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Abstract The task of calculating similarities between

strings held by different organisations without reveal-

ing these strings is an increasingly important problem

in areas such as health informatics, national censuses,
genomics, and fraud detection. Most existing privacy-

preserving string matching approaches are either based

on comparing sets of encoded characters allowing only
exact matching of encoded strings, or they are aimed

at long genomics sequences that have a small alpha-

bet. The set-based privacy-preserving similarity func-
tions that are commonly used to compare name and ad-

dress strings in the context of privacy-preserving record

linkage do not take the positions of sub-strings into ac-

count. As a result, two very different strings can po-
tentially be considered as a match leading to wrongly

linked records. Furthermore, existing set-based tech-

niques cannot identify the length of the longest common
sub-string across two strings. In this paper we propose

two new approaches for accurate and efficient privacy-

preserving string matching that provide privacy against
various attacks. In the first approach we apply hashing

based encoding on sub-strings (q-grams) to compare

sensitive strings, while in the second approach we gen-

erate one bit array from the sub-strings of a string to
identify the longest common bit sequences. We evalu-

ate our approaches on several data sets with different

types of strings, and validate their privacy, accuracy,
and complexity compared to three baseline techniques,

showing that they outperform all baselines.

Sirintra Vaiwsri · Peter Christen
School of Computing, The Australian National Uni-
versity, Canberra ACT 2600, Australia; E-mail: sirin-
tra.vaiwsri@anu.edu.au, peter.christen@anu.edu.au

Thilina Ranbaduge
Data61, Black Mountain, Canberra ACT 2600, Australia;
E-mail: thilina.ranbaduge@data61.csiro.au

Keywords Secure hash encoding · Bit array encoding ·
String comparison · Privacy-preserving record linkage ·
Bloom filter encoding

1 Introduction

In application domains such as banking, health, bioin-
formatics, and national security, it has become an in-

creasingly important aspect in decision making activi-

ties to integrate information from multiple databases [11,

19,56]. Integrating databases can help to identify and
link similar records that correspond to the same entity,

a task known as record linkage [9]. This in turn can fa-

cilitate efficient and effective data analysis that is not
possible on an individual database.

Increasingly, record linkage needs to be conducted

across databases held by different organisations [59],

where the complementary information held by these or-
ganisations can, for example, help to identify patient

groups that are susceptible to certain adverse drug re-

actions (linking doctor, hospital, and pharmacy data-
bases), or detect welfare cheats (linking taxation with

employment and social security databases). However, in

many of these applications the databases to be linked
contain sensitive information about people which can-

not be shared between the organisations that are in-

volved in a linkage protocol [11,59]. Similarly, in the

bioinformatics domain the comparison of genomics data
often raises confidentiality concern as genomics sequences

might contain proprietary information and such data

are often highly sensitive in nature [51].

Research in the area of privacy-preserving record

linkage (PPRL) [58] aims to develop techniques for link-

ing databases without the need of sharing the original

(unencoded) sensitive values between the organisations



2 Sirintra Vaiwsri, Thilina Ranbaduge, and Peter Christen

Table 1 Example string pairs from a real US voter data-
base [10] that have the same set of q-grams with q = 2 (bi-
grams), and therefore Jaccard or Dice co-efficient similarities
of 1.0. On the other hand, their edit distance similarities [9]
are (correctly) much lower.

Attribute String 1 String 2 Bigram set
Edit dist.
similarity

Zip code 27828 28278 {27, 28, 78, 82} 0.600
First name amira ramir {am, ir, mi, ra} 0.600
First name geroge roger {er, ge, og, ro} 0.500
First name jeane jeaneane {an, ea, je, ne} 0.625
Last name avera raver {av, er, ra, ve} 0.600
Last name einstein steins {ei, in, ns, st, te} 0.500
Last name gering ringer {er, ge, in, ng, ri} 0.333

that participate in the linkage protocol. In PPRL, the

attribute values of records are usually encoded or en-
crypted in some form before they are being compared.

Any encoding or encryption technique used must ensure

that approximate similarities can still be calculated be-
tween encoded values without the need for sharing the

corresponding sensitive plaintext values [58]. PPRL is

conducted in such a way that only limited information

about the record pairs classified as matches is revealed
to the participating organisations in the linkage process.

The techniques used in PPRL must guarantee that no

participating party, nor any external party, can com-
promise the privacy of the entities that are represented

by records in the databases being linked [11].

One popular technique to allow privacy-preserving

string comparison is based on converting strings into

sets of q-grams (sub-strings of length q characters) and

encoding these sets into Bloom filters (BFs) [45]. BFs
are bit arrays where multiple independent hash func-

tions are used to encode the elements of a set by setting

those bit positions to 1 that are hit by a hash function.
BFs can be compared using set-based similarity func-

tions such as the Dice co-efficient [9]. It has been shown

that BF based PPRL is both efficient and can achieve
accurate linkage results comparable to non PPRL ap-

proaches [42,43]. A related similar approach based on

tabulation hash (TMH) encoding was recently proposed

by Smith [52]. The proposed approach applies Min-hash
locality sensitive hashing [5] and uses the Jaccard sim-

ilarity function for comparing bit arrays.

One drawback of set-based comparisons as used with

BFs or TMH is that the sequence of characters in a

string is lost when the string value is converted into a q-
gram set. As shown in Table 1, in certain cases [16] two

different strings can result in the same q-gram set which

would be encoded into the same bit pattern. This can

lead to falsely matched record pairs because of too high
similarities between rather different string values [9].

The likelihood of two different strings sharing the same

or a highly similar q-gram set increases if the size of

the alphabet Σ (the set of unique characters used to

generate the strings to be encoded) becomes smaller,
because less unique q-grams can be generated. There-

fore, strings generated using only digits (alphabet of

size |Σ| = 10), such as zip codes or telephone numbers,
will more likely result in increased q-gram set similari-

ties compared to strings that contain letters (|Σ| = 26),

such as first and last names.

Another drawback of set-based string comparison
functions is that they only allow the calculation of an

overall similarity between two strings. However, identi-

fying the longest common sub-string between two strings
can be crucial in certain applications. For example, Fi-

nancial Intelligence Units around the world, including

FinCEN (US), the National Crime Agency (UK), and
AUSTRAC (Australia), collect financial information to

help identify tax evasion, money laundering, and terror-

ism financing. This involves linking records from differ-

ent reporting entities such as banks, casinos, and money
remitters such as Western Union, and requires find-

ing matches in a privacy-preserving way where bank

identifiers such as SWIFT or BIC codes need to be
paired with bank account numbers. Sub-string match-

ing is crucial because leading zeros are often omitted,

such that the identifier ‘DK54000074491162’ would be
the same account as ‘DK5474491162’.

Contributions: In this paper we propose two novel

approaches to privacy-preserving string matching, where

we encode each string based on its generated q-gram

list. In the first approach we encode the q-grams in each
list into hash values, while in the second approach we

encode each q-gram into a bit array of fixed length to

improve privacy of q-grams. However, it requires more
runtime for encoding and comparison than the first ap-

proach, resulting in a trade-off between privacy and

scalability of our two approaches. In both approaches
we randomly shift the encoded q-grams in order to hide

position information that could be exploited by an ad-

versary. The encoded strings are then sent to a third

party for identifying the longest common encoded sub-
string for each pair of encoded string pairs. We analyse

our proposed approaches in terms of complexity, accu-

racy, and privacy, and evaluate them using several real
and synthetic data sets that contain different types of

strings (only letters, only digits, and mixed).

2 Related Work

The privacy-preserving comparison of values (such as
strings or numbers) is a common problem for many ap-

plication domains. Therefore, various techniques and

algorithms have been proposed, as shown in Table 2.
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Table 2 Overview of related privacy-preserving string matching techniques, where we show the complexity for encoding and
matching one string. In this table, l is the string length, |Σ| the size of the alphabet Σ, h is the number of hash functions
used, b is the length of a Bloom filter or bit array, t is the number of hash tables, q is the length of a sub-string (q-gram), and
|D| is the size of a string database D.

Methods / Authors Data type Match type Encoding compl. Matching compl. Application

Bloom filter (Schnell et al. [45]) String Approximate O(l× h) O(b) PPRL
Tabulation hashing (Smith [52]) String Approximate O(l× t× h) O(b) PPRL
DGK approximate string matching (Essex [24]) String Approximate O(Σq) O(Σq) PPRL

Burrows-Wheeler transformation (Shimizu et al. [51]) Genomes Exact O(l×
√

l× |Σ|) O(l2 × |Σ|) Genomics
Longest prefix and exact match (Nakagawa et al. [41]) Genomes Exact O(l|D|) O(l) Genomics
Symmetric encrypted suffix tree (Chase and Shen [6]) String Exact O(l× b) O(l× b) Cloud computing
Bloom filter tree (Bezawada et al. [3]) String Exact O(l2 × h) O(l× log l) Cloud computing
Secure verifiable pattern matching (Chen et al. [7]) Genomes Exact O(l) O(l) Cloud computing
Secure query sub-string (Hahn et al. [30]) String Exact O(2l) O(l) PPRL
Frequent q-grams matching (Bonomi et al. [4]) String Approximate O(3l) O(b) PPRL
Secure pattern matching (Zarazadeh et al. [62]) Genomes Exact&Approx. O(l× |Σ|) O(l2) Cloud computing

String matching is often used in the PPRL context
where encoded values of quasi-identifying attributes of

individuals (such as their names and addresses) need

to be compared across two or more databases to link

records [59]. Bloom filter (BF) encoding is widely used
in PPRL because it allows efficient encoding of val-

ues and supports approximate matching of strings [45,

59], numerical values [34,57], hierarchical codes (such
as of occupation and diseases) [46,47], geographical lo-

cations [48], and Chinese characters [54].

Although BF encoding is considered as a standard
for PPRL, BFs cannot be used to identify the longest

common sub-strings, because they require values to be

converted into q-gram sets whereby positional informa-

tion of q-grams in their corresponding string values are
lost. Furthermore, the hash functions used in BF en-

coding likely lead to collisions (where several q-grams

are hashed to the same bit position) and therefore the
similarities between BFs, can be higher than the actual

Dice co-efficient similarity between their corresponding

q-gram sets. Other set-based techniques, such as tabu-
lation based hashing (TMH) [52] have similar drawback

because any set-based encoding of q-grams into bit ar-

rays does not preserve their positional order.

Privacy-preserving matching of genome sequences
is increasingly required in bioinformatics applications

where the aim is to find the longest matching sub-

sequences for a query sequence in large genome data-
bases [51,60]. The algorithms used in such applications

often have high computational complexities [51,60].

Shimizu et al. [51] proposed an approach for search-
ing similar string patterns in a genome database using

a recursive oblivious transfer protocol based on an ad-

ditive homomorphic encryption [26] to query sequences

in the genome database while ensuring each query does
not lead to the identification of other similar strings

in the database. However, the approach does not scale

to queries of longer sequences because these incur high

computational and communication costs due to the com-
plex cryptographic functions used [51].

Later, Nakagawa et al. [41] proposed an approach to

improve the time complexity and communication costs

of genome sequence matching. They used a recursive
oblivious transfer technique and a compressed indexing

data structure [25] to find the longest prefix and longest

exact match of a query sequence in a genome database.
In this approach the time complexity depends upon the

length of the genome sequence that is being queried

rather than the size of the genome database, thus, it

consumes less time to query a sequence from a large
genome database compared to the approach proposed

by Shimizu et al. [51] and the other secure genome se-

quence matching technique [53].

Suffix trees [38] are often used in bioinformatics ap-

plications to search for patterns in genome or protein

sequences [61]. A suffix tree allows searching for a given
pattern with a linear complexity in terms of the length

of the query string being searched [38]. Ukkonen [55]

showed how suffix trees can be used for string matching

efficiently, however his approach requires more space to
hold a suffix tree than the original string collection.

The use of suffix trees in privacy-preserving sub-

string matching has been investigated by Chase and
Shen [6]. Their approach constructs a queryable en-

cryption scheme for finding all occurrences of a query

string in the encrypted suffix tree stored on an un-

trusted server. However, this approach reveals informa-
tion of client queries to the server which compromises

the privacy of a client’s data and can potentially lead

to the identification of the encrypted string values.

Bezawada et al. [3] proposed a protocol based on a

pattern aware secure search tree where each tree node

contains a BF that encodes a set of encrypted strings.

The approach is aimed for two parties to compare strings
securely over a cloud infrastructure, where the parties

only learn if their strings are matched but not the ac-

tual matching sub-strings. This approach therefore does
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not allow the privacy-preserving identification of the

longest common sub-strings.

Chen et al. [7] proposed a secure pattern match-
ing approach based on suffix arrays and order hash-

ing, where each hashed character in a string is con-

catenated with the hashed value of the next character
in the string. In this approach a database owner (DO)

sends the encrypted data to an untrusted server and

transmits the key to the clients. This key is then used
by the clients for verifying if the encoded query sub-

string results that the clients received from the server

are correct. However, in this approach the server can

learn the actual string length from the encrypted suffix
array received from the DO.

Hahn et al. [30] proposed a privacy-preserving se-

cure sub-string or q-gram query approach where the

frequency distribution of sensitive data are hidden by
applying a frequency-hiding order preserving encryp-

tion [36]. This approach involves three parties for pro-

cessing a secure q-gram query, which are (1) the DO

which owns the sensitive information, encodes the q-
grams, and generates the encoded data tables (indexes

and q-grams); (2) the untrusted party which holds the

index tables that are used for searching encoded q-
gram; and (3) the clients who want to query their en-

coded q-grams. In this approach the complexity of query-

ing depends upon the q-gram length because it deter-
mines the number of iterations required for querying

encoded q-grams from the untrusted party.

Bonomi et al. [4] proposed a PPRL approach to

compare string values using bit arrays based on the

embedding of the frequent q-grams. The DOs that par-
ticipate in a PPRL protocol individually apply differen-

tial privacy [21] to generate a table of frequent q-grams

that occur in their databases. The DOs then send their
frequent q-gram tables to one of the DOs to find the

common frequent q-grams (shared frequent q-grams)

and send them to all DOs that participate in the proto-
col. Each DO then uses the shared frequent q-grams to

embed their strings into bit arrays, and sends these bit

arrays to a third party to compare pairs of bit arrays.

However, in this approach the DO that identifies the
shared frequent q-grams is able to learn the frequent

q-grams of the other databases which can compromise

the privacy of the entities in those databases.

Zarazadeh et al. [62] proposed a protocol for secure
pattern matching on a client and server architecture

using ElGamal encryption [23] and bit arrays. This ap-

proach is able to match either exact or approximate pat-

terns with or without wildcard characters, or patterns
with random bit vectors added (for hiding the length

of strings). The server cannot learn anything about the

pattern matching results. However, the clients can learn

the positions of a matched pattern in a string in the

database stored on the server.
Essex [24] proposed a secure two-party approximate

string matching protocol using DGK homomorphic en-

cryption [17] and private set intersection cardinality.
Each DO first generates a list of all possible q-grams

(based on letters a to z ), where the DO replaces a q-

gram in the list of all possible q-grams with the encryp-
tion of 1 if a q-gram is found in its string. The first DO

sends its list to the other DO to conduct a set inter-

section cardinality and the Dice co-efficient calculation

based on the lengths of q-gram lists of the two strings
in a pair, then returns the results to the first DO for

decrypting the results, where the decryption of 1 means

a pair of strings is classified as a match. However, us-
ing the lengths of the lists of q-grams to calculate the

Dice co-efficient can lead to false matches because some

q-grams in the two lists are not common. Furthermore,
this approach consumes a lot of memory as the list of

all possible q-grams for each string needs to be kept in

memory for the comparison process.

Recently, Mullaymeri and Karakasidis [40] proposed
a two-party private approximate string matching pro-

tocol based on polynomial coefficients generated using

a reference database and a Fuzzy Vault scheme [32].
The idea behind this approach is that if the set of keys

(generated from reference strings) of the two strings in

a pair are similar, the polynomial coefficients generated
from the keys of these two strings must be the same,

and therefore the two strings in a pair are classified as

a match. However, the main drawback of this approach

is that the reference strings that are used to generate
keys must be very similar to the strings in a pair to en-

sure that the polynomial coefficients of the two strings

are the same. Therefore, the number of reference strings
must be large enough to allow the two parties to gen-

erate the same polynomial coefficients.

The approaches discussed above mostly allow a user
to query a database of strings or sequences for similar

patterns, while the problem we aim to address involves

the identification of similar sub-strings in two databases

owned by different parties without each party having to
reveal their strings. In contrast to most existing tech-

niques, our approaches allow the efficient and accurate

privacy-preserving comparison of pairs of strings that
share a sub-string with a certain minimum length.

3 Privacy-Preserving String Matching

We assume our approaches follow a honest-but-curious

(HBC) adversary model [28,31]. As illustrated in Fig. 1,

we assume two database owners (DOs) want to find the

length of the longest common sub-string (LCS) between
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Fig. 1 Overview of our privacy-preserving string matching approaches. The blue boxes are the Database Owners, where the
steps they execute are shown in the dashed rectangles. The white boxes are the steps common to both our two approaches.
The yellow box shows the step of the shifted hash encoded q-gram based encoding approach (described in Section 4), while
the pink boxes show the steps of the bit array based approach (described in Section 5). The Linkage Unit is shown in the red
box and its functions are shown in the box below it. The arrows show inputs and outputs of the steps, where the numbers
given show the sequence of the steps being conducted.

pairs of sensitive strings in their databases. The DOs do

not communicate with each other, except to agree on

the parameters to be used. We assume a linkage unit

(LU), which is a semi-trusted party [27], is involved
in the protocol to compare the strings sent to it by

the DOs. Because the DOs do not want to reveal the

sensitive string values in their databases to any other
party that participates in the protocol, these strings

need to be encoded before being sent to the LU such

that the LU cannot learn anything about them.

In some cases, the first characters in a string value
can reveal some information. For example, the distri-

bution of the first digits in numerical values can follow

Benford’s law [2], while the first letters in first and last

names can follow Zipf’s law [63]. This potentially allows
an adversary to learn some of the encoded q-grams at

the beginning of encodings by identifying the q-grams

that occur frequently in a public database [11]. Hence,
we propose two novel encoding approaches to prevent

any q-grams from being re-identified.

In our encoding approaches (as illustrated in Fig. 1),

the DOs first generate sub-strings of length q, called
q-grams, from their unique sensitive string values. The

DOs then individually encode all q-grams of each string

and send these encoded q-grams to the LU. The LU

then compares the encoding of a pair of strings and
returns the length of the longest common sequence of

hash encoded q-grams (elements), called the Longest

Common Elements (LCE), or the length of the longest

common bit array, called the Longest Common Bit Ar-

ray (LCB), back to the DOs. The DOs can then calcu-

late the actual length of LCS based on the information

received from the LU, as we describe in Section 6.

As we discuss in Section 4, the first encoding ap-
proach improves privacy of encoded q-grams by ran-

domly shifting the position of the encoded q-grams in

the generated encoded q-gram lists. The shifting of en-
coded q-grams hides their actual positions in a string,

which makes a position based frequency analysis of q-

grams more difficult and thereby prevents an adversary
from identifying the string values that were encoded.

This approach is useful for linking databases that re-

quire fast and accurate linkage results, such as linking

the phone number of a criminal between databases to
facilitate a fast response for police to take action.

In the second approach, described in Section 5, we

improve the privacy of q-grams further by encoding q-

grams into bit arrays. We hide the actual sub-string po-
sitions and the length of the encoded strings by adding

random bit arrays at the beginning and end of the bit

array that encodes a list of q-grams. This ensures that
the bit arrays of all string values in a database have the

same length, further increasing the difficulty for an ad-

versary to identify the original string values that have

been encoded into bit arrays. However, this approach
uses more runtime than our first approach. Therefore,

it can be useful for linking databases in application do-

mains that require high privacy and accurate linkage
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results, but are less concerned about runtime, for ex-

ample, linking credit card numbers between databases
for financial crime investigations.

Both our approaches provide accurate calculations

of the length of LCS while hiding the actual sensitive
string values from any parties. The DOs and the LU

cannot learn the original string values nor the positions

of the LCS from the compared encodings. A DO cannot
learn anything about the sensitive values of the other

DO because the DOs do not communicate with each

other, and they only receive the length of the LCE or

LCB, respectively, from the LU.
As notation, we use italics type letters for numbers

and strings, bold lowercase letters for lists and sets,

uppercase bold letters for lists and sets of lists or sets.
We use || to denote the concatenation of strings and bit

arrays, and + when concatenating lists. Lists are shown

with square and sets with curly brackets, where lists
have an order while sets do not. We show the elements

of a list l as l[i], with 0 ≤ i < |l|, where i is the position
(index) of a list element. We denote sub-lists as l[i:] =

[l[i], l[i + 1], . . . l[|l| − 1]], l[:j] = [l[0], l[1], . . . , l[j − 1]],
and l[i:j] = [l[i], l[i+ 1], . . . , l[j − 1]], with i < j.

4 String Matching based on Shifted Hash

Encoded Q-grams

As shown in Fig. 1, our first approach consists of five
steps: (1) parameter agreement, (2) generating q-grams,

(3) hashing of q-grams and shifting encoded q-gram

lists, (4) comparing lists of encodings by the LU, and
(5) calculation of the length of the LCS by the DOs.

4.1 Parameter Agreement

Before the protocol starts, the DOs agree on the pa-

rameters to be used, which are:

– The length of q-grams, q, to be used for generating

the q-grams, as we describe in Section 4.2.
– The padding characters, α and β, to be added to

string values to avoid any incorrect length of LCS

calculations, as we describe in Sections 4.2 and 8.2.
– The secret salting value, s, to be concatenated with

the generated q-grams. This is to avoid a dictionary

attack by the LU [11], as we describe in Section 4.3.
– The one-way hash function [11],H (such as SHA [44]),

to be used for hashing q-grams before sending them

from the DOs to the LU, as we describe in Sec-

tion 4.3.
– The minimum length of the LCS, m, where m ≥ q.

This is used for selecting those string pairs that have

a LCS of at least m, as we describe in Section 6.

4.2 Generating Q-grams

Before the generation of q-grams from a string value,

the DOs first add the agreed padding characters α and

β to the beginning and end of their unique strings. Let
us assume the first DO has a database DA and uses

the padding character α, while the second DO has a

database DB and uses the padding character β, where
α 6= β. The padding characters are used to ensure the

beginning and end of the compared strings are different.

Due to the shifting process of encoded q-grams (as we
describe in Section 4.3), without the padding characters

the length of LCS could be calculated incorrectly, as we

discuss in Section 8.2.

Assuming Σ is the alphabet of all characters in the
databases DA and DB , Σ = {a ∈ v : v ∈ DA ∪ DB},
where a is a character in a string value v in the two

databases. It needs to hold that α /∈ Σ and β /∈ Σ.
Let us assume two padded strings x′ = α||x||α and

y′ = β||y||β, where x and y are strings with x ∈ DA

and y ∈ DB , respectively.
Once the DOs have added the padding characters to

their strings, they independently generate the q-gram

lists of each padded string in their databases. Each

padded string in a database (let us use DA), consists of
characters and can be written as x′ = [a0 . . . ai . . . an−1],

where a0 = an−1 = α, and ai ∈ Σ for 0 < i < (n − 1),

with n = |x′|. We define a q-gram as qi = ai . . . ai+q−1,
and a q-gram list as q = [q0, . . . , qn−q], where q is the

q-gram length as agreed by the DOs.

For example, assume the agreed q-gram length is
q = 2 and the string is x = “mary”. The DO adds

the padding character α = “$” to x, resulting in x′ =

“$mary$”. The DO then generates a q-gram list of the

padded string x′, resulting in q = [$m,ma, ar, ry, y$],
as also shown in the third column in Table 3.

4.3 Hashing of Q-grams and Shifting Q-gram Lists

Before the DOs send their databases to the LU, they
individually hash encode the q-grams in each of the q-

gram lists using the agreed hash function H. To prevent

a dictionary attack on the encoded q-grams, we use
a salted hash encoding approach [11]. Given s is the

secret salt value and H is the hash function agreed by

the DOs, and assuming qi ∈ q, where q is the q-gram
list and 0 ≤ i < n, with n = |q|, we hash encode each

q-gram qi as hi = H(qi||s), and define the hash encoded

q-gram list as h = [h0, h1, ..., hn−1].

Once the q-grams in each list q are hashed into a
list h, each DO generates a random number, r, for each

of its hash encoded q-gram lists, h, where 0 ≤ r < |h|.
The DO then shifts (rotates) the list h by r, resulting
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Table 3 Example strings, and their corresponding q-grams and randomly shifted q-gram lists, where the patterns of where
common characters occur are shown in the first column (where b,m, and e represent the LCS occurring at the beginning,
middle, or end of a string, respectively). The string pairs, with minimum length of the LCS m = 3, are shown in the second
column. Q-grams are generated using q = 2. LCE refers to the longest common list of elements. The random numbers used to
shift each q-gram list are shown in the fourth column. The common sub-strings and the common elements are shown in bold.

Common String Q-gram lists (including Random Shifted q-gram lists LCE length, Calculated LCS,
patterns pairs padding characters) shift lce lcs

b-b
x = “mary” [$m,ma, ar, ry, y$] rx = 0 [$m,ma, ar, ry, y$] 2 2 + 2− 1 = 3
y = “marie” [#m,ma, ar, ri, ie, e#] ry = 2 [ie, e#,#m,ma, ar, ri]

b-m
x = “marrie” [$m,ma, ar, rr, ri, ie, e$] rx = 1 [e$, $m,ma, ar, rr, ri, ie] 3 3 + 2− 1 = 4
y = “emarry” [#e, em,ma, ar, rr, ry, y#] ry = 3 [rr, ry, y#,#e, em,ma, ar]

b-e
x = “larisa” [$l, la, ar, ri, is, sa, a$] rx = 4 [ri, is, sa, a$, $l, la, ar] 2 2 + 2− 1 = 3
y = “calar” [#c, ca, al, la, ar, r#] ry = 2 [la, ar, r#,#c, ca, al]

m-m
x = “marisa” [$m,ma, ar, ri, is, sa, s$] rx = 3 [is, sa, a$, $m,ma, ar, ri] 2 2 + 2− 1 = 3
y = “carie” [#c, ca, ar, ri, ie, e#] ry = 2 [ie, e#,#c, ca, ar, ri]

m-e
x = “malary” [$m,ma, al, la, ar, ry, y$] rx = 1 [y$, $m,ma, al, la, ar, ry] 3 3 + 2− 1 = 4
y = “calar” [#c, ca, al, la, ar, r#] ry = 3 [la, ar, r#,#c, ca, al]

e-e
x = “mary” [$m,ma, ar, ry, y$] rx = 2 [ry, y$, $m,ma, ar] 2 2 + 2− 1 = 3
y = “cary” [#c, ca, ar, ry, y#] ry = 3 [ar, ry, y#,#c, ca]

be-be
x = “mary” [$m,ma, ar, ry, y$] rx = 2 [ar, ry, y$, $m,ma] 2 2 + 2− 1 = 3
y = “marary” [#m,ma, ar, ra, ar, ry, y#] ry = 5 [ar, ra, ar, ry, y#,#m,ma]

in the shifted hash encoded q-gram list, h′. A given

hash encoded value at a position i, with 0 ≤ i < n, is
shifted to a new position i′ = ((i+r) mod n), also with

0 ≤ i′ < n. This shifting process aims to hide the origi-

nal positions of the hash encoded q-grams and therefore

the corresponding positions of characters in each string.
Hence, the frequency distribution of shifted hash en-

coded q-grams will not follow Benford’s [2] law anymore

because the first encoded q-grams are distributed to
different positions in the shifted hash encoded q-gram

lists, thereby preventing a position based frequency at-

tack on these encoded q-gram lists.
For example, assume the string “mary” has been

padded and hashed into the hash encoded q-gram list

hx = [H($m||s),H(ma||s),H(ar||s),H(ry||s),H(y$||s)],
and rx = 2. Therefore, the hash encoded q-grams are
shifted by two positions, resulting in h′x = [H(ry||s),H(

y$||s), H($m||s),H(ma||s),H(ar||s)]. We show other

examples of shifted q-gram lists in Table 3.

4.4 Comparison of Hash Encoded Q-gram Lists

To simplify notation, we now use hx and hy to represent

the shifted hash encoded q-gram lists h′x and h′y.
For a pair of strings, the LU needs to find the length

of the longest common (same) sub-list elements (LCE),

lce, between the two lists hx and hy. We propose two al-
gorithms for this comparison process, a basic and a fast

algorithm. The first is a naive method to conduct the

comparison by the LU which however requires longer

runtimes for comparing pairs of hashed q-gram lists.
We then propose an alternative, more efficient, algo-

rithm which allows for a faster comparison process, as

we describe in Section 4.4.2.

4.4.1 Basic Encoded Q-grams Comparison Algorithm

Because of the random shifting process performed by
the DOs, the LU does not know the start and end po-

sitions of the hash encoded q-grams in the lists hx and

hy to be compared. To compare two shifted hash en-
coded q-gram lists, the LU needs to rotate the two lists

to find the length of their LCE, lce, and then returns

the lce to the DOs.

Algorithm 1 outlines the naive way for comparing
two encoded q-gram lists. In line 1, the LU first ini-

tialises the length of LCE, lce. It then checks if the two

lists, hx and hy, have any common elements (in line
2). If there are common elements between the two lists,

then the LU loops over each position, px, of the ele-

ments in the list hx (in line 3), where we denote the
element in hx at position px as hx[px].

In line 4, the LU finds all positions where the el-

ement hx[px] occurs in the list hy using the function

getPosMatch(). This function returns a list of posi-
tions, py, where this list is empty if hx[px] does not oc-

cur in hy. In line 5, the LU then generates the shifted

(rotated) list, hhhx, with a starting position of px by con-
catenating the two sub-lists hx[px:] and hx[:px] into one

shifted list hhhx.

The LU then loops over each position, py, in the list

of positions py in line 6, and in line 7 generates the
shifted list, hhhy, with starting position py, similar to the

shifted list hhhx generated in line 5. The common element

at positions px and py now becomes the first element of
the two rotated lists hhhx and hhhy, respectively.

In line 8, the LU initialises an index k as a count

of the number of common elements between hhhx and hhhy.

The LU then loops over the rotated list that has the
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Algorithm 1: Basic encoded q-grams comparison process by the LU

Input:
- hx: Hashed and shifted q-gram list of string x
- hy: Hashed and shifted q-gram list of string y
Output:
- lce: LCE of the hashed q-gram list pair

1: lce← 0 // Initialise the length of LCE
2: if set(hx) ∩ set(hy) 6= ∅ do: // Check if common hashed elements exist
3: for 0 ≤ px < |hx| do: // Loop over each position in the list hx

4: py ← getPosMatch(hx[px],hy) // Get list of positions in hy where the element hx[px] occurs
5: hhhx ← hx[px:] + hx[:px] // Get the current shifted (rotated) list of the list hx

6: for py ∈ py do: // Loop over each position in the list of positions py

7: hhhy ← hy[py :] + hx[:py ] // Get the current shifted list of the list hy

8: k ← 0 // Initialise index and common count k
9: while (k < min(|hhhx|, |hhhy|)) and (hhhx[k] = hhhy [k]) do: // Loop over hhhx and hhhy if a common element occurs
10: k ← k + 1 // Increment k
11: lce← max(lce, k) // Keep the length of the so far maximum length of LCE
12: return lce // Send found the length of LCE back to the DOs

Algorithm 2: Fast encoded q-grams comparison process by the LU

Input:
- hx: Shifted hashed q-gram list of string x
- hy: Shifted hashed q-gram list of string y
Output:
- lce: The LCE length of the pair of hashed q-gram lists

1: lce← 0 // Initialise the length of LCE
2: c← set(hx) ∩ set(hy) // Get common hashed elements
3: if |c| ≥ 1 do: // Check if at least one common hashed element exists
4: hs,hl ← hx,hy if |hx| < |hy| else hy,hx // Order the lists by their lengths
5: hhhs ← hs + hs // Concatenate shorter list with a copy of itself
6: hhhl ← hl + hl // Concatenate longer list with a copy of itself
7: ps ← getConsecCommon(hhhs, c) // Get a list of positions of consecutive common hashed elements in the list hhhs

8: if |ps| = 0 do: // Check if no consecutive hashed elements are found
9: lce← 1 // There is no consecutive common hashed element
10: else: // If consecutive elements are found
11: for ps ∈ ps do: // Loop over each position in the list of consecutive common element positions ps

12: pl ← getPosMatch(hhhs[ps],hhhl) // Get the list of positions in hhhl where the element hhhs[ps] occurs
13: for pl ∈ pl do: // Loop over each position in the list of positions pl

14: k ← 0 // Initialise index and common count k
15: while (k < min(|hhhs[ps:ps + |hs|]|, |hhhl[pl:pl + |hl|]|)) and (hhhs[ps + k] = hhhl[pl + k]) do: // Loop over elements in hhhs and hhhl

16: k ← k + 1 // Increment k by 1
17: lce← max(lce, k) // Keep the length of LCE
18: return lce // Send found the length of LCE back to the DOs

shortest length, with the condition that the elements in

the two rotated lists at position k are common (are the

same). The LU keeps the maximum k identified over all

iterations of rotated lists in line 11.

The LU repeats the steps in lines 3 to 11 until the

element hx[|hx|−1] becomes the first element in the ro-
tated shifted list hhhx. Finally, the LU returns the length

of LCE, lce, to the DOs in line 12.

4.4.2 Fast Encoded Q-grams Comparison Algorithm

As outlined in Algorithm 2, the LU uses concatenated
hashed q-gram lists, hhhs and hhhl, for the comparison. We

use such a concatenation technique because (1) the con-

catenated list contains the actual sequence of consecu-

tive elements in the hash encoded q-gram list before it
has been shifted, and (2) even after concatenation the

actual positions of the hash encoded q-grams are not

being revealed to the LU, as we discuss in Section 8.3.

Let us use the q-gram list q = [$m,ma, ar, ry, y$] as

an example. With the random number r = 2, the shifted

q-gram list becomes q′ = [ry, y$, $m,ma, ar]. We now

concatenate q′ with itself to generate a concatenated
list qqq′ = [ry, y$, $m,ma,ar, ry,y$, $m,ma, ar]. As can

be seen from this example, the concatenated list qqq′ does

contain the actual sequence of consecutive elements of
the q-gram list q (shown in bold).

In line 1 of Algorithm 2, the LU first initialises the

length of the LCE, lce. It then finds the common ele-
ments between the two lists, hx and hy, it received from

the DOs, and adds these common elements into the set

c in line 2. If common elements occur between hx and
hy, then the LU orders the two lists by their lengths,

and assigns the shorter list to hs and the longer list to

hl in lines 3 and 4. The LU then concatenates in lines 5

and 6 each of hs and hl with a copy of itself, resulting
in the two concatenated lists hhhs and hhhl, respectively.

In line 7 the LU then finds the list ps of consecutive

positions in hhhs of the common elements in c by using
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the function getConsecCommon(). For example, the

first string pair in Table 3, the string x = “mary” has
the list ps = [1, 2] which are the positions of q-grams

ma and ar, respectively. The list ps is empty if there is

no sequence of consecutive common elements occurring
in both hx and hy. The length of LCE is returned as

lce = 1 in line 9 (the lce is 1 because the set c is not

empty, as tested in line 3).

If ps does contain consecutive common elements,
then the LU loops over each position ps in the list ps

in lines 10 and 11. In line 12, the LU finds the list of

positions, pl, in the longer concatenated list, hhhl, where
the element at position ps of the concatenated list, hhhs,

occurs by using the function getPosMatch(). The LU

then loops over each position pl in pl in line 13.

In line 14 the LU then initialises the index k as the

count of the number of common elements between the

two concatenated lists, hhhs and hhhl. In line 15, it loops

over the shorter concatenated sub-list hhhs, where this
sub-list is not longer than |hs|, starting from position

ps, and the sub-list of the longer concatenated list hhhl is

not longer than the length |hl|, starting from position
pl. The loop terminates once the elements at positions

ps + k and pl + k are different.

If there are common elements in the two compared

sub-list hhhs and hhhl, then the LU increases the index k in
line 16. Once the loop is terminated, in line 17 the LU

finds the maximum length of the LCE identified so far.

The LU repeats the steps in lines 11 to 17 until there
are no further positions to be compared. Finally, the

LU returns the length of the LCE, lce, of the pair of

hash encoded q-gram lists to the DOs in line 18.

5 String Matching based on Shifted Random

Bit Arrays

While our approach based on shifted hash encoded q-

grams prevents frequency attacks that are exploiting
Benford’s law [2], an adversary might still be able to

identify the most frequent q-grams because these are

encoded into hash values that will become the most
frequent in the lists of hash encoded q-grams, h. To pre-

vent such attacks, we improve the privacy of the shifted

hash encoded q-gram based approach by encoding each
unique q-gram list q into a bit array. Each such bit ar-

ray is padded at the beginning and end with random

bits to ensure the bit arrays of all encoded strings have

the same length even if the length of their q-gram lists
differ. This approach prevents the LU from identifying

which sub-sequence of bits in a bit array correspond to

which q-gram, as we discuss further in Section 8.3.

5.1 Generating Bit Arrays for Strings

To generate bit arrays for the strings in a database D,
each DO builds two tables of unique bit arrays. The first

is the table TΣ which contains one unique bit array for

each possible q-gram that can be generated from the
alphabet Σ, where Σ contains all characters that occur

in the string values of the databases DA and DB being

compared, plus the padding characters, α and β. The

second table, TR, contains random bit arrays which will
be used as padding to make the bit arrays of all q-gram

lists the same length, where each DO needs to generate

a unique table of such random bit arrays in order to
prevent false matches, as we discuss further below.

Before building the tables TΣ and TR, each DO
first generates all unique q-grams that can be obtained

from the alphabet Σ based on the q-gram length, q,

where Σ = {a ∈ v : v ∈ DA ∪DB} ∪ {α, β}. The total
number of possible q-grams we obtain is |Σ|q.

Based on the sizes of Σ, the DOs now need to cal-

culate the q-gram bit array length, lq, to be used for

generating the unique bit array for each possible q-

gram. Because each DO needs to generate two tables of
bit arrays (TΣ and TR), where the random bit arrays

TR must be different between the two databases DA

and DB , the bit array length lq must be large enough
to allow at least 3|Σ|q unique bit arrays to be gen-

erated. We can calculate a minimum length for lq as

lmin
q = log2(3|Σ|q). This would however require every
possible combination of bits to be generated, including

[0]×lmin
q and [1]×lmin

q . Such patterns could however re-

veal information as their frequencies of occurrence could

be analysed by an adversary.

Therefore, to provide maximum entropy, which will
make it more difficult for a frequency attack to be per-

formed, each DO randomly generates bit arrays where

bits are set to 0 or 1 with equal probability [11,49]. For

a given bit array length lq, the number of unique bit
arrays that can be generated with half their bits set

to 1 is
( lq
lq/2

)

, where this number needs to be at least

3|Σ|q in our case. We can calculate an estimation of
this number based on Stirling’s formula [15,29] as:

lestq =
⌈

2lq
/

√

πlq/2
⌉

. (1)

It holds that lmin
q ≤ lestq , and Table 4 shows values

for both lmin
q and lestq for alphabets of different sizes

and different q-gram lengths. In the following, and in
our implementation, we assume that the value of lq has

been calculated based on Equation (1).

Once the DOs have calculated the q-gram bit array

length, lq, to be used, they engage in a secure proto-

col [50] to find the maximum length ls that corresponds
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Algorithm 3: Bit array generation by a DO

Input:
- D: Database as one list of q-grams per unique string value - lt: Final bit array length
- Σ: Alphabet - s: Common secret salt value
- q: Q-gram length - sd: Individual secret salt value
- lq : Q-gram bit array length
Output:
- B: Bit array inverted index

1: B← {} // Initialise inverted index of bit arrays
2: TΣ ← {} // Initialise table of q-gram bit arrays
3: TR ← {} // Initialise table of random bit arrays
4: QΣ ← genQgramSet(Σ, q) // Generate set of all possible q-grams from Σ
5: for qΣ ∈ QΣ do: // Loop over q-gram in QΣ

6: bq ← genBitArr(TΣ , lq, s, qΣ) // Generate a unique bit array for each q-gram (see function below for details)
7: TΣ [qΣ ]← bq // Add q-gram bit array to table TΣ

8: while |TR| ≤ |TΣ | do: // Loop to generate table TR, to contain |TΣ | random bit arrays
9: TT ← genRandBitArr(TΣ , lq, sd) // Generate temporal set of random bit arrays
10: TC ← setIntersectDOs(TT ) // Find common random bit array generated by more than one DO
11: TT ← TT \ (TC ∪TR) // Remove random bit arrays also generated by other DOs from TT

12: TR.add(TT ) Add to local random bit array of this DO
13: for (sid,q) ∈ D do: // Loop over each q-gram list in the database
14: b′q ← [ ] // Initialise bit array for this q-gram list
15: for qΣ ∈ q do: // Loop over q-grams in the q-gram list
16: b′q ← b′q + TΣ [qΣ ] // Concatenate the bit arrays of all q-grams in the q-gram list

17: lr ← lt − |b
′

q| // Calculate the number of random bits required for padding

18: bf ← padRandBitArr(TR, b′q, lr) // Pad bit array at both beginning and end with a total of lr random bits
19: B[sid]← bf // Add the final bit array for q-gram list q to the inverted index B

20: return B

Function genBitArr(TΣ , lq, s, qΣ):
21: bq ← [0]× lq // Initialise a bit array of 0-bits of length lq
22: random.seed(qΣ ||str(s)) // Set PRNG seed value as q-gram concatenated with salt
23: for 0 < i ≤ lq do: // Loop over all positions of the bit array
24: bq [i]← random.select(0, 1) // Choose a 0 or 1 bit value randomly with equal probability
25: while bq ∈ TΣ do: // Regenerate bit array until it is unique
26: s = s + 1 // Increase salt value
27: bq = genBitArr(TΣ , lq, s, qΣ) // Re-generate bit array using increased salt value
28: return bq

Table 4 Minimum and estimated lengths of bit arrays, lmin
q

and lestq , for sizes of Σ (includes the two padding characters,
α and β) and q-gram lengths, q.

lmin
q lestq

Alphabet Σ |Σ| q=2 q=3 q=4 q=2 q=3 q=4

Genomics 4+2 7 10 12 10 12 16
Digits 10+2 9 13 16 12 16 20
Letters 26+2 12 17 21 14 20 24
Digits and letters 36+2 13 18 23 16 20 26

to the longest q-gram list in their respective two data-

bases, DA and DB . To ensure all q-gram lists can be

padded with random bits both at the beginning and

end, the DOs add 2 to the length ls, and then calculate
the final bit array length as lt = (ls + 2)× lq.

For example, as illustrated in Fig. 2, assume two

padded strings are x′ = “$mary$” and y′ = “#marry#”,

and their corresponding q-gram lists are qx = [$m,ma,
ar, ry, y$] and qy = [#m,ma, ar, rr, ry, y#], respec-

tively. As shown in this figure, the longest q-gram list

is qy with length ls = 6, where each q-gram bit array
is of length lq = 6 (to simplify visualisation). Thus, the

final bit array length is lt = (6 + 2)× 6 = 48 bits.

Algorithm 3 outlines the bit array generation by the

DOs. In line 1, each DO initialises the bit array in-

verted index, B, to be used for the generated bit arrays

bx

by

q
x

= [$m, ma, ar, ry, y$] 

6 6 66 67 11
101001 101100 110010 110100 1010100001110 01011010101

48 bits

8 46 6 6 6 6 6

101100 110010 110100010011100111 11000110010100 1110

48 bits

y’ = #marry#,

x’ = $mary$,  

q
y

= [#m, ma, ar, rr, ry, y#] 

Fig. 2 Two example bit arrays, where each is of length
lt = 48 bits, with different random bit arrays padded at the
beginning and end (shown in red).

that correspond to its unique strings. Each DO then ini-

tialises the tables TΣ and TR, respectively, in lines 2
and 3. Each DO in line 4 generates the set of all possible

q-grams, QΣ , based on the agreed alphabet, Σ, and q-

gram length, q. Then, in lines 5 to 7, the DO loops over
each q-gram qΣ ∈ QΣ to generate a bit array for this

q-gram using the function genBitArr(). The details of

this function are provided in lines 21 to 28.

In line 21, the function genBitArr() first initialises
a bit array of length lq with only 0 bits. Then the q-

gram qΣ is concatenated with the secret salt value, s,

that was agreed by the two DOs. This concatenated

value is used as the seed to a pseudo random number
generator (PRNG) [11]. With the same seed a PRNG

will generate the same sequence of random outputs,

and therefore all DOs generate the same random bit
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bx

l t( )

by

by

by

by (l t−2)

by t−1l( )

(1)

(2)

1001010010011 110001111101000100111101100110010 10

101001010010011110110011001001001111010011000111

1 001010010011 110001111101000100111101100110010 10

...

100101001001111011001100100100111101001100011110

...

000111010100110110011001011010010101001011010101

100101001001111011001100100100111101001100011110

Fig. 3 Comparison of bit arrays bx and by using the basic comparison method. The numbers in brackets show the iteration
number. The common bits are shown in bold and those bits that are compared between bx and by in red. The blue lines show
the bits that are common between bx and by (we have two sequences of common bits, one 13 bits and the other 6 bits long).

arrays for the q-gram qΣ . The loop in lines 23 and 24
will generate lq such random bits, where the function

random.select(0, 1) returns a 0- or a 1-bit with equal

probability. As a result, the bit array bq should be filled
with roughly 50% 1-bits. To ensure that each q-gram

has a unique bit array, in line 25 we check this condition,

and if required we generate a new bit array based on

a changed secret salt value s. Because all DOs employ
the same PRNG, they will generate the same bit arrays

for the q-gram set QΣ (which is the same for all DOs).

The function returns bq in line 28, where bq /∈ TΣ .

Back to the main program, where in line 7, each DO

inserts the generated bit array bq into the inverted index
TΣ , where the corresponding q-gram, qΣ , is used as a

key. Each DO repeats this process until one bit array,

bq, has been generated for every q-gram qΣ ∈ QΣ .

Each DO then generates in lines 8 to 12 its ran-

dom bit array table, TR, where |TR| = |TΣ | using

the function genRandBitArr(). A temporary table of
random bit arrays, TT , is generated first (in line 9),

where the function genRandBitArr() calls the function

genBitArr() (as described above) to generate each ran-
dom bit array. Each DO uses its individual secret salt

value, sd, as its random seed. These individual secret

salt values should result in different random bit arrays
being generated by the DOs. However, to ensure no

random bit array is generated by more than one DO,

a secure set intersection protocol [18] is employed in

line 10 between the DOs. Any found random bit array
that has been generated by more than one DO will be

returned by the setIntersectDOs() function in the set

TC in line 10, and only those random bit arrays unique
to a DO are then added to its list TR. The DO repeats

the steps in line 9 to 12 until |TR| = |TΣ |.

In the last phase of the bit array generation process,

each DO generates the final bit array, bf , of length, lt,

for each string (assumed to be available as a q-gram

list) in its database. Each DO first loops over the q-
gram lists q in its database, D, in line 13. For each q,

the DO initialises a q-gram bit array b′q in line 14, and

in line 15 loops over each q-gram, qΣ ∈ q. Each DO

then selects the q-gram bit array, bq, that corresponds
to qΣ from TΣ and concatenates the selected bq to the

bit array, b′q, in line 16.

Finally, to ensure the generated bit arrays for all q-
gram lists q ∈ D are of the same length of lt, in line 17

we calculate the number of random bits, lr, that are re-

quired for padding based on the length of the generated

bit array b′q. Using the function padRandBitArr(), in
line 18 the DO then generates the final bit array, bf ,

where a random number of bits are padded both at the

beginning and end of b′q such that a total of lr bits are
padded, and where these random bits are sourced from

the list of random bits arrays, TR. We illustrated this

random padding process in Fig. 2. Finally, in line 19
the DO inserts the final bit array bf into the bit ar-

ray inverted index B which will be sent to the LU for

comparison, as we describe next.

5.2 Comparison of Bit Arrays

For a pair of bit arrays, bx and by, as received from

the DOs, the LU needs to find the longest consecu-
tive sequence of bits that are the same across the two

bit arrays. In the following we denote such a sequence

as common bits, and the length of the longest such se-
quence as the length of longest common bits (LCB), lcb.

We propose two algorithms for this comparison process.

Similar to the comparison of hash encoded q-grams de-

scribed in Section 4.4, the first algorithm is a basic al-
gorithm that follows a naive comparison method, while

the second algorithm is a fast algorithm which substan-

tially improves the runtime of the comparison process.

5.2.1 Basic Bit Arrays Comparison Algorithm

Fig. 3 shows an example of the basic comparison algo-

rithm between two bit arrays, bx and by, where by is

moved over bx by one bit position per iteration. In each
iteration, the LU compares the bit segment in the over-

lapping positions between bx and by to find the longest

sequence of common bits between the two segments.
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Algorithm 4: Basic bit array comparison process by the LU

Input:
- bx: First bit array
- by : Second bit array
Output:
- lcb: The number of bits in the longest common bit sequence

1: lcb← 0 // Initialise the length of the LCB
2: lt ← |bx| // Get length of bit array, lt
3: for −(lt − 1) ≤ i ≤ lt − 1 do: // Loop over index position i
4: xs ← max(0, i) // Set start position of bx to compare with by
5: xe ← min(lt − 1, i + (lt − 1)) // Set end position of bx to compare with by
6: ys ← max(−i, 0) // Set start position of by to compare with bx
7: ye ← min(lt − 1, lt − (i + 1)) // Set end position of by to compare with bx
8: b′x ← bx[xs:xe + 1] // Generate the bit segment, b′x, of bx for comparison
9: b′y ← by [ys:ye + 1] // Generate the bit segment, b′y , of by for comparison

10: c← findCommon(b′x, b
′

y) // Find the length of the common bit array in the segment
11: lcb← max(lcb, c) // Keep the maximum length of so far identified the length of LCB
12: return lcb

Algorithm 5: Fast bit array comparison process by the LU

Input:
- bx: First bit array
- by : Second bit array
- lγ : Segment length
Output:
- lcb: The number of bits in the longest common bit sequence

1: lcb← 0 // Initialise the length of the LCB
2: sy ← genSegment(by, lγ) // Generate list of segments of bit array by
3: for i ∈ (0, |sy| − 1) do: // Loop over each segment in the list of segments of by

4: px ← getPosMatch(sy[i], bx) // Get the list of positions in bx where the segment sy [i] occurs
5: for px ∈ px do: Loop over all positions in the list px

6: cl ← getCommonLeft(sy, bx[:px]) // Find the length of the common bit array in the left side of the current position in bx
7: cr ← getCommonRight(sy, bx[px:]) // Find the length of the common bit array in the right side of the current position in bx
8: c = cl + |sy[i]|+ cr // Calculate length of common bit sequence, where |sy[i]| ≤ lγ
9: lcb = max(lcb, c) // Keep the maximum length of the LCB
10: return lcb

Algorithm 4 outlines the steps in the basic bit array

comparison process. The LU first initialises the LCB to

lcb = 0, and then obtains the length of the bit arrays
bx and by as lt = |bx|, where we assume |bx| = |by|.

To compare the bit arrays bx and by, from line 3
onwards the LU then loops over index position i, where

−(lt−1) ≤ i ≤ lt−1. It calculates the start (xs and ys)

and end (xe and ye) positions for the two bit segments
in bx and by to be compared, based on the value of i,

where 0 ≤ xs ≤ xe < lt and 0 ≤ ys ≤ ye < lt. In lines 8

and 9 the LU then generates the corresponding two bit

segments, b′x of bx and b′y of by.

In line 10, the LU uses the function findCommon()

to find the length of the LCB by applying the XOR
operation on b′x and b′y and identifying the length of the

longest consecutive sequence of 0-bits, which represents

the LCB between b′x and b′y. In line 11 the LU then

keeps the longest length so far identified the length of
the LCB, and it repeats the steps in lines 3 to 11 for

all positions i. Finally, the LU returns the found lcb to

the DOs in line 12.

5.2.2 Fast Bit Arrays Comparison Algorithm

In the fast bit array comparison process, the DOs first
agree on a segment length, lγ , where 0 < lγ ≤ llcb, and

llcb is the minimum required length of LCB. The DOs

can calculate llcb = lq × (m − q + 1), where lq is the

q-gram bit array length, m is the minimum length of
LCS required, and q is the agreed q-gram length. If two

encoded strings share m consecutive characters, then

they need to have a common bit sequence of at least
length of llcb.

We use the segment length lγ because it allows the

LU to compare bit arrays one segment after another,

which reduces the runtime required by the LU. Further-
more, the LU will not be able to learn any information

about the original bit arrays that represent individual

q-grams, even if the segment length lγ = lq, because it
does not know lq.

Algorithm 5 outlines the fast comparison process by

the LU and Fig. 4 shows an example of this process on

two bit arrays, bx and by. As input, the LU receives bx
and by, and the segment length lγ , from the DOs. In
line 1, it initialises the length of LCB, lcb, and in line

2 it generates a list of segment, sy, from by using the

function genSegment() (as illustrated in Fig. 4 (a)).
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Fig. 4 The fast bit arrays comparison method between bit
arrays bx and by, where the bits in the red dashed box are
the common bits, with the LCB set to lcb = 13. Figure (a)
illustrates the segmentation of by into segments of length lγ =
8 as done by the LU, (b) shows how the LU then finds the
positions of the common bits, and (c) illustrates how the LU
compares the segments to the right and left.

Each segment in sy has a length of lγ or less bits (last
segment in the sy). The LU then loops over the seg-

ments in the list sy in line 3, and for each segment in

line 4 the LU finds the list of common positions, px, in

the bit array bx where the segment sy[i] occurs by using
the function getPosMatch(), as shown in Fig. 4(b).

Because each bit array contains random and q-gram

bit arrays, a given segment can contain bits from both.
For each position, px, in the position list px, the LU

therefore needs to check if there are sequences of com-

mon bits between bx and by both to the left and right
of the common segment, because in either direction

there can be further common bits, as is illustrated in

Fig. 4(c). The LU uses the functions getCommonLeft()

and getCommonRight() in lines 6 and 7 to find the
number of common bits on the left and right, respec-

tively, between the current segment in by, sy[i], and bits

in bx. The LU calculates the current length of the com-
mon bit sequence in line 8, and checks if it is a new

LCB, lcb, in line 9. The LU repeats the steps in lines 3

to 9 for all segments in sy. Finally, the LU returns the
found lcb to the DOs in line 10.

6 LCS Length Calculation

As shown in Fig. 1, in the last step of our string match-

ing approaches, using Equation (2) the DOs calculate
the length of the LCS, lcs, based on the matching re-

sults they received from the LU. For the approach based

on shifted hash encoded q-grams we discussed in Sec-

tion 4, the DOs calculate the lcs based on the length of
the longest sequence of common elements, lce, while if

they use the approach based on bit arrays described in

Section 5, they calculate the lcs based on the length of

the longest sequence of common bits, lcb.

lcs = lce+ q − 1 // For shifted hash encoded q-grams

lcs = ⌊lcb/lq⌋+ q − 1 // For bit array encoding (2)

The DOs then only keep the string pairs that have a

lcs ≥ m. The last column in Table 3 shows examples of

the calculated LCS length based on the lce for different
pairs of strings.

7 Scalability Aspects

In this section we describe how we can scale our pro-

posed string matching approaches to large databases.

The number of string pairs increases quadratic with
the numbers of strings in the two databases being com-

pared. We can improve the complexity of the compar-

ison process by applying a privacy-preserving block-
ing technique [11,20] to reduce the number of encoded

string pairs that need to be compared by the LU.

We apply a q-gram based blocking approach [11]

to generate blocks for each database. In this approach,
each block is generated based on a permutation of q-

grams in the q-gram list of each string. The DOs first

agree on a secret salt value, s, a hash function, H, and
the length of q-gram set permutations, tq. In our ap-

proach, we calculate tq based on the agreed minimum

length of the LCS, m, and the q-gram length, q (as
described in Section 4.1) as tq = m− q + 1.

The DOs then independently generate the q-gram

permutation lists of length tq for each of their q-gram

lists. Each DO concatenates the q-grams in each such
list into one string, qs, which is used to generate a block-

ing key value, bkv, by concatenating it with the agreed

secret salt value, s. This is followed by a hash encoding
of this concatenated string, resulting in bkv = H(qs‖s).
Finally, all q-gram lists in a database that have the

same bkv are inserted into the same block. Once the

DOs have generated their blocks, they then send these
blocks to the LU for conducting comparisons. The LU

finds the common bkv between the received databases

and only compares the encoded string pairs in blocks
that have the same bkv.

For example, let us consider the DOs have agreed

on m = 3 and q = 2, and therefore they calculate
tq = 3−2+1 = 2. We assume the two strings in the two

databases, x ∈ DA and y ∈ DB , are x = “mary” and

y = “marie”, with the q-gram lists qx = [ma, ar, ry]

and qy = [ma, ar, ri, ie], respectively. They then in-
dividually generate the bkv of their strings as bkvx =

{H(maar‖s),H(mary‖s),H(arry‖s)} and bkvy = {H(

maar‖s),H(mari‖s),H(maie‖s),H(arri‖s),H(arie‖s),
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H(riie‖s)}. The encoding of strings x and y are in-

serted into every block with the bkvx ∈ bkvx and
bkvy ∈ bkvy, respectively. Once the DOs have sent

their blocks to the LU, the LU can find the common

bkv = H(maar‖s). Therefore two encoded strings x
and y are being compared.

In the random bit arrays based approach, we gen-

erate blocks by applying Hamming Locality Sensitivity

Hashing (HLSH) [20,35]. In this approach, the LU re-
ceives two sets of bit arrays from the two DOs. The LU

uses a set of hash functions to select certain bits, and it

concatenates these bits into a bit array of fixed length,
lb, to be used as a bkv. The bit arrays that have the

same bkv are then inserted into the same block.

In our approach, the DOs individually generate blocks

of bit arrays before sending them to the LU. The DOs

first agree on the secret salt value, s, a hash function,
H, and a bit percentage, pb. They use pb to calculate the

length of a bit segment to be used for HLSH blocking

as lb = (pb × llcb)/100, where we described llcb in Sec-
tion 5.2.2. They then generate segments of the selected

q-gram bit arrays, b′q, each of length of lb. Each of these

segments is then used to generate a bkv by concatenat-
ing them with the agreed secret salt value, s, followed

by a hash encoding using the function H. The bit seg-

ments that have the same hash encoded bkv are inserted

into the same block. However, the length of the b′q is
possibly not divisible by lb, and therefore the last seg-

ment might be shorter than lb. To ensure every gener-

ated segment has the same length, we therefore extend
any segment that is too short by adding bits from the

left segment. For example, if we assume b′q = 11001100

(with |b′q| = 8) and lb = 3. The generated segments of
this b′q are 110, 011, 00. Therefore, the last segment, 00,

is extended with the last bit from the second segment,

resulting in the last segment becoming 100. The bkv of

this b′q are bkv = {H(110‖s),H(011‖s),H(100‖s)}.

8 Analysis of Our Protocol

We now analyse our approaches in terms of complexity,
accuracy, and privacy.

8.1 Complexity Analysis

In the shifted hash encoded q-gram based approach,

each DO requires O(lh) for each step of the encoding

process, where lh is the length of hash encoded q-grams
list corresponding to each string in its database.

In the comparison process, let us assume the two

shifted hash encoded q-gram lists, hx and hy, are sent

from the DOs to the LU, where these lists have the

same length, lh. In the basic comparison algorithm, the

LU requires O(lh) for checking if set(hx) ∩ set(hy) 6=
∅. For each common hash encoded q-gram hx ∈ hx,

the LU requires O(lh) to find the positions of hx that

occur in hy. It then requires O(l2h) to find the length of
the LCE, lce, between hx starting from hx (shifted hx)

and every shifted list of hy. Therefore, overall the basic

comparison algorithm requires O(2l2h + 2lh).

In the fast comparison algorithm, the LU requires
O(lh) for checking if hx and hy share elements. The

LU then concatenates each list with itself and orders

them, resulting in the shorter list hhhs and longer list hhhl.

The LU then requires O(lh) for finding the positions of
consecutive common hash encoded q-grams in hhhs. For

each hs ∈ hhhs, it requires O(lh) to find the positions

in hs that occur in hhhl, and it requires O(lh) to find
the lce between hhhs starting from hs and hhhl. Overall,

the LU therefore requires O(2l2h + 2lh). However, this

is the worst case which only occurs when hx and hy

contain exactly the same encodings. Otherwise, the LU

requires less than O(2l2h) to find the lce between hhhs and

hhhl. Therefore, the fast comparison algorithm is faster

experimentally than the basic comparison algorithm,
as we will show in Section 9.5.

In the random bit arrays based approach, each DO

requires O(|Σ|q) to generate the bit array table of all

possible q-grams, TΣ . To generate each random bit ar-
ray, br, a DO checks if br /∈ TΣ∪TRA

∪TRB
, whereTRA

and TRB
are the random bit array tables of the two

DOs. Each DO therefore requires a maximum O(3|Σ|q)
to generate the random bit array table of size |TΣ |. To
generate the final bit array, bf , of each string, a DO

requires O(lh) to concatenate the q-gram bit arrays, bq,

into a bit array, b′q, and O(nr) to pad each b′q, with ran-
dom bit arrays, where nr is the number of random bit

arrays to be selected from TR.

We assume the LU receives two bit arrays, bx and

by, from the DOs. In the basic bit array comparison
algorithm, the LU requires O(l2t ) to find the length of

the LCB between bx and by, where lt = |bf |. In the fast

bit array comparison, the LU requires O(lt) to generate

a list of segments, sy, from by. For each sy ∈ sy, it then
requires O(lt) to find the positions in bx where each sy
occurs. For each position px in bx, the LU requires O(lt)

to find the sequence of common bits that occur to the
left and right of bit at the position px in bx. Therefore,

the LU requires a total of O(lt + |sy|(lt + l2t )).

When the DOs apply blocking to their databases,

each DO requires O(lh × |D|) to generate blocks based

on q-gram based blocking, while with HLSH based block-
ing the DOs require O(bB × |D|), where bB = ⌈lt/lb⌉
and lb is the length of bit segments used to generate

a blocking key. In the comparison process, the LU re-
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quiresO(n2/nb) block comparisons, where n is the num-

ber of hash encoded q-gram lists or bit arrays in each
database (we assume |DA| = |DB |) and nb is the num-

ber of blocks.

8.2 Accuracy Analysis

As mentioned in Section 4, we use different padding
characters between databases to ensure that the cal-

culated length of LCS, lcs, is correct. Let us describe

why this approach is required by using a q-gram list

without padding characters as an example. We assume
the strings to be compared are x = “mary” and y =

“marary”. The correct LCS between these two strings

is “mar” with lcs = 3. We assume the DOs have agreed
on q = 2 and they use random numbers for shifting their

q-gram lists rx = 2 and ry = 4, respectively. Therefore,

their shifted q-gram lists are q′x = [ar, ry,ma] and
q′y = [ar, ra,ar, ry,ma], where the common q-grams

are shown in bold. When the LU compares these lists,

it returns the lce = 3 to the DOs. The DOs then use

Equation (2) to calculate lcs = 3 + 2 − 1 = 4. There-
fore, the DOs obtain an incorrect result. As this exam-

ple shows, our approach does not work when strings

are not padded using different characters. Examples of
correct LCS calculations are shown in Table 3.

Apart from the padding characters, to calculate an

accurate lcs, the minimum length of the LCS, m, must
be at least of length q, m ≥ q. This is because when

m < q, in the shifted hash encoded q-gram based ap-

proach, the LU cannot find the length of LCE, lce, be-

tween the two hash encoded q-grams lists. Let us use
the two q-gram lists, qx and qy, as an example. We

assume m = 3, q = 4, and two padded strings are x′ =

“$mary$” and y′ = “#marary#”. The corresponding
q-gram lists of x′ and y′ are qx = [$mar,mary, ary$]

and qy = [#mar, arar, rary, ary#], respectively. There

is no common q-gram between these lists and therefore
the DOs obtain the length of LCS, lcs = 0, for this pair

of strings, where the actual LCS between x′ and y′ is

“mar” with the lcs = 3. The same issue also occurs in

the random bit arrays based approach because each bit
array is generated based on a list of q-grams.

In the random bit arrays based approach, hash col-

lisions [8], where two or more q-grams are encoded into
the same q-gram bit array, bq, can affect the accuracy

of string matching. The probability of a hash collision,

Pb, that the bit can be set to 1 in this approach can be
calculated by applying the dependent probability cal-

culation [1] as shown in Equation (3):

Pb =
lq/2

lq
×

(lq/2)− 1

lq − 1
× ... ×

1

(lq/2) + 1
, (3)

where lq is the length of the bit array of each q-gram,

and lq/2 means 50% of lq is set to 1. When selecting
the first bit position, there is a lq/2 out of lq chance

that the position is being selected to be set to 1 by two

or more q-grams. The number of chances decreases by
1 once each position is selected. Finally, when selecting

the last position, there remain 1 out of lq/2+1 chances

that a position can be selected. For example, assume
we use lq = 6, the probability that a hash collision can

occur is Pb = 3/6× 2/5× 1/4 = 0.05 or 5% of lq.

8.3 Privacy Analysis

We assume the DOs and the LU follow the honest-but-

curious (HBC) adversary model where no DO colludes

with the LU [37]. The HBC model is commonly used in

PPRL and private string comparison protocols [59] be-

cause of its applicability to real scenarios. In this model,
each party tries to learn as much as possible about the

other parties’ data based on what it receives from the

other parties, while following the protocol steps.

In our approaches, the DOs first communicate with

each other to agree on parameter settings. This allows

them to learn the parameters that are being used in the
encoding processes but they cannot learn any sensitive

information of the strings in each other’s databases.

In both approaches, the DOs then individually en-

code the unique strings in their databases using the

agreed parameters without learning any information

from the other database. However, to generate the ran-
dom bit arrays in the random bit arrays based ap-

proach, the DOs employ a secure set intersection pro-

tocol [18] to find and exclude the common random bit
arrays from their random bit arrays tables. These ran-

dom bit arrays however do not represent any actual q-

grams, and therefore the DOs do not learn any sensitive
information from each other.

When blocking is used, the DOs apply a privacy-

preserving blocking algorithm [11,20] on their encoded
strings before these are being sent to the LU. We as-

sume such a blocking algorithm to be secure such that

it does not allow the DOs to learn any sensitive in-

formation about each other’s databases. The LU then
receives the two encoded databases from the DOs. It

first finds common blocks between them and then com-

pares only encoded strings that are in the same blocks.
In this step, the LU does learn which encodings occur

in both databases, but not their actual content.

In our shifted hash encoded q-gram based approach,
the LU can learn the string length by guessing the

length of q-grams, q (commonly used values are 2 and

3), and checking the length of the hash encoded q-gram
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lists. The LU can then generate q-grams from a pub-

lic database using the guessed q and compare the fre-
quency of the generated q-grams and the hash encod-

ings in a received database. However, in order to iden-

tify encoded q-grams, this public database must contain
a very similar set of values with the same frequency dis-

tribution to the encoded database as otherwise the LU

cannot employ a frequency analysis. Furthermore, an
injection of faked values can be used to prevent such a

frequency based attack [33].

In the basic encoded q-gram comparison algorithm

(described in Section 4.4.1), for each pair of shifted hash

encoded q-gram lists, the LU finds the length of LCE by
iteratively comparing and rotating the two lists. While

the LU can keep the positions where the common hash

encoded q-grams occur, it cannot learn the actual po-
sitions of these common hash encoded q-grams nor the

positions of the original q-grams because (1) the com-

mon q-grams between two lists can occur at any posi-
tion in the lists, and (2) the hash encoded q-grams in

the two lists have been shifted by our random shifting

technique. This results in the common patterns of the

original string pairs to be distributed to different pat-
terns of the encoded string pairs. In other words, the

original positions where common q-grams occur in the

q-gram lists have been shifted to other positions in the
encoded and shifted lists.

Similarly, in the fast encoded q-gram comparison al-

gorithm, although the actual sequence of hash encoded

q-grams is contained in the concatenation of the shifted

lists (as described in Section 4.4.2), the LU still cannot
learn the actual positions of neither where the original

q-grams nor the LCS occur in the two strings.

In the random bit arrays based approach, the LU

receives bit arrays which are randomly padded by ran-
dom bits. The LU cannot learn the length of the original

strings because every bit array has the same length. It

also cannot learn the frequency distribution of the bits
that encode each q-gram because the q-gram bit arrays

are shifted by a random number of bits, and therefore

it cannot re-identify the original q-grams. The LU can

only learn that the common bits occur in the middle
of two bit arrays (common pattern m-m) but it cannot

learn the actual positions where the LCS occurs in the

strings that correspond to a bit array pair.

Once the LU has compared all encoded string pairs,
it returns the LCE or LCB to the DOs. Each DO then

calculates the length of the LCS, lcs. This allows each

DO to learn the LCS between a string in its database

and a string in the other DO’s database, but the DO
cannot learn the positions where the LCS occurs in their

string. Therefore, the DOs only learn that there is a

sub-string match.

9 Experimental Evaluation

We evaluated the accuracy, privacy, and scalability of
our privacy-preserving string matching approaches com-

pared to Bloom filter (BF) encoding [45], tabulation

based hashing (TMH) [52], and DGK approximate string

matching (DGK) [24]. We compared our approaches
with these three baselines because BF encoding [45] is

considered as a standard technique for PPRL, TMH [52]

is a more secure technique compared to BF encoding,
and DGK [24] is a recently proposed approach for secure

string matching that encrypts strings based on their q-

grams. We implemented all approaches using Python
2.7 and ran experiments on a server with 2.4 GHz CPUs

running Ubuntu 18.04.

9.1 Data Sets

In our evaluation, we require pairs of data sets where

each pair contains different common patterns as illus-

trated in Table 3. We used both synthetic and real data
of types numbers, letters, and mixed.

To generate the synthetic data, we used the Python
package Faker1 to create data sets of credit card, bar-

code, and IBAN (International Bank Account Num-

ber) numbers, where each such data set contains 1,000
unique strings. We used each of these data sets as the

first data set in a pair. We then created the second

data set of a pair by replacing characters at different

positions in each string in the first data set by random
characters of the same alphabet. We ensured each data

set pair does contain different common patterns, how-

ever the common pattern b-e (see Table 3) cannot occur
for IBAN numbers because these numbers begin with

letters and end with digits. Therefore, the beginning of

the first IBAN number cannot be in common with the
end of a second IBAN number in a string pair.

For real data, we extracted 1,000 strings of first
names, cities, zip codes, and telephone numbers from

the North Carolina Voter Registration (NCVR)2 data-

base, with snapshots from 2011 (first data set) and 2020

(second data set). We also extracted 1,000 strings of US
security numbers from the Social Security Death Mas-

ter File3. Similar to generating the synthetic data sets,

we used the extracted US security numbers to generate
the second data set by randomly replacing characters

at different positions in each string.

In total we evaluated our approaches and baselines

on eight data set pairs including three sets of synthetic

1 See: https://pypi.org/project/Faker/
2 See: https://dl.ncsbe.gov
3 See: http://ssdmf.info/download.html

https://pypi.org/project/Faker/
https://dl.ncsbe.gov
http://ssdmf.info/download.html
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Table 5 Lengths of the longest q-gram list, ls, q-gram bit
array, lq, calculated using lestq (Equation (1)), and final bit
array, lt, of different data set pairs and alphabet sizes, |Σ|.

Data set pair Data set |Σ| ls lq lt

NCVR 2011-2020 First names 28 15 20 300
” Cities 31 22 20 440
” Zip codes 10 11 16 176
” Telephone numbers 11 11 20 220

Extracted-Corrupted US security numbers 26 14 20 280
Synthetic-Corrupted Credit card numbers 10 17 20 340
Synthetic-Corrupted Barcode numbers 10 14 20 280
Synthetic-Corrupted IBAN numbers 36 23 26 598

data, four sets of real NCVR data, and one set of real
social security death index data.

9.2 Parameter Settings

We padded strings in the two databases, DA and DB ,

using the padding characters α = “$” and β = “#”,
respectively. We generated q-grams using q = 3 for first

names, cities, zip codes, and the US security numbers

data sets, while we used q = 4 for telephone, credit

card, barcode, and IBAN numbers. For each data set,
we used the minimum length of LCS, m = q.

In the shifted hash encoded q-gram based approach,
to generate hashed q-grams, we used the hash func-

tion H = SHA256 [44] and the agreed secret salt value

s = 45. This salt value was also concatenated with q-
grams for generating each q-gram bit array, bq, in the bit

arrays based approach. To generate the random bit ar-

rays for databases DA and DB , we used the individual

secret salt values, sA = 65 and sB = 56, respectively.
We calculated the length of q-gram bit arrays, lq, using

Equation (1). Table 5 shows the alphabet sizes and bit

array length for each data set.

We compared our approaches with three baselines,

which are BF [45], TMH [52], and DGK approximate
string matching (DGK) [24]. We used the same pa-

rameter settings as we used in our approaches, such as

padding character α, q-gram length q, minimum length

m, secret salt value s, and the hash function H.

To generate the BF for a string, we encoded each q-

gram set into a BF of 1,000 bits as this is a commonly
used BF length for PPRL [45]. We used the optimal

number of hash functions [39] for each data set, which

is 139 for first names, 87 for cities, 139 for zip codes, 87
for telephone numbers, 116 for US security numbers,

46 for credit card numbers, 58 for barcode numbers,

and 33 for IBAN numbers. For the TMH approach, we

followed the original publication [52] and used 8 tab-
ulation hash keys each of 64 bits length to generate a

bit array of length 1,000 bits to encode a string. For

the DGK approach, we used keys of size 1,024 bits, and

Table 6 Number of bits used for generating blocks and bkv

for different data sets and approaches.

Data set
Our approach BF TMH

pb=30 pb=50 pb=80

NCVR First names 6 10 16 16 16
NCVR Cities 6 10 16 16 16
NCVR Zip codes 4 8 12 12 12
NCVR Telephone numbers 6 10 16 16 16
US security numbers 6 10 16 16 16
Credit card numbers 6 10 16 16 16
Barcode numbers 6 10 16 16 16
IBAN numbers 7 13 20 20 20

rather than using a two-party protocol as proposed in
the original publication [24], we implemented a three-

party protocol to be comparable with our approaches

and the other two baselines by using a LU for conduct-
ing the comparison process.

To improve scalability, we applied a q-gram based
blocking technique for all approaches and applied HLSH

based blocking on the random bit array, BF, and TMH

approaches, as we described in Section 7. However, we
only show results based on q-gram based blocking for

BF [45] and TMH [52] as both blocking approaches (q-

gram and HLSH based blockings) provide highly similar
results. For q-gram based blocking, we calculated the

length of q-gram set permutations for generating blocks

based on m and q, resulting in tq = 1.

For HLSH based blocking, in our random bit arrays

based approach, we generated blocking key values, bkv,
using the length of bit segments lb calculated based on

the bit percentage, pb = 30, 50, and 80 (the lb calcu-

lation is described in Section 7). For the BF [45] and
TMH [52] baselines, we used the same length of bit seg-

ments lb calculated based on pb = 80 in our approach

because when using pb < 80 the resulting bit segments

are too short and generate too many blocks for BFs or
bit arrays of length 1,000 bits. This would lead to a

large number of comparisons. For example, as shown in

the first names data set in the Table 6, the length of
bit segments lb = 6 and number of blocks is 166 blocks

when it is calculated based on pb = 30, while lb = 16

and number of blocks is 62 when calculated based on
pb = 80. To generate each blocking key, bkv, we used the

agreed secret salt value, s = 45, and the hash function

H = SHA256.

9.3 Accuracy Results

We evaluated the accuracy of all approaches based on

the correctness of similarity calculations. We compared
the length of the LCS of unencoded string pairs with the

calculated length of LCS, lcs, of the corresponding en-

coded string pairs based on Equation (2). To be compa-
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Fig. 5 Similarity plots of shifted hash encoded q-gram based approach (first column), shifted random bit arrays based approach
(second column), Bloom filter (BF) encoding [45] (third column), tabulation based hashing (TMH) [52] (fourth column), and
the DGK approximate threshold [24] based approach (last column). As can be seen, both of our approaches provide accurate
similarity calculations our LCS equals the actual LCS that is calculated on unencoded string pairs), while the BF and TMH
approaches both can lead to substantially changed similarities even between very similar strings. The DGK approach results
in the similarity of a pair of encoded strings to be higher than the similarity of its corresponding unencoded strings.

rable with the BF [45], TMH [52], and DGK [24] base-

lines, we normalised the lcs into the range [0...1] of sim-

ilarity values, calculated as simlcs = lcs/max(|x|, |y|),
where x and y are the strings in a pair.

For the BF approach, we calculated the similarity of

q-gram sets and of BFs using the Dice co-efficient simi-
larity [45], while we used the Jaccard similarity calcula-

tion for q-gram sets and of bit arrays generated by the

TMH encoding technique [52]. For the DGK approach,

we calculated the similarity of q-gram and encryption

(ciphertext) lists using the Dice co-efficient [24].

Fig. 5 shows scatter plots where the horizontal axis

shows unencoded similarities and the vertical axis shows

the corresponding encoded similarities. Points on the

diagonal show pairs of strings where both the unen-
coded and the encoded similarities are the same, while

any point off the diagonal shows differences in the cal-

culated similarities between unencoded and encoded
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Fig. 6 Heatmap [22] plots of different privacy levels of a PPRL approach. The highest to lowest privacy are shown from left to
right. In each plot, the vertical axis shows the common pattern of unencoded (or unencrypted) string pairs and the horizontal
axis shows the common pattern of encoded (or encrypted) string pairs.

string pairs. As can be seen, both our approaches pro-

vide accurate string similarity results, while BF [45] and

TMH [52] encodings can result in inaccurate similari-
ties. This is because of high number of hash collisions

that occur with both encoding approaches, where dif-

ferent q-grams are hashed into the same bit positions.

The DGK [24] approach also results in inaccurate

similarities. This is because the Dice co-efficient of the

ciphertexts is calculated based on the cardinality, where
some ciphertexts that represent encrypted q-grams of

strings in a pair are not common, although these cipher-

texts are common between the two lists of all possible
q-grams that were used to generate the intersection set

of cardinality.

9.4 Privacy Results

We first evaluated the privacy of our approaches by
identifying the common patterns between unencoded

(or unencrypted) and encoded (or encrypted) string

pairs. Fig. 6 shows example heatmap [22] plots of dif-
ferent levels of privacy provided by a PPRL approach,

where in each plot the vertical axis shows the common

patterns of unencoded (or unencrypted) string pairs

and the horizontal axis shows the common patterns
of encoded (or encrypted) string pairs. The dark blue

colour indicates a higher percentage of unencoded and

encoded string pairs while lower percentage of pairs are
shown in light blue.

An approach provides the highest privacy when there
are no common patterns of unencoded and encoded

string pairs (as we show in the leftmost plot in Fig. 6).

In contrast to the highest privacy, an approach provides
the lowest privacy when all patterns of unencoded and

encoded string pairs are in common (as we show in the

rightmost plot in Fig. 6). An approach provides high

privacy when (1) the patterns of unencoded string pairs
become the m-m pattern when the strings in these pairs

are encoded (as illustrated in the second left plot), or

(2) the patterns of unencoded string pairs become dif-

ferent patterns when the string in these pairs are en-

coded (as illustrated in the second right plot). There-

fore, when common patterns of unencoded string pairs
become different patterns in encoded string pairs, it is

more difficult for an adversary to identify the original

q-grams and the positions where the LCS occurs.

As can be seen in Fig. 7 and Fig. 8, the common

patterns of encoded string pairs using our approaches
are different from the common patterns of unencoded

string pairs, where no string pair has the same com-

mon pattern. With the shifted hash encoded q-grams
based approach, each common pattern of unencoded

string pairs is distributed to different common patterns

when the strings in the pairs are encoded. The highest

number of encoded string pairs in many data sets is the
common patternm-m, which means the encoded strings

in a pair are common in the middle of the hash encoded

q-gram list, h. Similarly, in the random bit array based
approach, most common patterns of unencoded string

pairs become the common pattern m-m in the encoded

string pairs, as we described in Section 8.

For the DGK approach [24], the common patterns of

unencrypted and encrypted string pairs are all the same
because the common patterns of unencrypted string

pairs are not distributed to other common patterns of

encrypted string pairs. Each unencrypted q-gram in a
pair and its corresponding ciphertext (encryption of 1)

is located at the same position in the list of all possible

q-grams. However, this approach still provides high pri-
vacy because of the use of the DGK homomorphic en-

cryption [17] which results in the same value being en-

crypted into different ciphertexts. Therefore, although

the common patterns of unencrypted and encrypted
string pairs are the same, it would be difficult to re-

identify the original string values because an adversary

cannot learn if a ciphertext represents a 0 or 1.

For the BF [45] and TMH [52] encoding approaches,

the common patterns of the same string value in differ-
ent data sets are not being distributed to other com-

mon patterns when they are encoded, and therefore the

common pattern is the same common pattern. The en-
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Fig. 7 Heatmap [22] plots of the NCVR and US social security number data set that are compared using different approaches.
Each column shows shifted hash encoded q-gram, random bit arrays, BF encoding [45], TMH [52], and DGK [24] ordered
from left to right. Each row shows common patterns of different real data sets. In each plot, the vertical axis shows the
common pattern of unencoded (or unencrypted) string pairs and the horizontal axis shows the common pattern of encoded
(or encrypted) string pairs. Higher percentages of unencoded and encoded string pairs are shown in dark blue, while lower
percentages are shown in light blue colour.

coded string pairs can have the none common pattern
because when using these approaches the bits that en-

code q-grams are not located in sequential order. The

bits of common q-gram between two strings can be lo-
cated next to bits that encode not common q-grams,

and the sequence of bits in a BF or TMH bit array is

then a mix of common and not common q-grams. For
example, assume the two BFs bx = 1011000100 and

by = 0001010110 have common bits encoding of com-

mon q-gram locating at positions 3 and 7 (as shown

in bold) of the BFs. These two bits are located next to

the bits encoded of not common q-grams. The encoding
is a mix of bits encoded of common and not common

q-grams. As can be seen, this BF pair cannot be cat-

egorised to any of common patterns (as illustrated in
Table 3), and therefore, the common pattern of this

BFs pair is none.

We also evaluated the privacy of our random bit ar-

rays approach and the BF [45] and TMH [52] encoding
baselines using two cryptanalysis attacks developed for

BFs for PPRL [12,13,14]. A frequency based attack [12,

13] cannot reveal any information from our random bit
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Fig. 8 Heatmap [22] plots of the synthetic data sets that are compared using different approaches. Each column shows shifted
hash encoded q-gram, random bit arrays, BF encoding [45], TMH [52], and DGK [24] ordered from left to right. Each row shows
common patterns of different synthetic data sets. The vertical axis shows the common pattern of unencoded (or unencrypted)
string pairs and the horizontal axis shows the common pattern of encoded (or encrypted) string pairs. Higher percentages of
unencoded and encoded string pairs are shown in dark blue, while lower percentages are shown in light blue colour.

array based approach as well as the two baselines be-

cause the frequency of bit arrays or BFs equals the fre-
quency of strings (all have frequency of 1). Therefore,

the attack cannot identify any pairs of unencoded and

encoded values. A pattern mining based attack [14] can-
not re-identify any information in our random bit array

based approach and the two baselines either, because of

the random bit arrays which result in encodings of the

same q-gram in different strings being located at dif-
ferent positions. It also cannot attack the two baselines

because too many hash collisions occur in encodings

which means the attack cannot re-identify any infor-
mation about individual q-grams.

9.5 Scalability Results

To be comparable between our approaches and the base-

lines, we use a three-party protocol for all approaches [11].

We evaluated the runtime of the encoding process by
a DO and the string comparison process by the LU, as

shown in Fig. 9. We report the average times for one

string or string pair in milliseconds.

As can be seen in Fig. 9, our shifted hash encoded q-
gram based approach is the fastest encoding technique

while the DGK approach [24] is the slowest encoding

technique. In our random bit arrays based approach,

the encoding of letters is performed faster than the en-

coding of numbers. This is because the size of the al-
phabet, |Σ|, affects the runtime when generating the

unique random bit arrays. A small |Σ| leads to shorter

q-gram bit array length, lq, and results in longer run-
times to generate unique random bit arrays for the two

DOs. Furthermore, encoding also uses more time for

longer strings, such as IBAN numbers (as shown in Ta-

ble 5). However, the size of the alphabet and the length
of strings do not affect the other encoding approaches.

For the comparison process, we applied q-gram based
blocking to our shifted hash encoded q-gram based ap-

proach and the three baselines, while we applied HLSH

based blocking to our random bit array based approach
and the BF [45] and TMH [52] baselines. Table 7 shows

the number of string pair comparisons of the different

data set pairs and approaches, where we show only the
number of comparisons based on q-gram based blocking

for the three baselines.

As can be seen in Fig. 9, in the comparison process,

our approaches consume similar runtimes to the DGK

approach [24] and have longer runtimes than BF [45]

and TMH [52] encoding, where these two baselines have
similar runtimes. This is because the comparison pro-

cess of our approaches is more complicated, where we

find all sequences of common encodings that occur in
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Table 7 Number of string pair comparisons for different data set pairs and encoding approaches.

Data set pair Data set Shifted hash encoded q-gram Bit array based BF [45] TMH [52] DGK [24]

NCVR 2011-2020 First names 19,462 20,573 45,215 45,215 124,246
” Cities 33,029 33,662 46,954 46,954 168,494
” Zip codes 55,454 59,515 389,603 389,603 396,020
” Telephone numbers 176,863 177,372 573,053 573,053 574,920

Extracted-Corrupted US security numbers 12,884 13,175 29,625 29,625 81,024
Synthetic-Corrupted Credit card numbers 18,594 22,153 27,606 27,606 27,606
Synthetic-Corrupted Barcode numbers 9,864 12,139 11,706 11,706 11,706
Synthetic-Corrupted IBAN numbers 22,818 23,156 112,872 112,872 112,872
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Fig. 9 Runtime comparison of the encoding processes by a DO (left) and encoded string comparison by a LU (right) between
our approaches, BF encoding, and TMH. Shown are average times for encoding one string and matching one string pair.

the encoded strings pair and then find the LCS between

them, while BFs [45] and TMH [52] both only calculate

approximate similarities based on the set intersection
of 1-bits that occur in a pair of encoded strings.

Overall, as expected, the runtimes of our fast com-
parison algorithms are faster than the basic comparison

algorithms. However, in the random bit arrays based

approach, the fast algorithm is slower than the basic al-
gorithm when we use lγ = 10% of llcb. This is because

of the overhead by the fast algorithm which needs to

generate segments and find the common sequences of

bits to the left and right of segments.

10 Discussion

Our approaches provide accurate string comparisons
and outperform Bloom filter (BF) encoding [45], tabu-

lation based hashing (TMH) [52], and the DGK approx-

imate string matching (DGK) [24] approaches, where
all of these baselines calculate approximate similarities

between string pairs. Our approaches use more time for

the comparison step than the BF [45] and TMH [52]

baselines, while our random bit arrays based approach
uses similar runtimes to the DGK [24] approach. For

the encoding step, our approaches are faster than the

TMH [52] and DGK [24] baselines.

In terms of privacy, the common patterns of the

original string pairs are distributed to different pat-

terns when strings are encoded using our approaches,
while with the BF, TMH, and DGK baselines the com-

mon patterns of string pairs are not distributed to other

common patterns. This implies that our approaches will
make it more difficult for an adversary to re-identify the

original string pairs based on a frequency analysis than

with the three baselines because less common patterns

are available for an attack. Overall, our approaches pro-
vide high accuracy and privacy, at the cost of increased

comparison times if compared to the three baselines.

11 Conclusions and Future Work

We have presented two new privacy-preserving string
matching techniques that allow the accurate and effi-

cient calculation of the longest common sub-string be-

tween strings. Our approaches encode sensitive input
strings such that no re-identification is possible, while

also preventing frequency attacks on individual charac-

ter encodings. Our experimental evaluation has shown

that both our approaches result in the same string simi-
larities as on the original unencoded strings, while com-

monly used Bloom filter encoding [45], tabulation based

hashing [52], and DGK approximate string matching [24]
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approaches will lead to potentially much higher or lower

similarities between encoded strings.

As future work we aim to improve the runtime of

the comparison step of our random bit arrays based

approach by generating blocks based on the consecu-
tive order of bit segments, and conduct more extensive

scalability experiments on larger databases.
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