the
privacy of our approach compared to the baselines using
a recently proposed attack method [16].

9.1. Linkage quality results

In Fig. 7 we show precision and recall results for
our iterative and batch linkage approaches for different
Hamming distance thresholds, dt. As can be seen, our
approaches generally provide higher recall when dt is
increased because more missingness patterns (and their
corresponded BFs) are grouped into a partition.

With the upper grouping method, patterns with more
missing attribute values are grouped into partition(s)
with less missing attribute values, and this can result
in more BF pairs being classified as non-matches be-
cause they have lower numbers of 1-bits, potentially in-
creasing the number of missed matches. With lower
grouping, on the other hand, patterns with less missing
attribute values are grouped into partitions that contain
more missing values in their records. The correspond-
ing BFs are constructed using less attributes which leads
to an increase in the number of false matches when
similarity thresholds are low, especially with data sets
that contain a missing layer. This results in grouping
lower to provide more false matches (but also more true
matches) compared to grouping upper. As can be seen
in the grouping lower plots in Fig. 7, recall values are
generally higher than with grouping upper. The best re-
sults are obtained with grouping both, where each pat-
tern is grouped with both of its neighbouring upper and
lower partitions according to the missingness patterns.

18

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Group upper / MCAR / No missing layer

EW MVBF

FS MVBF

No-group

EW RBF

FS RBF

k-NNs

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group upper / MCAR / Missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group upper / MAR / No missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group upper / MAR / Missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group lower / MCAR / No missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group lower / MCAR / Missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group lower / MAR / No missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group lower / MAR / Missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

Group both / MCAR / No missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group both / MCAR / Missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group both / MAR / No missing layer

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

Group both / MAR / Missing layer

Figure 8: Precision and recall of our approach (named MVBF) as averaged over the iterative and batch methods, and the different data sets we
described in Section 8 (different missingness and corruption percentages), for the different grouping methods (row-wise). We also show the baseline
approaches RBF and k-NN, and our approach without any grouping applied (No group). Results for the data sets with MCAR are shown in the left
two and MAR in the right two columns. EW refers to equal and FS to Fellegi-Sunter attribute weighting as discussed in Section 8.

Comparing the iterative and batch linkage methods,
grouping upper provides similar results for both. How-
ever, iterative linkage slightly outperforms batch link-
age when the two other grouping methods are used.
This is because with batch linkage matched pairs of BFs
cannot be removed after each iteration. The best match
selection method employed by the DOs, described in
Section 6.2, leads to a slightly lower recall because it
generally identifies only the best one-to-one matching
BF pairs. With the iterative linkage method, one-to-
many matches can occur within the same partition be-
cause the LU classifies matches rather than the DOs.

As can be seen in both Figs. 7 and 8, rather un-
expectedly recall becomes lower for the lower group-
ing method for lower similarity thresholds (while one
would expect recall to increase with lower thresholds).
This is because true matching record pairs that do con-
tain missing values will occur in partitions that are han-
dled in later iterations. However, because less attributes
are compared with the lower grouping method, more

false matches are classified in the earlier iterations, and
once such records are matched they are removed from
later iterations (and therefore not compared to their true
matching record in the other database).

In Fig. 8 we compare our approach to the RBF [20]
and k-NN [4] baselines, as well as our approach without
any pattern grouping applied (where only common pat-
terns are compared, each as its own partition). As can
be seen from this figure, the influence of the weight-
ing approach (equal (EW) or based on the Fellegi and
Sunter [22] (FS) weight calculation) is small, with FS
outperforming EW in only some experiments (obtain-
ing higher precision and slightly reduced recall). Our
approach without grouping (No group) leads to low re-
call results, which shows the importance of grouping
patterns. Without grouping patterns into partitions, true
matching record pairs that have different missingness
patterns in each of their two records will not be com-
pared because they are inserted into different partitions.

19

Table 3: Average runtimes (in seconds) used by a database owner (DO) and the linkage unit (LU) for linking data sets of different sizes using the
different linkage approaches. * indicates estimated runtimes (using linear regression) for the batch method for the data sets with 1 million records.

Linkage approach 50,000 100,000 500,000 1,000,000
DO / LU DO / LU DO / LU DO / LU

RBF 364.5 / 0.4 1101.4 / 1.9 4959.0 / 41.1 9681.2 / 135.9

k-NN 2509.9 / 510.4 7233.4 / 1655.7 99626.0 / 37433.5 190486.3 / 151605.8

Iterative, g = upper
dt = 1 529.1 / 0.6 616.4 / 0.8 5320.8 / 14.5 8465.8 / 38.5
dt = 2 673.7 / 0.8 978.0 / 1.2 5641.7 / 13.0 11652.4 / 42.3
dt = 3 625.7 / 0.7 1080.3 / 1.3 6275.7 / 12.4 11233.3 / 37.6

Iterative, g = lower
dt = 1 682.0 / 0.6 808.9 / 0.9 7031.5 / 14.6 12163.7 / 35.4
dt = 2 892.0 / 0.7 1328.9 / 1.2 7876.5 / 12.1 14513.8 / 28.1
dt = 3 922.3 / 0.7 1556.3 / 1.4 9165.7 / 11.0 16577.8 / 33.2

Iterative, g = both
dt = 1 733.5 / 0.6 857.7 / 0.9 7260.0 / 15.3 11773.2 / 31.3
dt = 2 851.7 / 0.7 1465.1 / 1.3 8360.8 / 12.8 15531.3 / 33.4
dt = 3 1002.1 / 0.8 1679.1 / 1.3 9120.1 / 12.5 17429.8 / 35.5

Batch, g = upper
dt = 1 2160.9 / 0.4 4110.4 / 0.8 68946.5 / 11.4 145438.6* / 24.0*
dt = 2 3220.6 / 0.7 8225.3 / 1.3 117859.8 / 21.6 248467.7* / 45.5*
dt = 3 3523.8 / 0.7 10029.4 / 1.6 134283.4 / 18.3 282924.1* / 38.4*

Batch, g = lower
dt = 1 4226.1 / 1.8 10374.7 / 4.1 153330.5 / 54.7 323355.7* / 114.9*
dt = 2 5604.4 / 2.4 15028.0 / 6.1 216800.7 / 101.2 457330.3* / 214.0*
dt = 3 7872.4 / 4.0 21502.2 / 9.5 268216.0 / 190.5 563877.9* / 404.1*

Batch, g = both
dt = 1 4363.9 / 1.9 11255.4 / 3.8 157145.9 / 56.5 331116.9* / 119.0*
dt = 2 5942.3 / 2.7 18343.7 / 9.1 229025.5 / 105.6 482070.6* / 222.1*
dt = 3 8996.9 / 4.4 24915.9 / 10.3 276997.2 / 168.5 580565.6* / 356.0*

The k-NN baseline [4], the only previously proposed
PPRL method that can handle missing values, generally
shows both lower precision and recall results compared
to our approach. The k-NN method results in higher
numbers of false matches (lower precision) because the
imputation of missing attribute values based on the k
nearest neighbours for a record with missing values is
not always correct. This indicates that the k-NN ap-
proach is highly sensitive with regard to this imputa-
tion process. This is especially the case for lower simi-
larity thresholds where the k-NN approach more likely
will select less similar neighbouring records that will
result in incorrect matched record pairs. As can be also
seen, k-NN performs better on the MAR compared to
the MCAR data sets, which is because MAR results in
groups of records that have more similar neighbouring
records with the same missingness pattern. It therefore
seems that the k-NN approach performs best on data-
bases that contain similar groups of records, such as
families or households in census data. For databases
that do not contain such groups, the k-NN approach
might not be applicable in realistic scenarios.

As can also be seen from Fig. 8, the RBF base-
line [20] resulted in more missed matches for these
databases that contain missing values. This is because
the generated RBFs contain 0-bits sampled from those

ABFs that correspond to attributes with missing val-
ues. This results in reduced similarities between record
pairs, which potentially increases the number of missed
true matches and can lead to lower recall. On the other
hand, with low similarity thresholds, more RBF pairs
are classified as matches because the non-missing at-
tributes are still being compared without an adjustment
of the weights assigned to attributes. This results in
higher similarities and therefore more false matches.

Furthermore, as can be seen in both Figs. 7 and 8,
the linkage results obtained with the MAR data sets are
generally better than with the MCAR data sets. This is
because records in the MAR data sets have been gener-
ated such that they have the same missingness patterns
if they have the same ZipCode value. This indicates that
our grouping based approach can make use of MAR pat-
terns leading to improved linkage quality results.

9.2. Runtime results

Table 3 shows the average runtimes required by a
database owner (DO) and the linkage unit (LU) for the
different linkage approaches. As expected, the itera-
tive linkage method consumes less runtime compared
to the batch linkage method because after each itera-
tion record pairs classified as matches are removed, and

20

Table 4: Average number of records sent to the linkage unit in the batch linkage method on the MCAR data sets of different sizes.

Grouping method Number of records dt = 1 dt = 2 dt = 3

g = upper

50,000 62,250 / 58,250 103,625 / 103,876 112,625 / 113,501
100,000 124,500 / 116,500 207,250 / 207,750 225,250 / 227,000
500,000 622,501 / 582,500 1,036,251 / 1,038,750 1,126,251 / 1,135,000
1,000,000 1,247,501 / 1,170,001 2,096,251 / 2,101,251 2,277,501 / 2,295,001

g = lower

50,000 136,000 / 140,000 208,500 / 205,875 265,875 / 262,375
100,000 272,000 / 280,000 417,000 / 411,750 531,750 / 524,750
500,000 1,360,000 / 1,400,000 2,085,000 / 2,058,750 2,658,750 / 2,623,750
1,000,000 2,822,500 / 2,900,000 4,280,001 / 4,225,001 5,427,500 / 5,355,000

g = both

50,000 154,875 / 154,875 250,125 / 249,501 316,500 / 315,625
100,000 309,750 / 309,750 500,250 / 499,000 633,000 / 631,250
500,000 1,548,750 / 1,548,750 2,501,251 / 2,495,000 3,165,001 / 3,156,250
1,000,000 3,200,000 / 3,202,500 5,126,251 / 5,113,751 6,455,001 / 6,437,501

therefore less records are included in the following par-
titions. On the other hand, with the batch method the
whole database is sent to the LU once only, where each
record likely occurs in multiple partitions.

This is illustrated in Table 4, where we show the av-
erage number of records that each DO sends to the LU
for the MCAR data sets generated using the batch link-
age method. As can be seen, the number of records
increases as the Hamming distance threshold, dt, is in-
creased because this means a record with a certain miss-
ingness pattern will be inserted into a larger number of
partitions. As can also be seen, for the data sets with
1 million records and using grouping both, less than 7
million RBFs are being generated, resulting in a less
than seven-fold overhead of the batch method.

As can be seen from Table 3, runtimes are higher for
grouping lower compared to grouping upper for the iter-
ative linkage method. This is because with grouping up-
per the first partition will contain more BFs (from par-
titions that contain more missing attribute values) com-
pared to grouping lower, and more BFs will be matched
in the first iteration. As a result, these BFs will not be
included in later partitions. With the grouping lower
method, however, a smaller partition is processed in the
first iteration, and BFs with different missingness pat-
terns will be included in later iterations, which therefore
become larger because BFs are only matched later. This
results in overall longer runtimes for grouping lower.

With grouping both, we obtain runtime results com-
parable to the grouping lower method. These runtimes
depend upon how many records in the first partition,
which is generally the largest, are classified as matches
and are therefore removed. Given grouping both has
shown to achieve the best linkage results, as we dis-
cussed in Section 9.1, we recommend to use this group-

ing method over the others (for both the iterative and
batch linkage methods).

For the iterative approach no clear increase in run-
times with larger dt is observable. This is due to the
iterative processing of partitions, where with larger val-
ues of dt more BFs are part of the first partition. These
BFs can be classified as matches and removed, resulting
in smaller partitions from the second iteration onward.

Besides the grouping method and Hamming distance
threshold, dt, the actual similarities between BFs also
affect runtimes. As can be seen from Table 3, the LU
requires higher runtimes with upper than lower because
the LU compares more BF pairs in the first partition,
and where the not similar pairs (that are not classified as
matches) are again included in the following partitions.
Even for dt = 1 does the LU require longer runtimes
because smaller partitions are generated and therefore
less BF pairs can be matched in the earlier iterations.

Comparing our approach with the baseline ap-
proaches, the RBF approach resulted in the lowest run-
time because each record is only encoded into one RBF
and then sent to the LU once for comparison. How-
ever, the k-NN approach resulted in substantially higher
runtimes compared to the other approaches because of
the similarity calculations it is conducting across corre-
sponding (k = 10) nearest neighbouring records for each
record that contains a missing value. The high com-
putational efforts by the DOs are because they need to
identify the k nearest neighbours for each record with a
missing attribute value, and then calculate the similarity
estimate for that missing value. The LU requires more
runtime because it needs to calculate the weight summa-
tion of the k neighbours for every missing attribute value
(based on the 1-bit positions in the correspond ABFs in
the other database), where these weights are then incor-
porated into the similarity calculations.

21

10 20 50 100
Number of frequent values

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
e-

id
en

tif
ic

at
io

n Group upper
1-1 corr
1-m corr

Wrong
No

Batch
Iterative

K-NN
RBF

Re-identification percentage (MCAR)

10 20 50 100
Number of frequent values

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
e-

id
en

tif
ic

at
io

n Group lower
1-1 corr
1-m corr

Wrong
No

Batch
Iterative

K-NN
RBF

Re-identification percentage (MCAR)

10 20 50 100
Number of frequent values

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f r
e-

id
en

tif
ic

at
io

n Group both
1-1 corr
1-m corr

Wrong
No

Batch
Iterative

K-NN
RBF

Re-identification percentage (MCAR)

10 20 50 100
Number of frequent values

0

20

40

60

80

100

Pe
rc
en
ta
ge
 o
f r
e-
id
en
tif
ic
at
io
n Group upper

1-1 corr
1-m corr

Wrong
No

Batch
Iterative

K-NN
RBF

Re-identification percentage (MAR)

10 20 50 100
Number of frequent values

0

20

40

60

80

100
Pe
rc
en
ta
ge
 o
f r
e-
id
en
tif
ic
at
io
n Group lower

1-1 corr
1-m corr

Wrong
No

Batch
Iterative

K-NN
RBF

Re-identification percentage (MAR)

10 20 50 100
Number of frequent values

0

20

40

60

80

100

Pe
rc
en
ta
ge
 o
f r
e-
id
en
tif
ic
at
io
n Group both

1-1 corr
1-m corr

Wrong
No

Batch
Iterative

K-NN
RBF

Re-identification percentage (MAR)

Figure 9: Reidentification results for the MCAR (top row) and MAR (bottom row) data sets, where grouping upper (left column), grouping lower
(middle column), and grouping both (right column) were applied. The bars show the percentages of BFs for which attribute values were reidentified
either correctly with only 1 (1-1 corr) or several (1-m corr) values, or wrong or no attribute value(s) were reidentified.

9.3. Privacy results
Figure 9 shows the reidentification results using the

frequency-alignment based cryptanalysis attack pro-
posed by Christen et al. [16] applied on all evaluated
approaches with both the MCAR and MAR data sets.
We assessed the reidentification accuracy of the attack
by calculating the percentages of (1) correctly reiden-
tified attribute values encoded into BFs as one-to-one
matches (one BF is correctly assigned to the plaintext
value that was encoded into it); (2) correct guesses with
one-to-many matches (a BF is assigned to several plain-
text values and one of these values was the correct one
encoded in the BF); (3) wrong guesses (a BF did not en-
code any of the plaintext values assigned to it); and (4)
no guesses (the attack was not able to assign any plain-
text values to a BF). We considered the accuracy of the
attack on the 10, 20, 50, and 100 most frequent attribute
values from the plaintext data set, respectively [16].

As can be seen from Fig. 9, due to the grouping
of BFs with different missingness patterns into parti-
tions the attack cannot correctly identify any one-to-
one matches between BFs and plaintext values in our
approach. The attack is able to identify a larger num-
ber of one-to-many matches between BFs and plaintext
records with the MAR data sets compared to MCAR
data sets. This is because records with similar missing-
ness patterns can generate similar BFs which allows the
attack to match them to plaintext values. However, since
the number of records that share the same missingness
pattern is large the attack cannot identify any one-to-one
matches between BFs and plaintext values.

As Fig. 9 shows, the k-NN baseline provides the
weakest privacy protection (the attack achieved the best
reidentification results) for both MCAR and MAR data
sets with one-to-one correct reidentifications for the
10 most frequent values. Because the k-NN approach
is based on ABFs, the attack can successfully align
frequent plaintext values to their corresponding ABFs
which allows correct reidentifications. These results
highlight the weaknesses of ABFs and therefore the k-
NN approach which relies on this encoding method. In
contrast to k-NN, RBF encoding (which we use in our
approach) provides more privacy due to the weight dis-
tribution and random bit sampling process it uses. The
reidentification results show that our approach provides
stronger privacy compared to the baselines which makes
it more applicable in realistic PPRL scenarios.

10. Conclusions and future work

We have presented a novel approach to consider miss-
ing values in privacy-preserving record linkage (PPRL)
using record-level Bloom filter (BF) encoding. Our ap-
proach is based on a lattice of missingness patterns,
from which partitions of BFs are generated. Each record
can be inserted into multiple partitions using different
grouping methods, which ensures records with different
missingness patterns will be appropriately compared.
We conducted an extensive analysis and experimental
evaluation of our approach with databases of different
sizes and with different patterns and numbers of miss-
ing values. Our results show that our approach can

22

achieve high linkage quality, where it substantially out-
performs two baseline approaches while providing pri-
vacy against cryptanalysis attacks. As future work, we
aim to extend our experiments to data sets with other
missing types of data, such as missing not at random.
We also aim to improve the scalability of our approach
by applying filtering to remove redundant record com-
parisons in the batch linkage method.

Acknowledgements

This research has been partially funded by the Aus-
tralian Research Council under project DP160101934.
We like to thank Anushka Vidanage for his assistance.

References
[1] P. Christen, Data Matching – Concepts and Techniques for

Record Linkage, Entity Resolution, and Duplicate Detection,
Springer, Heidelberg, 2012.

[2] T. N. Herzog, F. J. Scheuren, W. E. Winkler, Data Quality and
Record Linkage Techniques, Springer, New York, 2007.

[3] I. C. Anindya, M. Kantarcioglu, B. Malin, Determining the
impact of missing values on blocking in record linkage, in:
PAKDD, Melbourne, 2019, pp. 262–274.

[4] Y. Chi, J. Hong, A. Jurek, W. Liu, D. O’Reilly, Privacy preserv-
ing record linkage in the presence of missing values, Elsevier IS
71 (2017) 199–210.

[5] J. Ferguson, A. Hannigan, A. Stack, A new computationally ef-
ficient algorithm for record linkage with field dependency and
missing data imputation, Elsevier IJMI 109 (2018) 70–75.

[6] H. Goldstein, K. Harron, Record linkage: a missing data prob-
lem, Methodological Developments in Data Linkage (2015).

[7] T. C. Ong, M. V. Mannino, L. M. Schilling, M. G. Kahn, Im-
proving record linkage performance in the presence of missing
linkage data, Elsevier JBI 52 (2014) 43–54.

[8] P. Christen, T. Ranbaduge, R. Schnell, Linking Sensitive Data –
Methods and Techniques for Practical Privacy-Preserving Infor-
mation Sharing, Springer, Heidelberg, 2020.

[9] D. Vatsalan, P. Christen, V. Verykios, A taxonomy of privacy-
preserving record linkage techniques, Information Systems
38 (6) (2013) 946–969.

[10] A. Gkoulalas-Divanis, D. Vatsalan, D. Karapiperis, M. Kantar-
cioglu, Modern privacy-preserving record linkage techniques:
An overview, IEEE TIFS (2021).

[11] R. Pita, C. Pinto, S. Sena, R. Fiaccone, L. Amorim, S. Reis,
M. Barreto, S. Denaxas, M. Barreto, On the accuracy and scala-
bility of probabilistic data linkage over the Brazilian 114 million
cohort, IEEE JBHI 22 (2) (2018) 346–353.

[12] S. Randall, A. Ferrante, J. Boyd, et al., Privacy-preserving
record linkage on large real world datasets, Elsevier JBI 50
(2014) 205–212.

[13] K. Schmidlin, K. M. Clough-Gorr, A. Spoerri, Privacy preserv-
ing probabilistic record linkage (P3RL): a novel method for link-
ing existing health-related data and maintaining participant con-
fidentiality, BMC MRM 15 (1) (2015) 46.

[14] R. Schnell, T. Bachteler, R. J., Privacy-preserving record linkage
using Bloom filters, BMC MIDM 9 (1) (2009).

[15] B. Bloom, Space/time trade-offs in hash coding with allowable
errors, ACM CACM 13 (7) (1970) 422–426.

[16] P. Christen, T. Ranbaduge, D. Vatsalan, et al., Precise and fast
cryptanalysis for Bloom filter based privacy-preserving record
linkage, IEEE TKDE 31 (11) (2018) 2164–2177.

[17] M. Kuzu, M. Kantarcioglu, E. Durham, B. Malin, A constraint
satisfaction cryptanalysis of Bloom filters in private record link-
age, in: PETS, Waterloo, Canada, 2011, pp. 226–245.

[18] F. Niedermeyer, S. Steinmetzer, M. Kroll, R. Schnell, Cryptanal-
ysis of basic Bloom filters used for privacy preserving record
linkage, JPC (2014).

[19] C. Dong, L. Chen, Z. Wen, When private set intersection meets
big data: an efficient and scalable protocol, in: ACM SIGSAC,
Berlin, 2013, pp. 789–800.

[20] E. A. Durham, M. Kantarcioglu, Y. Xue, C. Toth, M. Kuzu,
B. Malin, Composite bloom filters for secure record linkage,
IEEE TKDE 26 (12) (2014) 2956–2968.

[21] H. Newcombe, J. Kennedy, S. Axford, A. James, Automatic
linkage of vital records, Science 130 (3381) (1959) 954–959.

[22] I. P. Fellegi, A. B. Sunter, A theory for record linkage, JASA
64 (328) (1969) 1183–1210.

[23] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likeli-
hood from incomplete data via the EM algorithm, Wiley JRSS-B
39 (1) (1977) 1–22.

[24] L. Dusserre, C. Quantin, H. Bouzelat, A one way public key
cryptosystem for the linkage of nominal files in epidemiological
studies, Medinfo 8 (1995) 644–647.

[25] Y. Lindell, B. Pinkas, Secure multiparty computation for
privacy-preserving data mining, JPC 1 (1) (2009).

[26] M. Kantarcioglu, A. Inan, W. Jiang, B. Malin, Formal
anonymity models for efficient privacy-preserving joins, Else-
vier DKE 68 (11) (2009) 1206–1223.

[27] D. Vatsalan, P. Christen, Scalable privacy-preserving record
linkage for multiple databases, in: ACM CIKM, Shanghai,
2014, pp. 1795–1798.

[28] A. Vidanage, T. Ranbaduge, P. Christen, R. Schnell, Effi-
cient pattern mining based cryptanalysis for privacy-preserving
record linkage, in: IEEE ICDE, Macau, 2019, pp. 1698–1701.

[29] R. J. A. Little, D. B. Rubin, Statistical Analysis with Missing
Data, 3rd Edition, Wiley, Hoboken, 2020.

[30] J. Han, M. Kamber, Data mining: concepts and techniques, 2nd
Edition, Morgan Kaufmann, 2006.

[31] D. Vatsalan, P. Christen, Privacy-preserving matching of similar
patients, Elsevier JBI (2016).

[32] D. Karapiperis, A. Gkoulalas-Divanis, V. S. Verykios, FED-
ERAL: A framework for distance-aware privacy-preserving
record linkage, IEEE TKDE 30 (2) (2017) 292–304.

[33] R. Schnell, C. Borgs, Encoding hierarchical classification codes
for privacy-preserving record linkage using Bloom filters, in:
ECML/PKDD DINA, Würzburg, 2019, pp. 142–156.

[34] T. Ranbaduge, R. Schnell, Securing Bloom filters for privacy-
preserving record linkage, in: ACM CIKM, Galway, 2020, pp.
2185–2188.

[35] M. Kroll, S. Steinmetzer, Cryptanalysis of Bloom filter en-
cryptions of databases with several personal identifiers, in:
BIOSTEC, Lisbon, 2015, pp. 341–356.

[36] R. Schnell, T. Bachteler, J. Reiher, A novel error-tolerant anony-
mous linking code, Working paper, GRLC (2011).

[37] D. Karapiperis, V. S. Verykios, An LSH-based blocking ap-
proach with a homomorphic matching technique for privacy-
preserving record linkage, IEEE TKDE 27 (4) (2015) 909–921.

[38] M. Kuzu, M. Kantarcioglu, A. Inan, E. Bertino, E. Durham,
B. Malin, Efficient privacy-aware record integration, in: EDBT,
Genoa, 2013, pp. 167–178.

[39] D. Hand, P. Christen, A note on using the F-measure for evalu-
ating record linkage algorithms, Stat Comput 28 (3) (2018).

[40] P. Christen, D. Vatsalan, Flexible and extensible generation and
corruption of personal data, in: ACM CIKM, San Francisco,
2013, pp. 1165–1168.

23

	Introduction
	Related work
	Background
	Missing data
	Lattice structure to represent missingness patterns
	Bloom filter encoding

	Protocol overview
	Encoding and missing pattern processing steps
	Attribute-level Bloom filter generation
	Missing pattern table generation
	Lattice generation and finding common patterns
	Grouping missingness patterns into partitions

	Linkage steps
	Iterative linkage
	Batch linkage
	Record pair comparison by the linkage unit

	Analysis
	Privacy
	Linkage quality
	Scalability

	Experimental evaluation
	Experimental setup
	Generating data sets with missing values

	Results and discussion
	Linkage quality results
	Runtime results
	Privacy results

	Conclusions and future work

