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ABSTRACT
Anomalies such as redundant, inconsistent, contradictory, and defi-
cient values in a knowledge graph are unavoidable, as such graphs
are often curated manually, or extracted using machine learning
and natural language processing techniques. Therefore, anomaly
detection in knowledge graphs is an essential task that contributes
towards its quality. Although there are approaches to detect anom-
alies in knowledge graphs, they are either domain dependent, not
scalable to large graphs, or they require substantial human interven-
tion. In this preliminary research paper we propose a novel unsuper-
vised feature-based approach to anomaly detection in knowledge
graphs. We first characterize triples in a directed edge-labelled
knowledge graph using a set of binary features, and then use a
one-class Support Vector Machine (SVM) to classify these triples as
normal or abnormal. After selecting the features that have the high-
est consistency with the SVM outcomes, we provide a visualization
of the identified anomalies, and the list of anomalous triples, thus
supporting non-technical domain experts to understand the anom-
alies present in a knowledge graph. We evaluate our approach on
the four knowledge graphs YAGO-1, KBpedia, Wikidata, and DSKG.
This evaluation demonstrates that our approach is well suited to
identify anomalies in knowledge graphs in an unsupervised man-
ner, independent from the domain of the knowledge graph being
evaluated.

CCS CONCEPTS
• Computing methodologies → Anomaly detection; Unsu-
pervised learning; Support vectormachines; •Human-centered
computing → Information visualization; • Information sys-
tems → Clustering; Graph-based database models.
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Data quality assessment; binary feature library; edge-labelled graphs;
one-class classifier; visualization.
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1 INTRODUCTION
When constructing a Knowledge Graph (KG), it can either be man-
ually curated like WordNet [7], manually generated by volunteers
like Wikidata [23], automatically extracted from semi-structured
text via hand-crafted or learned rules like YAGO [21], or automat-
ically extracted from unstructured text using a machine learning
technique like NELL [16]. Irrespective of the approach followed, the
presence of anomalies is inevitable [3, 14, 15] when it is a human
that adds content to a KG, or to any other source that is used to
extract data, given that no human is omniscient. Similarly, machine
learning techniques unlikely always produce completely accurate
outcomes. It is therefore impractical to have a fully accurate and
complete structured repository of knowledge. There will always be
a trade-off between coverage and correctness, which is achieved
differently in each KG [17].

To address these drawbacks, various methods for KG refinement
have been proposed with the aim of improving KG quality. Similar
to data quality dimensions [18], there exists a set of dimensions
to assess the quality of KGs [8]. In the KG construction life cycle,
there are two approaches named KG validation and KG enrichment
that correspond to the two quality dimensions accuracy and com-
pleteness of KGs respectively. With the introduction of anomaly
detection in KGs, we can achieve another two dimensions named
concise representation and consistent representation [8].

Anomaly detection is important due to its ability to improve
the quality of a KG. Performing anomaly detection as the first
step will provide a much cleansed KG as an input to validation
and enrichment methods, thereby improving their performance.
KGs act as the knowledge repository for many applications such
as personal assistants, software agents, search engines, question-
answering machines, and many more [1]. Therefore, to ensure a
quality output from these applications, it is important that their
underlying KG is free from errors and anomalies, complete, and
also has a concise and consistent representation of knowledge.

Contributions: In this preliminary research paper we intro-
duce an unsupervised anomaly detection approach for KGs. Our
approach develops a feature library which has a set of pre-defined
binary features that we can apply on any KG irrespective of its
domain and size. The features consider aspects such as structural
arrangements of a graph, frequency of occurrence of subjects, pred-
icates and objects, entity types of the subject and object, data type
conformity of literals, duplicate triple occurrences, applicability of
a predicate with a given entity type, and so on. These features are
capable of identifying anomalies pertaining to data quality of the
triples while also identifying any inconsistencies or contradictions
among the triples.

Using this feature library, we construct one binary feature vector
for each triple on the KG thus forming a matrix of features. We use
a one-class SVM to learn the feature matrix where we then identify
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Figure 1: Overview of the anomaly detection process to identify anomalous triples in a KG, as described in Section 3.

the highly consistent features as the prominent set of features
in determining the anomalous aspects of the KG. We present the
anomalous patterns found in triples graphically to provide a visual
representation of the anomalies existing in the KG. We evaluate
our approach on four open KGs.

We can describe the novelty of our approach using its capabilities.
Our approach is capable of detecting a multitude of anomalies such
as duplicate triples, data type errors, contradicting triples, and enti-
ties with missing or incomplete data. The triple pair <Marla_Maples,
hasChild, Donald_Trump> and <Marla_Maples, isMarriedTo, Don-
ald_Trump> is an example of a contradicting triple in YAGO-1 that
was identified by our approach. Also, our approach is unsupervised
which means no human engagement is required to detect anomalies.
Furthermore, our approach is domain and format independent. The
use of a feature library that is independent from the KG makes
our approach applicable on any KG irrespective of its domain and
storage type.

2 RELATEDWORK
Attributed graphs are rich in information, and therefore recently the
paradigm of anomaly detection in graphs has shifted to attributed
graphs [5]. CODA [9] is a generative model that detects outliers
within the context of a community such that the identified outliers
deviate significantly from the rest of the members in the commu-
nity. MIDAS [2] is aimed at detecting micro cluster anomalies given
a stream of edges from a dynamic graph, where an anomaly score
is assigned to edges in an online manner as opposed to individual
edge detection. GraphUCB [5] is an interactive anomaly detection
algorithm defined on attributed networks. It presents a contex-
tual multi-armed bandit algorithm that interactively incorporates
human feedback on the identified anomalies.

The main difference between our proposed approach and the
above discussed approaches is that we focus on edge-labelled graphs
instead of attributed or dynamic graphs. Also, our approach does not
interact with users during the anomaly detection process. While our
definition of an anomaly is similar to CODA [9], we are interested in
identifying anomalous triples considering the entire KG as opposed
to communities or clusters.

In the context of anomaly detection in KGs, the pattern discovery
and anomaly detection approach proposed by Jia et al. [13] presents

a reasoning system to discover abnormal patterns and unusual ac-
tivities given a stream of unstructured data such as tweets. Felfernig
et al. [6] proposes an interface named ICONE to support knowledge
engineers to develop and maintain Configuration Knowledge Bases
(CKB) with capabilities to visually represent anomalies. ICONE
is capable of detecting inconsistencies and redundancies in CKBs.
Wienand et al. [25] introduces an unsupervised numerical outlier
detection method to identify incorrect numerical values in DBpedia.
Zhang et al. [26] studies the problem of discovering exceptional
facts about entities in KGs. An entity is exceptional among the
entities in the context under consideration, such as movies, music,
or people. Jabeen et al. [12] presents an approach that can perform
adaptive outlier detection against the cohorts of classes the data
represent, where a cohort is a set of classes that are similar based
on a set of selected properties.

Our approach differs from the above in the following ways: (1)
Our approach is KG and data type independent unlike [12, 25]. (2)
Unlike [6, 26], our work can detect a multitude of anomalies. (3)
Even though our approach focuses on structured data, by changing
only the features of the feature library, we can apply our approach
on unstructured data to detect anomalies similar to [13].

3 PROPOSED METHODOLOGY
Following recent work in anomaly detection in KGs [6, 13, 25],
our aim is to discover abnormal triples, on the basis that they are
rare, missing, inconsistent, duplicate, or incomplete. For example,
a triple with a missing object value is considered as an abnormal
triple. In this section, we describe in detail the steps of our approach
as outlined in Figure 1.

3.1 Populate knowledge graph
We consider a structured data source such as XML, JSON, or TTL,
and convert it into a directed edge-labelled KG, G = (V ,E) con-
taining a set of nodes (or vertices) V and a set of labelled edges E
connecting these vertices.

The Resource Description Framework (RDF) is a standardised
data model based on directed edge-labelled graphs with the W3C
recommendation1. The RDF model defines three types of nodes in a
graph such as Internationalized Resource Identifiers (IRIs) I which

1https://www.w3.org/TR/rdf-concepts/#section-Graph-URIref
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assigns a global identifier for entities Ie and relations Ir on the web
(where I = Ie ∪ Ir ), literals L which represents strings and other
datatype values, and blank nodes B which are anonymous nodes
(not a URI reference or a literal) that do not have an identifier [11].
We therefore have the node set V = (Ie ∪ L ∪ B), and edge set
E ∈ V × Ir ×V .

Each edge e ∈ E ∈ G is considered as a RDF triple. A triple
(also named as a triplet) contains the three elements subject s ∈ S ,
predicate p ∈ P , and object o ∈ O . A triple is denoted as (s,p,o)
where (s,o) ∈ V , and (s × p × o) ∈ E. Furthermore, s ∈ (I ,B), p ∈ Ir ,
and o ∈ (I ,L,B).

3.2 Generate tabular representation
In this step of our approach, the directed edge-labelled KG G is
converted into a n ×m matrix T, where n = |E | andm = 3, and the
edge set E ∈ G is represented in the form (s,p,o). The created T is
further split into two matrices as Tl and Te based on the type of
the object node, such that T = Tl ∪ Te . If o ∈ L, then (s,p,o) ∈ Tl ,
else if o ∈ Ie , then (s,p,o) ∈ Te . This separation is made because
we generate different sets of features for triples with a literal as the
object, and for triples with an IRI object.

3.3 Feature generation
Our approach introduces a feature library with a set of pre-defined
binary features. Presence of duplicate triples, object’s data type
mismatches the data type implied by the predicate, frequent sub-
ject/object in/out degree, frequent entity type of subject/object are
some of the examples of features in the feature library.

Based on the set of feature generation functions FFF in the feature
library, FFF l for Tl and FFF e for Te where FFF = FFF l ∪FFF e , we generate
two feature matrices Fl and Fe , such thatFFF l determines the feature
matrix Fl , and FFF e determines the feature matrix Fe . While the
feature library stores all feature generation functionsFFF , the feature
generator is responsible for: (1) retrieving the matrix of triples Te
or Tl , data types store D, the feature generation functions FFF from
the feature library as inputs, and (2) generating the output Fe or Fl
as depicted in Step (c) of our approach in Figure 1.

In Fl , we have one feature vector f per triple in Tl (the number
of rows of Fl is |Tl | and the number of columns is |FFF l |). Similarly,
in Fe , we have one feature vector f per triple in Te (the number of
rows of Fe is |Te | and the number of columns is |FFF e |).

3.4 Learn one-class SVM
We next train several one-class Support Vector Machine (ν-SVM)
classifiers [20] to characterize feature vectors as normal or abnor-
mal [4], where for each feature vector f , a trained ν-SVM will
provide a calculated anomaly score. To increase the robustness of
our approach, we train several one-class ν-SVMs with different
kernel functions [19]. We average the obtained abnormality scores
to determine the b most abnormal feature vectors, where b > 1 is
the budget defined by a decision maker indicating the maximum
number of abnormal vectors he/she could investigate further. At the
end of this step, the feature matrix (Fl or Fe under consideration)
will contain b feature vectors labeled as abnormal while all others
are labeled as normal.

Table 1: KG summaries.

KG |Ie | |Tl | |Te |

YAGO-1 2,215,094 21,337,521 922,741
KBpedia 62,796 534,032 227,060
Wikidata 14,036,475 53,541,372 51,559,889
DSKG 5,952 22,202 828,086

3.5 Identify features that describe abnormality
We next obtain, for each feature, a score of how consistent its
values (of True or False) in the feature vectors compared to the ν-
SVM classification outcome (of normal and abnormal). For example,
if a feature is always True for those feature vectors labeled as
abnormal and False otherwise, then this feature will be highly
useful in describing anomalous behavior. We select the top features
with the highest such consistency scores, and using only these
features we generate all binary patterns from the feature vectors
labeled as abnormal. We do not consider the feature vectors labelled
normal as we believe they do not require any corrections.

3.6 Visualization
As the final step, we visualize the anomalous binary patterns via a
tile plot [22], and the associations among these highly consistent
features via an association plot [24]. The tile plot shows how the
selected features occur in different binary patterns of the anoma-
lous triples. The size of a tile is determined by the consistency
score of a feature (tile length), and how frequently a certain pattern
occurs in the group of abnormal feature vectors (tile height). The
color intensity of a tile represents the binary value of the respec-
tive feature in that particular pattern. To improve visualization, if
too many binary patterns are generated, we apply agglomerative
clustering [10] to group similar binary patterns. Then, each row of
the tile plot represents a cluster of binary patterns.

An association plot, on the other hand, shows the features with
the highest edge support between them, as calculated based on
the maximum ratio of True or False values in the set of abnormal
feature vectors. Combined, these two types of visualizations can
help a user in understanding the features that contribute most to
the anomalous characteristics of their KG.

4 EXPERIMENTAL EVALUATION
We implemented our approach using Python version 3. All experi-
ments were run on a server with 64-bit Intel Xeon (2.4 GHz) CPUs,
512 GBytes of memory, and Ubuntu 18.04. The program code is avail-
able on Github (see: https://github.com/AsaraSenaratne/anomaly-
detection-kg). We performed the experiments using the four KGs
YAGO-12, KBpedia3, Wikidata4, and DSKG5. A summary of these
four KGs are provided in Table 1.

2https://yago-knowledge.org/downloads/yago-1
3https://kbpedia.org/
4https://www.wikidata.org/wiki/Wikidata:Main_Page
5http://dskg.org/

https://github.com/AsaraSenaratne/anomaly-detection-kg
https://github.com/AsaraSenaratne/anomaly-detection-kg
https://yago-knowledge.org/downloads/yago-1
https://kbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
http://dskg.org/
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Table 2: Examples of anomalous triples.

KG Subject Predicate Object Reason for Anomaly
KBpedia 2011IIHFWorld Championship altLabel 2011 ice hockey world chamionship Duplicate triples but with a spelling mistake in the object of the first triple.

2011IIHFWorld Championship altLabel 2011 ice hockey world championship
AgriculturalAircraft altLabel Crop-duster A subject with three alternative labels conveying the same information.
AgriculturalAircraft altLabel Cropduster pilots
AgriculturalAircraft altLabel Crop-duster pilots

DSKG distribution/100236 byteSize "" Missing object.
dataset/1816 describedIn https://github.com/bgsu-rna/rnao

One dataset with three resources for descriptions is rare in the KG.
dataset/1816 describedIn http://soc.southalabama.edu/huang/papers/BIBM-15-1.pdf
dataset/1816 describedIn http://omnisearch.soc.southalabama.edu/w/index.php/Ontology

YAGO-1 Marla_Maples hasChild Donald_Trump Contradicting triples.
Marla_Maples isMarriedTo Donald_Trump
Raymond_Dalmau bornOnDate 1950-##-## Missing information in object.

Wikidata L17778 altLabel 0 Abnormal object value. The subject ’L17778’ referring to the English term "Lank" has the
alternate label "0".

L158675-F1 altLabel "" Missing object value.
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Figure 2: Tile and association plots of Te of YAGO-1.

4.1 Results and discussion
We now present the visualizations obtained for one of the KGs
(YAGO-1), and provide a few examples of the interesting anomalous
triples obtained for all four KGs in Table 2. We manually verified
the triples in this table to ensure their anomalous nature.

Figure 2 shows the identified abnormal patterns and associations
of the YAGO-1 triples in Te . The triples of Marla Maples and Don-
ald Trump in Table 2 are abnormal because in the real world, two
people cannot hold the relationships mother-son and husband-wife
simultaneously. These two triples are represented by the third clus-
ter (row) of the tile plot in Figure 2. The triples belonging to the
third cluster have a subject and object pair occurring together fre-
quently (first tile), hence a tile with a lighter intensity. The fact that

Marla Maples and Donald Trump having more than one relationship
among them is rare to see among other triples of people.

The second tile of the third cluster provides another anomalous
feature of the triples belonging to that cluster. With a darker color
intensity, it implies that the occurrence of a particular subject and
predicate together is rare. The subject and predicate combinations
<Marla Maples, hasChild>, and <Marla Maples, isMarriedTo> have
rare occurrences as the KG does not contain much information
about Marla Maples. This is further confirmed by the sixth tile
stating rare subject-out-degree. Also, the predicate and object oc-
currence together is rare because Donald Trump mostly appears as
the subject and rarely as the object in triples. Hence, a rare object-
in-degree as well. In YAGO-1, there are more triples about movies
and song albums compared to triples about people. Hence, there is
a rare count of occurrence of subject’s entity type for triples about
people. As Marla Maples belongs to the entity type PERSON, the
two example triples are considered rare within the KG.

As per the association plot, 97% of the triples are anomalous due
to the rare occurrence of subject’s entity type (for example, YAGO-1
has less information about places compared to movies and song
albums), 74% are abnormal due to subject and predicate of a triple
frequently occurring together (as in the case of duplicate triples),
and 73% are abnormal due to both these features.

5 CONCLUSION AND FUTUREWORK
In this preliminary research paper we study the problem of discover-
ing anomalous triples in a knowledge graph (KG) in an unsupervised
manner. The approach uses a feature library that contains features
pertaining to structure of a graph, frequency of occurrence of sub-
jects, predicates and objects, entity types of the subjects and objects,
data type conformity of literals, duplicate triple occurrences, appli-
cability of a predicate with a given entity type, and so on. A triple
is considered anomalous if it has missing, duplicate, contradicting,
incomplete, or inconsistent data. Unlike other work, our approach
is domain independent, has no input type limitations, has an ability
to identify a multitude of anomalies without depending on external
sources, and can compliment KG validation and enrichment. We
intend to improve our work using two approaches. First, we will
perform manual evaluation. Second, we will introduce noise to KGs
to determine how well our approach detects them. As for future
work, we aim to make automatic suggestions on possible means of
correcting the anomalies identified.



Unsupervised Anomaly Detection in Knowledge Graphs IJCKG’21, December 6–8, 2021, Virtual Event, Thailand

REFERENCES
[1] Caleb Belth, Xinyi Zheng, Jilles Vreeken, and Danai Koutra. 2020. What is normal,

what is strange, and what is missing in a knowledge graph: Unified characteri-
zation via inductive summarization. In Proceedings of The Web Conference 2020.
ACM, New York, USA, 1115–1126.

[2] Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, and Christos Faloutsos.
2020. Midas: Microcluster-based Detector of Anomalies in Edge Streams. In
Conference on Artificial Intelligence, Vol. 34. AAAI Press, California, USA, 3242–
3249.

[3] Antoine Bordes and Evgeniy Gabrilovich. 2014. Constructing and mining web-
scale knowledge graphs: KDD 2014 tutorial. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
New York, USA, 1967–1967.

[4] Peter Christen, Ross W. Gayler, Khoi-Nguyen Tran, Jeffrey Fisher, and Dinusha
Vatsalan. 2016. Automatic Discovery of Abnormal Values in Large Textual
Databases. Journal of Data and Information Quality 7, 1–2 (2016), 1–35.

[5] Kaize Ding, Jundong Li, and Huan Liu. 2019. Interactive Anomaly Detection on
Attributed Networks. In International Conference on Web Search and Data Mining.
ACM, New York, USA, 357–365.

[6] Alexander Felfernig, Florian Reinfrank, and Gerald Ninaus. 2012. Resolving
anomalies in configuration knowledge bases. In International Symposium on
Methodologies for Intelligent Systems. Springer, Berlin, Heidelberg, 311–320.

[7] Christiane Fellbaum. 2010. WordNet. In Theory and applications of ontology:
computer applications. Springer, Dordrecht, Netherlands, 231–243.

[8] Dieter Fensel, U Simsek, Kevin Angele, Elwin Huaman, Elias Kärle, Oleksandra
Panasiuk, Ioan Toma, Jürgen Umbrich, and Alexander Wahler. 2020. Knowledge
graphs. Springer, Cham, Switzerland.

[9] Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, and Jiawei Han. 2010. On
Community Outliers and Their Efficient Detection in Information Networks. In
International Conference on Knowledge Discovery and Data Mining. ACM, New
York, USA, 813–822.

[10] Jiawei Han and Micheline Kamber. 2006. Data Mining: Concepts and Techniques
(2 ed.). Morgan Kaufmann, Chicago.

[11] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo,
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli,
Sebastian Neumaier, et al. 2021. Knowledge graphs. ACM Computing Surveys
(CSUR) 54, 4 (2021), 1–37.

[12] Hajira Jabeen, Rajjat Dadwal, Gezim Sejdiu, and Jens Lehmann. 2018. Divided we
stand out! Forging Cohorts fOr Numeric Outlier Detection in large scale knowl-
edge graphs (CONOD). In European Knowledge Acquisition Workshop. Springer,

Switzerland, 534–548.
[13] Bin Jia, Cailing Dong, Zhijiang Chen, Kuo-Chu Chang, Nichole Sullivan, and

Genshe Chen. 2018. Pattern Discovery and Anomaly Detection via Knowledge
Graph. In 2018 21st International Conference on Information Fusion (FUSION). IEEE,
New Jersey, United States, 2392–2399.

[14] Shengbin Jia, Yang Xiang, Xiaojun Chen, and Kun Wang. 2019. Triple trustwor-
thiness measurement for knowledge graph. In The World Wide Web Conference.
ACM, New York, USA, 2865–2871.

[15] André Melo and Heiko Paulheim. 2017. Detection of relation assertion errors in
knowledge graphs. In Proceedings of the Knowledge Capture Conference. ACM,
New York, USA, 1–8.

[16] Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar, Bishan Yang,
Justin Betteridge, Andrew Carlson, Bhavana Dalvi, Matt Gardner, Bryan Kisiel,
et al. 2018. Never-ending learning. Commun. ACM 61, 5 (2018), 103–115.

[17] Heiko Paulheim. 2017. Knowledge graph refinement: A survey of approaches
and evaluation methods. Semantic web 8, 3 (2017), 489–508.

[18] Leo L Pipino, Yang W Lee, and Richard Y Wang. 2002. Data quality assessment.
Commun. ACM 45, 4 (2002), 211–218.

[19] Ibai Roman, Roberto Santana, Alexander Mendiburu, and Jose A Lozano. 2020. In-
depth Analysis of SVM Kernel Learning and its Components. Neural Computing
and Applications 33 (2020), 1–20. Issue 10.

[20] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. 2001. Estimating the support of a high-dimensional distribution.
Neural Computation 13, 7 (2001), 1443–1471.

[21] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek. 2020. Yago 4:
A reason-able knowledge base. In European Semantic Web Conference. Springer,
Cham, Switzerland, 583–596.

[22] Viswa Viswanathan, Shanthi Viswanathan, Atmajitsinh Gohil, and Chiu
David Chiu Yu-Wei. 2016. R: Recipes for Analysis, Visualization and Machine
Learning. Packt Publishing Ltd, Birmingham, UK.

[23] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[24] Xin Wang, Yang Xu, and Huayi Zhan. 2020. Extending Association Rules with
Graph Patterns. Expert Systems with Applications 141 (2020), 112897.

[25] Dominik Wienand and Heiko Paulheim. 2014. Detecting incorrect numerical data
in dbpedia. In European Semantic Web Conference. Springer, Cham, Switzerland,
504–518.

[26] Gensheng Zhang, Damian Jimenez, and Chengkai Li. 2018. Maverick: Discovering
exceptional facts from knowledge graphs. In Proceedings of the 2018 International
Conference on Management of Data. ACM, New York, USA, 1317–1332.


	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Populate knowledge graph
	3.2 Generate tabular representation
	3.3 Feature generation
	3.4 Learn one-class SVM
	3.5 Identify features that describe abnormality
	3.6 Visualization

	4 Experimental Evaluation
	4.1 Results and discussion

	5 Conclusion and Future Work
	References

