Knowledge and Information Systems manuscript No.
(will be inserted by the editor)

A Scalable Privacy-Preserving Framework for
Temporal Record Linkage

Thilina Ranbaduge - Peter Christen

the date of receipt and acceptance should be inserted later

Abstract Record linkage (RL) is the process of identifying matching records from
different databases that refer to the same entity. In many applications it is common
that the attribute values of records that belong to the same entity evolve over time,
for example people can change their surname or address. Therefore, to identify the
records that refer to the same entity over time, RL should make use of temporal
information such as the time-stamp of when a record was created and/or update
last. However, if RL needs to be conducted on information about people, due to
privacy and confidentiality concerns organisations are often not willing or allowed
to share sensitive data in their databases, such as personal medical records or
location and financial details, with other organisations. This paper proposes a
scalable framework for privacy-preserving temporal record linkage that can link
different databases while ensuring the privacy of sensitive data in these databases.
We propose two protocols that can be used in different linkage scenarios with and
without a third party. Our protocols use Bloom filter encoding which incorporates
the temporal information available in records during the linkage process. Our
approaches first securely calculate the probabilities of entities changing attribute
values in their records over a period of time. Based on these probabilities we
then generate a set of masking Bloom filters to adjust the similarities between
record pairs. We provide a theoretical analysis of the complexity and privacy of
our techniques and conduct an empirical study on large real databases containing
several millions of records. The experimental results show that our approaches can
achieve better linkage quality compared to non-temporal PPRL while providing
privacy to individuals in the databases that are being linked.

Keywords Secure multiparty computation - Encryption - Temporal records

This paper is an extended version of the full paper published in the proceedings of the IEEE
International Conference on Data Mining (ICDM) 2018 [20].

Thilina Ranbaduge
Research School of Computer Science, Australian National University, Canberra, Australia
E-mail: thilina.ranbaduge@anu.edu.au

Peter Christen
Research School of Computer Science, Australian National University, Canberra, Australia
E-mail: peter.christen@anu.edu.au

2 Thilina Ranbaduge, Peter Christen

1 Introduction

In application domains such as banking, health, and national security, it has be-
come an increasingly important aspect in decision making activities to integrate
information from multiple sources [2},24]. Integrated databases can help to identify
similar records in different databases that correspond to the same real-world entity
which can facilitate efficient and effective data analysis and mining not possible
on an individual database. However, since organisations collect vast amounts of
data in their databases it is becoming increasingly challenging to integrate and
combine data from different sources [23]. The process of identifying records that
belong to the same real-world entity across different databases is known as record
linkage (RL), data matching or entity resolution [2].

RL has been studied extensively over the past two decades [2]. Traditional RL
techniques first compute the similarity between each pair of records from different
databases. Next, the compared record pairs are grouped into clusters based on the
calculated similarities with the aim that all records in the same cluster refer to the
same entity while records in different clusters refer to different entities. However,
these traditional techniques do not guarantee accurate linkage of data that can
change over time [3] [10].

In the real world, RL is challenged because unique identifiers across the data-
bases to be linked are not always available. Therefore, the use of personal identi-
fiers (known as quasi-identifiers [33]), such as first and last name, address details,
and so on, is commonly used in RL for matching pairs of records across different
databases [2]. However, the use of personal identifiers raises privacy and confi-
dentiality concerns when the databases to be linked belong to different organisa-
tions [32]. Often organisations are not willing or authorised to reveal or share any
sensitive information about entities in their databases to any other party which
makes the linkage process challenging.

Privacy-preserving record linkage (PPRL) (also known as private record linkage
or blind data linkage) aims to develop linkage techniques that can link databases
with sensitive information [32]. PPRL allows the linkage of databases without the
need of any private of confidential information to be shared between the participat-
ing organisations involved in the linkage process. In PPRL the attribute values of
records are usually encoded or encrypted before they are being compared ensuring
that approximate similarities between records can still be calculated without the
need for sharing the actual attribute values. PPRL is conducted in such a way that
only limited information about the record pairs classified as matches is revealed
to the participating organisations. The techniques used in PPRL must guarantee
no participating party, nor any external party, can compromise the privacy of the
entities in the databases that are linked [32].

In both traditional RL and PPRL the databases to be linked are considered as
static (records are not changing over time) such that no attribute values of records
would change over time and any changes of values over time of records of the same
entity are considered as errors or variations. This assumption can potentially lead
to incorrect record pair classifications because most linkage techniques consider
record pairs that are highly similar as matches, and therefore records with similar
attribute values (like a very similar address), that however refer to two different
entities, will be linked together [4].

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 3

Table 1 An example temporal database that shows the attribute value changes in records
that belong to the same entity.

Record | Entity | First name | Last name Street Address Creation date
1 el Mary Miller 161 Main Road Sydney 2002-09-11
o €o Anne Smith 43 Town Place Canberra 2005-05-23
T3 eo Ann Miller 43 Town Place Canberra 2007-04-10
T4 e Mary Smith 23 Town Place Sydney 2007-11-05
5 eo Anne Miller 12 Queen Street Melbourne 2010-12-21
T6 es3 Maryan Miller 12 Main Road Sydney 2012-02-11

However, entities may change or evolve their attribute values over time. For
example, people often change their addresses or phone numbers, and some may
even change their names after getting married or divorced, as shown in Table
In both RL and PPRL, temporal information of records, such as the time when
a record was created or last modified in a database, is not used for similarity
calculations [I4]. Incorporating temporal information into similarity calculations
between record pairs can help to identify similar records that belong to the same
entity over a period of time [I4].

For example, given the six records of three entities (records r1 and r4 of entity
e1, r2, r3, and r5 of entity ez, and r¢ of entity es) in Table |1} a linkage without
considering temporal information would potentially classify 1 and re¢ as matches
because they have high attribute value similarities, and it would potentially classify
records r2, r3, and rs to refer to different entities because they have different last
names and street address values.

Temporal record linkage (TRL) matches records in databases while considering
temporal information in the form of attribute values that evolve over time [I4]. In
TRL the similarities between record pairs are calculated based on temporal infor-
mation. Such temporal information enables the calculation of temporal similarities
between records which can then be used in TRL to adjust the overall similarity of
a record pair accordingly. For example, if 30% of entities change their addresses
over a period of 5 years then address similarity over this time period should not
be given a high weight in the overall similarity calculation between record pairs.
In the example in Table [T} the aim of TRL is to correctly link record r1 with r4,
and ro, r3, and r5 using the temporal information provided in the creation date
attribute. The challenge of how to make use of sensitive information in temporal
record linkage, while at the same time ensuring the privacy of such information,
is a problem that has not been studied so far.

To this end we propose a novel privacy-preserving framework for temporal
record linkage that can be used to link databases using temporal information.
The aim of our framework is to allow secure linkage of databases in any linkage
scenarios. The linkage protocols proposed in our framework identify the records
that belong to the same entity across databases owned by two or more organisa-
tions while preserving the privacy of the entities in those databases. We adjust
the similarities between a pair of records based on their temporal distance since
it is more likely to find similar entities that have similar attribute values over a
long period of time. For example, it is more likely to have the same patient with
different addresses attend the same hospital over the past 10 years instead of at
the same time.

4 Thilina Ranbaduge, Peter Christen

Privacy-preserving Temporal Record Linkage Framework

Vs 7
8%32’6819 Linkage Scenarios

- Linkage with Linkage without
m - aThird Party aThird Party
. D
| —
Database Main Phases
Owner d

3 Decay Bloom filter Bloom filter
> Generation Generation Comparison
- Y,

Fig. 1 Overview of our temporal PPRL framework. The framework accepts databases (D)
from d database owners (d > 2) and outputs a set of record pair identifiers D™ that are
classified as matches. Our framework can be used in linkage scenarios with or without a third
party to conduct the linkage. As illustrated our framework consists of three main phases.
In the decay generation phase we calculate the probabilities that entities can change their
attribute values. In the second phase, called Bloom filter generation, we encode attribute
values in records into Bloom filters (BF's) and used the previously calculated probabilities to
mask certain bit positions in these BF's based on their corresponding temporal distance. In the
last phase, called Bloom filter comparison, we compare the masking BF's to identify matches
and send the identifiers of matching records back to the database owners.

As shown in Figure[l] our framework supports two linkage scenarios which are
(1) the linkage of databases with a third party and (2) the linkage of databases
without a third party. In the first scenario a (trusted or semi-trusted) third party
(which we call the linkage unit) is involved in conducting the linkage, while in the
second scenario only the database owners participate in the linkage process. As we
will explain in Section |4 the advantages of the second scenario over the linkage
protocols with a third party is that it is more secure because there is no possibility
of collusion between one of the database owners and the linkage unit, while the
first scenario often has lower communication costs. However, the linkage scenario
without a third party generally requires more complex techniques to ensure that
the database owners cannot infer any sensitive information from each other during
the linkage process [32].

Our framework accepts two or more databases as input and outputs a list that
contains the identifiers of record pairs that are classified to belong to the same
entity. As illustrated in Figure[l] the protocols proposed in our framework consists
of three main phases. In the first phase, named decay generation, we calculate the
probabilities (1) for an attribute value of an entity to change over different time
periods and (2) for different entities to share the same attribute value over time.
These probability values are known as decay values [14]. Using these decay values
we assign a weight to each attribute where the attribute weights are used to adjust
the similarity between a pair of records.

As we will explain in Section[d] to compare the records of different databases
securely we encode each record using Bloom filter (BF) encoding in the second
phase of our framework, called Bloom filter generation. In the final phase, called
Bloom filter comparison, we compare BFs from different databases and adjust their
similarities according to the temporal distance of their corresponding records. We
use these adjusted similarity values to decide if a pair of records is a match or a
non-match using a similarity threshold based classifier.

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 5

Contribution: We propose a novel scalable linkage framework that can per-
form temporal record linkage between different databases while preserving the pri-
vacy of individuals represented by the records in these databases. We propose two
linkage protocols that can be used in different linkage scenarios that are applicable
in real-world applications. We use a secure multi-party computation technique to
calculate decay values between different databases. We then propose an adapted
Bloom filter (BF) encoding [25] and masking based technique to securely calcu-
late the similarities between record pairs. We analyse the privacy of our protocols
which shows no participating party can learn anything about the entities in the
other databases. An empirical evaluation shows our protocols are scalable to large
real databases which make our protocols applicable to Big Data applications. As
we show in our experiments, our proposed protocols are also scalable to multiple
databases which allows these protocols to be used in a multi-party context [32] [33].
To the best of our knowledge, no such temporal linkage framework has been pro-
posed for PPRL.

Orgarnisation: The rest of this paper is structured as follows. First, in the
following section, we provide a review of temporal record linkage approaches pro-
posed in the literature and discuss why existing approaches cannot be used in
the privacy-preserving temporal record linkage context. In Section [3] we formally
define privacy-preserving temporal record linkage and the decay probabilities that
can be used to adjust the similarities between record pairs based on their temporal
distances. In Section [] we describe the novel protocols we proposed for different
linkage scenarios in our framework in detail. We theoretically analyse the com-
plexities and privacy of the proposed protocols in Section |5} We then empirically
evaluate and compare our approaches on real-world datasets in Section @ Finally,
in Section [7] we summarise our findings and discuss future research directions.

2 Related Work

The concepts of using temporal information for linking records was first intro-
duced by Li et al. [I4] who proposed a supervised temporal model that considers
the probability of attribute value changes, known as time decays, over time. These
probabilities are used as weights to adjust the similarities calculated between pairs
of records based on their time differences. The experiments conducted on a biblio-
graphic database showed that using temporal information of records can improve
linkage quality.

Christen and Gayler [3] proposed an approach to adaptively train a temporal
model using a stream of temporal records. The proposed technique calculates the
disagreement decay similar to [I4], but instead uses the agreement decay based
on the frequency distribution of attribute values. This approach is thus similar to
the frequency based weight adjustment applied in traditional RL [2]. Further, this
approach continuously trains the temporal model using linkage results which leads
to improved linkage quality.

Chiang et al. [I] proposed an algorithm to learn a decay value of an attribute
value based on its re-occurrences within different time periods. This approach
uses a recurrence function to calculate the probability of each attribute value to
reoccur after a certain period of time. Compared to [I4] this approach uses the

6 Thilina Ranbaduge, Peter Christen

entire temporal history (changes of values) of an entity to adjust the similarities
of pairs of records. A recent approach by Li et al. [I3] adapted [I] by introducing
a model that learns the transition probabilities between attribute values based
on the statistics of their occurrences in entity profiles. The calculated transition
probabilities are then used in the process of linking a record to an entity profile.
Experimental results showed that the use of transition probabilities of an attribute
value in the similarity calculations between records could potentially increase the
overall quality of linking records to generate a complete entity profile.

Recently, Hu et al. [I0] proposed a linear regression model added into the
decay value calculation process that uses a supportive attribute to calculate the
decay for a given attribute. The idea behind this approach is that the probability
for an attribute value to change over time can be affected by other attributes
that it depends upon. For example, any changes to the last name of an entity
might depend on the gender of the entity such that female entities are more likely
to change their last name over time than male entities. Hence, using gender as
the support attribute in the decay calculation for last name enables the linear
regression model to learn a gender specific decay model for last name. Experiments
conducted on a large voter database showed the use of support attributes for
learning decay of a given attribute can improve the linkage quality compared to
the original temporal linkage approach by Li et al. [I4].

Another recently proposed approach by Christen et al. [6] utilises the relation-
ships between entities to determine the similarity of groups of entities in different
households using a graph-based method. The approach follows an iterative process
that first identifies high quality links between records thereby limiting the more
error-prone identification of links between less similar records. The approach uses
temporal information such as age differences between entities to identify similar
households in different historical census databases.

To summarise, all these existing approaches to temporal linkage use temporal
information for similarity calculations on pairs of records, and they assume all
databases to be linked belong to the same database owner. Therefore the privacy
of each individual represented by these records is not considered. However, when
databases are to be linked across different organisations none of these temporal
linkage techniques could be used because they do neither protect the privacy of
individuals nor the sensitive attribute values of these individuals. On the other
hand, existing PPRL techniques do not make use of temporal information available
in records when calculating similarities which makes them unsuitable for linking
temporal databases [32]. To the best of our knowledge, ours is the first work
to address the problem of performing temporal RL on different databases while
preserving the privacy of individuals in these databases.

3 Problem Statement

Let D? represents a database that belongs to database owner DO;. Each record
r € D’ represents an entity e from a set of entities E. Each r consists of a list
of attribute values A =[A1, A, -+, Ap] and a time-stamp r.t. We use r. A, to
denote the value of attribute A, in r with 1 < m < M where M = |A] is the
number of attributes. We use r.e to denote that record r refers to entity e.

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 7

An entity e can have multiple records where each record r; contains a time-
stamp 7;.t to denote its time of creation or its last modification time in the
database. For a given entity e, its records r; can contain the same or changed
values in the attributes A € A. Let us assume two records r; and r; of entity e
(i.e., rs.e = rj.€). We can say an entity e has changed the value of attribute A
between time-stamps r;.t and r;.t if r;. A # r;.A, and r;.t < r;.t. Our aim is to
identify which records across different databases D held by different DOs refer
to the same entity e € E. We formally define the problem of temporal privacy-
preserving record linkage as follows.

Definition 1. Temporal privacy-preserving record linkage:

Assume d database owners DO;, 1 < i < d, with their respective databases D°.
Each record 7"3- € D, 1 < j < |DY, in the form of (r;.Al,rj-.Ag, e ,r;'-.Am,r;-.t)
where ré.t is the time-stamp associated with record T?, and r?.Am, m € [1, M],
is the value of attribute A,, at time ¢ that represents an entity e in a set of
entities E, such that every record r; must belong to exactly one entity e € E.
The linkage across the databases D¢, ¢ € [1,d], aims to determine which of their
records r* € D? belong to the same entity e even if 3A,, € A : 7t Am #* rj.Am,
where 7' € D, i € D7, r'.e = 1., i # j, and 4,5 € [1,d]. The aim of temporal
privacy-preserving record linkage is that at the end of the linkage process the DOs
learn only which of their records belong to the same entity e € E without revealing
the attribute values of the records r* € D to any other DO or any party external
to the DOs.

We now describe the calculation of decay values which we will use to adjust the
similarities between a pair of records. We use the two decay values disagreement
decay and agreement decay, as proposed by Li et al. [I4] in our approach. These
two decays describe the characteristics of attributes values of entities across a time
period. Disagreement decay defines the probability that an entity changes its value
for a given attribute over a certain period of time, while agreement decay specifies
the likelihood that multiple entities share the same value for an attribute over a
period of time. We define the time period (At), which can also be defined as a
time interval, as the difference between a start (¢5) and an end time (), denoted
as [ts, te], which can be measured in days, months, or years. We calculate the
time distance (tq) between two records r; and r; as the difference between their
time-stamps, such that t4 = |r;.t — r;.t|. From here onward we use the terms time
interval and time period interchangeably.

Both disagreement and agreement decays can be learned using training data
or specified by domain experts [I4]. In this paper we use labelled records that
are available in a training dataset to calculate decays, assuming the DOs know
the attribute value changes that occur in records that belongs to the same entity
in their own databases. With such labelled data we can identify the number of
occurrences where an entity changes its attribute value(s) and several entities
share the same attribute values over a certain period of time. However, the need
of training data is a limitation in both our approaches.

To this end we formally define the disagreement and agreement decays as
follows [14]. Consider an attribute A and a time period A¢. Assume each entity
e € E has alist of records T = [r1, r2, - - -, 7»] such that r;.t < rip1t, 1 <i<n-—1.

Definition 2. Disagreement decay (d7) [14] is the probability that an entity e
changes its value for attribute A in the At time period. We calculate d7 as follows.

8 Thilina Ranbaduge, Peter Christen

1 Disagreement decay for sample size 100,000 llgisagreement decay for sample size 1,000,000

2038 208
3 3
806 806
o o
o o
> 0.4 > 0.4
© ©
(93 o
[[
0 0.2 002

o
‘\
|
|
o
o

W 6 ~ ® o o O
v v v

<l

= o
v v

<1172f|
<212
<412
1
<2
<30
<a
<50

v
ima raare) Timn hinare \

-
Agreement decay for sample size 100,000 Agreement decay for sample size 1,000,000

1. 1.
— City — Last name — City — Last name

_é‘O.S — First name —— Street address _45‘0.8 — First name — Street address
3 — Gender Zipcode 3 — Gender Zipcode
806 806
o [R =t -
a I B T a - 7 T T
>0.4 0.4
© ©
o o
0 0.2 0 0.2

0.0i= 0.0i=

vvgvgvgvgvvvvv%'g%%@ vvgvgvgv;vvvvv§§§§§
v v v v v v v v
Time (years) Time (years)

Fig. 2 Decay probabilities for different attributes based on samples of 100,000 and 1,000,000
records from the North Carolina voter registration database (described in Section @ The
top row shows disagreement decay probabilities while the bottom row shows agreement decay
probabilities. As can be seen (and as expected [3]), disagreement decays increase monotonically
with time while agreement decays do not change over time.

[{e: VegEVTv,i,,.i+1€T(ri+1.t —7rit) <At Arip1 A # 1 A}

[Ec| + [Encl ’
where E. represent the set of entities that change their values in attribute A, E.
= {e : VeeEVr, ripeTTit1- A # 1. AN (rig1.t — rit) < At}, and Eje represents
the set of entities that do not change their values in attribute A, E,. = {e :
VeeEermeT(mH.t — Ti.t) > AtAriv1.A= T@A}
Definition 3. Agreement decay (d™) [14] for At is the probability that two entities
e; and ej, such that e;,e; € E and 4 # j, share the same value for attribute A.
This probability depends upon how frequently a certain value a occurs in attribute
A. We calculate agreement decay d~ as follows.

d” (A, At) =

{(ei,e;) : Vci,chE [ri.A—rjt| < At Ar;.A=r;.A}|
|Eq|
where E, represents the union of the set of entity pairs that share the same
attribute value of A and the set of entity pairs that do not share the same value
for attribute A, Eq = {(ei,€j) : Ve, e;ek |1i-A—rj.t| < AtAri A =rj. AYU{(ei, €j) :
Veie,eE |10 A —1jt] < At Ari.A#r;. A} and r; € T; of e; and r; € T of e;.

For example, the probability that two entities share a rare English surname
like ’Mirren’ depends upon the likelihood that a record contains such a value in
the surname attribute.

Figure [2] shows disagreement and agreement decay probabilities for different
attributes from an experimental database described in Section [6] The aim of our
framework is to use these disagreement and agreement decay probabilities to adjust
the similarities between a pair of records in a privacy-preserving manner without
revealing any attribute values. We next describe our framework in more detail.

)

d=(A, At) =

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 9

@

Database | (1), | Database | (1) | Database
Owner 1 Owner 2 Owner d

Fig. 3 PPRL linkage models, (a) with a linkage unit and (b) without a linkage unit. In both
models the basic communication steps between the participating parties can be given as: (1)
exchanging of parameter values, (2) communication of the (somehow) encoded record values
of the databases, and (3) exchanging or sending the linkage results.

4 Temporal Privacy-Preserving Record Linkage

In PPRL, depending on the linkage model used, different parties can participate
in the linkage process. A linkage unit (LU) is an external (third) party that par-
ticipates in the linkage process that may or may not be external to the database
owners(DOs) [21] 31]. In general, a LU does not have any data itself but conducts
the linkage of the data sent to it by the DOs. As illustrated in Figure [3] by as-
suming each database that is to be linked is owned by a different DO, the PPRL
protocol can be categorised as follows.

— Linkage protocols with a LU

As shown in Figure [3 (a), DOs are performing PPRL on their databases
through a LU [31]. In general the DOs start the process by sharing any required
information such as parameters, pre-processing methods, encoding methods,
secret keys, and so on. After the records are encoded they will be sent to the
LU to perform the matching by calculating the similarities between the en-
coded records. The matching results are sent back to the DOs that can then
either exchange the details of the matched records, or send only a selected
set of attribute values of the matched records to a data consumer (such as a
researcher).

While in general such linkage protocols are more efficient due to the centralised
processing of records at the LU, a weakness of this type of protocol is that the
LU can potentially collude with a set of DOs to infer the attribute values
of another DO. Also, sending all encoded records to the LU can potentially
increase the risk of privacy attacks because the LU can use the frequency
information of the encoded values sent to it by the DOs to try to identify
sensitive plain-text values encoded in a database [32].

— Linkage protocols without a LU
The linkage protocols without a LU are proposed as an alternative to overcome
the drawback of requiring a LU in the PPRL process. As shown in Figure (b),
the DOs communicate directly with each other to perform the matching of their
records [I1 B}, [34]. This can make a PPRL protocol more secure compared to
protocols that require a LU because there is a lower risk of collusion between
parties. However, such protocols can become more complex and expensive in

10 Thilina Ranbaduge, Peter Christen

terms of computation and communication due to their requirement of more
sophisticated encoding or encryption mechanisms [31].

To this end, we propose a novel framework that consists of temporal linkage [20]
protocols that can be applied in both linkage scenarios describe above. Without
loss of generality, let us assume two DOs, Alice (DO4) and Bob (DOg), with
their databases D4 and DZ, respectively. We assume the DOs are honest and
do not collude with any other party, and the LU follows a semi-honest adversary
model [I6]. We assume each database is not de-duplicated such that each entity can
be represented by one or more temporal records in a database. Next, we describe
the PPRL protocols that can be used under each linkage scenario.

4.1 Temporal PPRL with a Linkage Unit

Our first temporal protocol [20] allows database owners to link their databases
with the assistance from the third party, the LU. Our protocol is designed to allow
DOs to compute the decay values globally based on the attribute value changes
of entities in their databases. As we described in Section [I} this protocol consists
the three main phases of our framework, where Figure |4 shows the steps in each
of these main phases.

1. Decay generation: The DOs first individually compute a list of time intervals,
T;. These time intervals are used to calculate disagreement and agreement
decay probabilities which are then used to adjust the similarity of pairs of
records. Each DO computes the attribute value changes of the entities in its
database independently. The LU computes the summation of these attribute
value change counts which are then sent to the DOs to calculate the decay
probabilities for each attribute in each interval I € T7.

2. Bloom filter generation: Each DO encodes the records in its database using
Bloom filter (BF) encoding [25]. To assist the LU in the third phase of our
protocol one of the DOs generates a list of masking BFs used to adjust the
similarities of pairs of BFs to be compared by the LU based on the tempo-
ral distance of the corresponding records. Each DO then sends its encoded
database to the LU.

3. Bloom filter comparison: The LU first applies a blocking technique [2] upon the
received BF databases of each DO and then generates a set of blocks, B. We
use a Hamming distance based locality sensitive hashing (HLSH) technique as
the blocking technique [8]. The BF pairs in each block B € B are compared
using a similarity based classification and the record identifiers of the classified
matching BF pairs are sent back to the DOs.

Prior to these three phases, as prerequisites, the participating DOs agree upon
the list of attributes A to be used, the parameters required for BF generation,
including the BF length [, the g-gram length ¢ (in characters), the number of
hash functions k, a similarity function sim() to compare the pairs of BFs, and the
minimum similarity threshold s; to decide if a pair of BFs is a match or not. As
we describe next, both DOs also agree upon a public key pk and a secret key sk
to be used in a homomorphic cryptosystem [I9] in phase 1 of our protocol. Next
we discuss each phase in more detail.

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 11

Alice Bob

e N

l Agree on parameter values]

[i—{ Computation of time mtervals‘—;

Local | Local ‘
|_change count; _change counts
- Encrypt , Encrypt |

, change counts

A:

|_change count

Global Computation of chang
counts by the LU

Phase 1
Decay Generation

Com utation ‘ Com utation
| ecays ‘ \, of decays |

Generatlon of! '"Generation of!

| Bloom filters | |_Bloom filters |
Generation of
Masking keys

Privacy—preserving
blocking by the LU

Phase 2
Bloom filter
Generation

\
a

comparlson by the LU

Privacy—-preserving)

Sending matchlng
record ids to Alice and Bob

Phase 3
Bloom filter Comparison

)
U

—{]

Fig. 4 Overview of our temporal PPRL protocol with the LU with three main phases. As
detailed in Section the database owners (DOs) Alice and Bob start the protocol by inde-
pendently calculating the list of decay intervals and corresponding decay probabilities in phase
1. In phase 2, Alice and Bob then encode the records in their databases (DA and D®, respec-
tively) into Bloom filters (BF). As we explain in Section only one DO needs to generate
the BF masking keys for comparison. Masking keys and BFs are sent to a linkage unit (LU)
in phase 3 for comparison, and the final set of classified matched record identifiers (DM) is
sent back to the DOs. Each step shown in boxes with rounded edges is performed by the LU.
Rectangular boxes with dashed lines represent the steps that are performed similarly by the
DOs.

?

Decay Generation

In the first phase of our protocol each DO computes the agreement and disagree-
ment decay probabilities that are needed in the record comparison phase to adjust
similarities between record pairs. Algorithm 1 outlines the steps performed by the

12 Thilina Ranbaduge, Peter Christen

Algorithm 1: Decay generation

Input ‘

-Lp: List of databases, Lp = [D?],1 < <d

- A List of attributes, A = [A1, A2, -+, Ap], 1 < M < |A]

- Nt Sample size

-nr: Number of required temporal intervals

- ng: Minimum entity count

- pk,sk: Public and private key for encryption and decryption

1: Ty =] // Initialise an empty list for time intervals
2: foreach i € [1,2,--- ,ns] do:

3: I = genInterval(Lp, ns, ng) // Compute the time interval
4: Tr.add(l) // Add the interval to list of intervals
5: foreach D' € Lp do: _

6: Dg = compChangeCounts(D*,ns, T, A) // Get change counts
7. D, = encrypt(Di, pk) // Encrypt the local change counts
8: DO’ sends ﬁzc to the LU

9: LU receives D,) // The LU receives encrypted change counts
10: LU computes D, = i) D. // Homomorphic addition of counts
11: LU sends D, to DOs // Sends encrypted sum to DOs

12: foreach i € [1,d] do:
13: DOj; receives Di
14: D, = decrypt(De, sk) // DOs decrypt summed change counts

15: d#,d= = computeDecay(D., Ty, A) // Calculate decay values

DOs and the LU. First the DOs compute the list of time intervals that need to
be considered when computing decay values (lines 2 to 4). The participating DOs
need to agree upon the number of intervals, ny, that need to be considered. The
DOs follow an iterative approach where in each iteration each DO computes a pos-
sible time interval that is added to the list of time intervals T using the function
genInterval() in line 3.

In the function genInterval() each DO; randomly samples ns records from
its database. Each DO; then iterates through its sampled records to calculate
a possible time period that can be used as an interval I;. As we will explain
in Section [5 to improve privacy each DO; ensures there are records of at least
ni > 1 entities available with their pairwise time distances that are within I;.
This is required because if, for example, an interval I contains attribute value
changes or a new record created for an entity e in D“ of Alice, then Bob can
learn in the decay computation step that Alice’s database contains a single entity
that has changed its attribute value(s) within I. This could potentially lead to the
identification of e in the record comparison phase. As shown in Figure [4] all DOs
follow these steps independently.

Once each DO; has computed its interval I; in a given iteration, all DOs
participate in a secure multi-party computation protocol to calculate the maximum
time interval I out of all generated intervals I;s. This computation follows Yao’s
Millionaires problem [35] where we use a homomorphic encryption technique to
identify the maximum time interval I from all computed I;s to ensure all DOs have
records of at least ny entities in the time interval I [I5]. The interval I is returned
from the function genInterval() which is then added into the list of time intervals
T; in line 4. To avoid such computations, as a prerequisite, all DOs could instead

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 13

agree on the list of time intervals to be considered in the decay calculations which
can be used as input to the algorithm.

In lines 5 to 9, each DO; computes the list of change counts D! independently
for each time interval I € Tj. Following Definitions 2 and 3, in line 6 each DO
computes the number of times an entity does change and does not change its value
for each attribute A € A, and the number of entity pairs that share the same value
as well as different values for each attribute A € A for each interval I € T;. To
improve the efficiency each DO first samples a set of records and computes the
required change counts. As shown in Figure |2 given a large enough sample size,
adding further records to the sample does not significantly affect the calculation
of decay probabilities.

~Each DO; then encrypts the calculated list of local change counts D% into
D, using the function encrypt() and the public key pk (line 7). Each DO; sends
its D, to the LU (line 8). Once all D_s are received, the LU uses homomorphic
addition [I5} [19] to add all encrypted Ds into D, (line 10). The LU then sends
D. to all DOs (line 11).

Once Dy, is received by a DO, the DO decrypts D. into D, using the function
decrypt() and using the secret key sk (line 14). The function computeDecay() is
used to generate the list of disagreement (d7é) and agreement (d~) decay prob-
abilities (as discussed in Section |3)) using D, for each attribute A € A for each
interval I € T (line 15). These decays probabilities are used next in the second
phase of our protocol to generate a set of masking BF's.

Bloom Filter Generation

As shown in Figure[d] the second phase of our protocol consists of two main steps.
First each DO encodes its database into Bloom filters (BF's). A BF is a bit vector
of length [bits initially set to 0. To encode a value into a BF a set of hash functions
is used where based on the output of each hash function the corresponding bits are
set to 1 [25]. BF based PPRL techniques have the advantage of being efficient and
facilitate the linkage of large real-world databases, where approximate matching
is crucial due to errors and variations in attribute values [24].

As outlined in Algorithm 2, we use an adapted record level BF (RBF) encoding
approach, where RBF has shown to be secure against frequency attacks [8]. In RBF
the values of each attribute in a record are hash-mapped into different BF's, which
are then concatenated to create a single BF for a record. The aim of using RBF
is to allow the LU to adjust the similarities based on the calculated decay values
for each attribute separately. Before generating RBFs, the number of bits required
for each attribute A € A is calculated (lines 2 to 4). Each DO; first calculates
the list Lj of average attribute value length for each A (line 2). Once all DOs
compute their Ljs, each DO; sends its L} to the other DOs to compute the list
Ly, of average attribute value length across all DOs. For example with Alice and
Bob, V¢, Lo[j] = Zie{A,B} Li[j]/|{A, B}|. Following [8] we then compute the
corresponding number of bits for each attribute that need to be selected from a
BF of length [bits, and add these bit lengths to the list Ly (line 4).

Next, each DO independently encodes its records into BF's and sends these BF's
to the LU (lines 6 to 15). In line 6, each DO; loops over each record r € D* and first
converts each attribute value r.A into a set Sq = {q1,g2, -+ ,qn} of sub-strings of
length ¢ characters (line 9), known as g-grams [2]. Then each ¢ € S; is encoded
into a BF ba by using k independent hash functions, H = {h1, ha,- -, hi}, and

14 Thilina Ranbaduge, Peter Christen

Algorithm 2: Bloom filter generation by the DOs

Input

- D Database of database owner ¢ (DO;)

- A List of attributes, A = [A1, A2, -+, Ap], 1 < M < |A]

- Ng: Sample size

-q,l: Length of a g-gram and a Bloom filter

- k: Number of hash functions

- H: List of hash functions, H = [h1, ha,- -+ , hg]

-R: Random permutation of bit positions, |R| =1

1: Lyy =] // Initialise an empty list for attribute bit lengths
2: Ly = getAttrValueLen(D*, A, ns) // Get attribute value lengths
3: Ly = computeSummation(L}) // Compute averages globally
4: Lyy = compAttr BF Len(l, Ly) // Get BF length for each A € A
5: B; = {} // Initialise an empty inverted index
6: foreach r € D do: // Loop over all records in database
7ob=]] // Initialise an empty BF
8: foreach A € A do: // Loop over each attribute
9 Sq = genQgrams(r.A, q) // Generate set of q-grams
10: ba = genBF(Sq, Lyy, k, H) // Encode g-grams into the BF
11: b = b.concatenate(by) // Concatenate the generated BF
12: b, = permute(b, R) // Permute the bit positions randomly
13: Bj[r.id] = (bp, r.t) // Add BF to the inverted index

14: DO; sends B; to the LU
15: LU receives B;

all bits having index positions h;(s) for j € [1, k] in the BF are set to 1 (line 10).
All BFs by as generated for the attributes A € A are concatenated into the final
BF b (line 11). As detailed in Section [5] to improve privacy the bit positions in
each BF are permuted according to a random sequence R (not shared with the
LU) which is agreed upon by all DOs (line 12). Each permuted BF b, is added
with its corresponding record time-stamp 7.t into an inverted index B, using its
corresponding record identifier r.id as a key (line 13). Each DO; sends its B; to
the LU for comparison in the third phase (line 14).

In the second step of phase 2, a list of masking BFs, L,,, where each masking
BF b,, € L, is of length [, is generated by one DO to be sent to the LU, as
illustrated in Figure [4] The generation of masking BFs is based on selecting a
random subset of BF bits for each attribute. The number of masking bits per
attribute is calculated based on their corresponding decay values. The aim of these
masking BFs is to allow the LU to adjust the similarity of a pair of BFs (b;, b;)
according to the corresponding decays of their time distance tq = (rs.t — 7;.t).
To adjust the similarities separately for each attribute we generate each b,, as
a concatenated bit vector. For each attribute A € A we generate a bit vector
segment bs using the corresponding bit length [4 for A in Lyy and concatenate
these bit vectors together to create a masking BF b,, of total length [. First all the
bit positions in each by are set to 0. We calculate the number of bits that need to
be set to 1 in ba using the decay probabilities of A for a time interval I € T;.

As can be seen in Figure [2} since agreement decay (d7) does not change over
time we only consider disagreement decay (d”) as a weight for the number of bits
to be selected. Hence, the number of bits n1 that need to be set in ba for each
attribute is calculated as ny = (1 —d” (A,I)) - la. As a result, a maximum of n;
bit positions in by is set to 1. For example, if d” (A,I) = 1.0 then nq is equal to

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 15

Algorithm 3: Bloom filter comparison by the LU

Input

-B: List of inverted indexes of BFs, B = [B,],i € [1,d]

- Lm: List of masking BF's

- sim(,): Similarity function for comparing BFs

- 8¢ Similarity threshold value

B WS Number of iterations and bit positions sampled for HLSH

1: DM =] // Initialise an empty list of matching record identifiers
2: Lg = compLSH Blocking(B, \, u) // Perform LSH based blocking
3: foreach B € Lp do: // Loop over all generated blocks
4: foreach (b;,b;) € B:b; € B;,b; € Bj,i # j do:

5: tg =rit—rj;.t // Compute time distance between BFs
6: bm = getMaskingBF (L, tq) // Get the relevant masking BF
7: b = b; Abm // Conjunct masking BF with BF b;
8: b, =bj Abm // Conjunct masking BF with BF b;
9: s = sim(b}, b)) // Compute similarity between masked BFs
10: if s > s; then: // Check if similarity above the threshold
11: DM .add((r;.id,r;.id)) // Add record identifiers into DM

12: LU sends the list of matching record identifiers DM to DOs

0 and if d* (A,I) = 0.0 then n1 = l4. All bas of the interval I are concatenated
and bit positions are permuted according to R. This ensures the bit positions of
each ba are correctly aligned with bit positions in each permuted BF b, for each
attribute A € A. Each b, is added into a list Ly, and finally L,, is sent to the
LU to be used in the comparison phase. As explained in Section each BF b
in a pair of BF's is conjuncted (logical AND) with the corresponding masking BF
bm based on t4. This allows masking of a set of bit positions from each b in the
similarity calculation, thereby reducing the similarity component of the different
attributes according to their decay values.

Bloom Filter Comparison

As shown in Figure [4] in the third phase the LU conducts the linkage upon the
BFs of each DO as generated in phase 2. In order to prevent a full pair-wise
comparison of each BF from a database with every BF of another database (which
has a quadratic complexity), the LU uses a privacy-preserving blocking technique
upon BF's to group them into blocks. We employ Hamming distance based locality
sensitive hashing (HLSH) [§] which requires the two parameters A (the number
of iterations) and p (the number of bit positions selected in an iteration). The
LU then compares each BF pair in each block using a similarity based linkage
technique [2] to identify the record identifiers (IDs) that refer to the same entities.
Algorithm 3 outlines the steps involved in this phase.

Algorithm 3 starts by initialising an empty list of matching record IDs D™
(line 1), followed by the generation of the list of blocks Lp using the function
compLSH Blocking() in line 2. Each block B € Lp contains one or more BFs
from B; from different DOs that share the same bit pattern for randomly selected
A bit positions. In lines 3 and 4 of the algorithm we loop over each block B € Lp
and generate all unique pairs of BFs (b;,b;) in each block B where b; and b; are
from different databases.

Next, the time distance tq between the BF pair (b;,b;) is calculated as the
difference between the corresponding time-stamps (line 5). In line 6, based on t4

16 Thilina Ranbaduge, Peter Christen

the function getMaskingBF() selects the appropriate masking BF b, (line 6)
which is then conjuncted with b; and b; to generate b; and b;-, respectively (lines 7
and 8). We calculate the similarity s between the conjuncted BFs b} and b’ using
a similarity function, such as the Dice similarity [2]. If this similarity s is at least
the minimum similarity threshold s; (line 10) then the corresponding record ID
pair (r.id, r;.id) of b; and b; is classified as a match and is added to the list DM,
Finally, in line 12, the LU sends the list DM to all DOs.

4.2 Temporal PPRL without a Linkage Unit

To overcome the need of a third party (the LU) in the linkage process, we now
propose a second temporal protocol that requires only DOs to participate in the
linkage process. In this protocol, the DOs independently compute the decay proba-
bilities on their databases and use these probabilities to mask BF's before comput-
ing the similarities between BFs. Similar to the protocol proposed for DOs with a
LU in Section [£1] this protocol also consists of three main phases, where Figure
shows the steps in each of these main phases.

1. Decay generation: Similar to the protocol described in Section [4.1] the DOs in-
dividually compute a list of time intervals, T';. These time intervals are utilised
to calculate the decay probabilities which are then used to adjust the similarity
of pairs of records. Each DO then computes the attribute value changes of the
entities in its database independently. In contrast to the temporal PPRL pro-
tocol with the LU, each DO uses its own attribute value changes to compute
the decay probabilities for each attribute in each interval I € T.

2. Bloom filter generation: Each DO encodes the records in its database using
Bloom filter (BF) encoding [25]. Using the decay probabilities calculated in
the first phase, each DO generates a list of masking BFs used to adjust the
similarities of pairs of BF's based on the temporal distance of the corresponding
records.

3. Bloom filter comparison: In the third phase each DO first applies a blocking
technique upon their BF databases and generates a set of blocks, B [32]. Any
PPRL blocking technique can be used to generate the set of blocks for each
database, as long as the same technique is used on all databases. Next the DOs
participate in a secure multiparty computation protocol to compare the BF
pairs in each common block B € B (i.e. blocks that are similar enough between
DOs to be compared [21], 22]). The DOs use a homomorphic encryption based
technique to calculate the similarities between BFs which are then classified
using a similarity based classification to identify the matching record pairs [12]
27].

Similar to the protocol described in Section prior to these three phases the
participating DOs agree upon the list of attributes A to be used, the parameters
required for BF generation, including the BF length [, the g-gram length ¢ (in
characters), the number of hash functions k, and the minimum similarity threshold
st to decide if a pair of BF's is a match or not. As we describe next, to perform
homomorphic encryption [I9] in the third phase, a DO generates a public and
private key pair (pk, sk) and sends the public key pk to all other DOs. Next we
discuss each of these phases in more detail.

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 17

Alice Bob

o°)
Agreeon
parameters

Communication

— Collahorative computation Computation
and communication of timeintervals
S
< 5 ;Lo 1 , Locd |
8 o | change counts | | change counts |
£ o

§ | Computation | ' Computation !

g | dpu on -, , Computation |

1 O Tays ‘79f7d§l:§y§77‘

| Generation of | | Generation of |

Te , Bloomfilters | , Bloomfilters |

N =0 - 77 /- - TTThTT77
=t

% Eb ﬁ777¢77777 [Ep—— T

& 8% . Generation of | | Generation of |

o® 1 Masking keys | 1 Masking keys |

. Independent | . Independent |

c , Blocking | , Blocking |

., Bgl B . Bloding
g eg
T 8§
]

Fig. 5 Overview of our temporal PPRL protocol without the LU with three main phases.
The database owners (DOs) Alice and Bob start the protocol by independently calculating the
list of decay intervals and corresponding decay probabilities in phase 1. In phase 2, Alice and
Bob then encode the records in their databases (DA and DB, respectively) into Bloom filters
(BF). Each DO calculates a list of masking keys independently based on the decay probabilities
calculated in phase 1. In phase 3, each DO applies a blocking technique upon its BF database
and generates a set of blocks. The DOs then participate in a secure multiparty computation
protocol to compare the BF pairs in each common block and finally share the set of classified
matched record identifiers (D?). Rectangular boxes with dashed lines represent the steps
that are performed independently by the DOs, while the boxes with solid lines represent the
collaborative computations or communications performed by the DOs.

Decay Generation
As illustrated in Figure[B] in the first phase of this new protocol each DO computes
the agreement and disagreement decay probabilities independently from all other
DOs. These probabilities are needed in the record comparison phase to adjust
similarities between record pairs depending upon their temporal distances. Similar
to the decay generation phase in the protocol described in Section the DOs
follow the same interval generation steps as in Algorithm 1.

As outlined in Algorithm 4, the DOs agree on the number of intervals, ny, that
need to be considered and iteratively compute the list of time intervals T using
the function genInterval() (line 3). In this function each DO; ensures there are

18 Thilina Ranbaduge, Peter Christen

Algorithm 4: Decay generation by the DOs

Input
-Lp: List of databases, Lp = [D?],1 <i<d
-A: List of attributes, A = [A1, A2, -+, Am], 1 < M < |A]
- Ng: Sample size
-ny: Number of required temporal intervals
- Nt Minimum entity count

1: Ty =] // Initialise an empty list for time intervals
2: foreach i € [1,2,--- ,ns] do:

3: I = geninterval(Lp, ns, ng) // Compute the time interval
4: Tr.add(I) // Add the interval to list of intervals
5: foreach D? € Lp do: // Each DO computes decay independently
6: D! = compChangeCounts(D* ns, T, A) // Get change counts
7 d#;,d=; = computeDecay(D%, Tr, A) // Compute decay values

records of at least ny > 1 entities available with their pairwise time distances that
are within I; to improve privacy.

Once the DOs have calculated the list of intervals T, each DO; computes the
list of change counts D% independently (line 5) for each time interval I € T using
the function compChangeCounts() in line 6. Following Definitions 2 and 3, each
DO computes the number of times an entity does change and does not change its
value for each attribute A € A, and the number of entity pairs that share the
same value and different values for each attribute A € A for each interval I € T;.
Each DO first samples a set of records and computes the required change counts
to improve the efficiency.

Once change counts are computed each DO; independently uses the function
computeDecay() in line 7, to generate the list of disagreement (d7 ;) and agreement
(d7;) decay probabilities (as discussed in Section [3]) for each attribute A € A for
each interval I € T;. These decays probabilities are used next in the second phase
of the protocol to generate a set of masking BFs.

Bloom Filter Generation

As shown in Figure[5] the second phase of the protocol consists of two main steps.
Similar to the protocol in Section first each DO encodes its database into
Bloom filters (BFs). Each DO follows the same steps in Algorithm 2, except in
lines 14 and 15 where the generated BF database of each DO is not shared nor
sent to any other party.

As outlined in Algorithm 2, an adapted record level BF (RBF) encoding ap-
proach is used to encode each record into a BF, where the values of each attribute
in a record are hash-mapped into different BFs, which are then concatenated to
create a single BF for a record. As we discussed before, all DOs need to agree on
the length [of the RBF, sub-strings of length ¢, the k£ independent hash functions,
H, and a random sequence R used in the BF generation process. Each DO; adds
each of its generated BFs with the corresponding record time-stamp 7.t into an
inverted index B, using its corresponding record identifier r.id as a key.

In contrast to the temporal PPRL protocol with the LU described in Sec-
tion in this protocol each DO generates a set of masking keys for each interval
for each attribute A € A. For generating the set of masking keys for each attribute
of a given interval I € T each DO uses the corresponding disagreement decay
probabilities of A it computes in the first phase. As we will explain in Section

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 19

Algorithm 5: Bloom filter comparison by the DOs

Input

- B: List of inverted indexes of BFs, B = [B;],1 <i<d
- Lm: List of masking BF lists, Lm = [L%,],1 <3 < d

- Tp: List of time intervals

- S¢: Similarity threshold value

- pk,sk: Public and private key for encryption and decryption, only known to DO;
1: foreach B; € B,i € [1,d] do:

2: L% = compBlocking(B;) ‘ // Perform private blocking independently
3: foreach (Bq, By) : Bo € LY, By € LY, Ba = By, i # j dox // Loop over all blocks
4: foreach (bz,by) € (Ba,Bp) : be € Ba,by € By, do: // Loop over all BF pairs
5: I = getTempInterval(rg.t,ry.t, T1) // Get the time interval between BFs
6: by, by, = getMasked BFs(bg, by, Lim, I) // Conjunct BFs with masking BF's
7 sp = compDotProduct(bl, b;,pk’) // Compute secure dot product between BFs
8 DO; compute similarity s = 2 - decrypt(sp, sk)/(HW (b},) + HW (b},))

9: if s > s¢ then: // Check if similarity above the threshold
10: DO; sends similarity s to DO;

such an independent masking key generation improves the privacy since each DO
does not share its masking keys with the other DOs. Each DO; adds each masking
key by, into a list of masking keys L%,. As we describe next, each BF b; of DO; in
a pair of BFs (b;,b;) is conjuncted (bitwise AND) with its corresponding masking
BF b., based on the time distance tq of corresponding records of b; and b;. This
allows to mask a set of bit positions from each BF from the similarity calculation,
thereby reducing the similarity component of the different attributes according to
their decay values.

Bloom Filter Comparison

As shown in Figure [5 in the third phase the DOs collaboratively conduct the
linkage upon their BFs generated in phase 2. The main aim of this phase is to
compute the similarities BFs securely such that no DO can learn the attribute
value(s) encoded in the BFs of the other DOs. Algorithm 5 outlines the steps
involved in this phase.

Each DO starts the linkage process by performing an independent blocking on
their BF database. As outline in line 2 of the algorithm, each DO can apply any
suitable PPRL blocking technique upon their BFs [28] [32]. In blocking, BFs are
grouped according to the blocking key values (BKVs) [2] and only the BFs with
the same BKV (i.e. BFs in the same block) from different databases need to be
compared and classified. However, the same blocking technique needs to be used
by all DOs ensuring the same block structure is generated by all DOs on their
BF database allowing the same blocks to be compared in the later steps of the
algorithm. Each DO; adds its generated blocks to a list of blocks L% (line 2).

Once the blocks have been generated by each DO the corresponding BF's in
these blocks need to be compared. To identify the common blocks that need to
be compared across DOs, each DO can share its list of BKVs with other DOs.
Without loss of generality we assume each DO has the same list of BKVs after
blocking their BF databases. In line 3 of the algorithm we loop over each pair of
blocks (Ba, By) in Ll and L% of DO; and DOj, respectively. Next in line 4 we
iterate through each BF pair (b, by) in a given pair of blocks (Ba, Bp) that needs
to be compared such that b, € B; and b, € Bj, respectively.

20 Thilina Ranbaduge, Peter Christen

Similar to the protocol described in Section each DO needs to apply mask-
ing on its BFs before the BF is used in the similarity calculation. Since each DO
needs to apply the masking process independently, it needs to identify the cor-
responding time distance between BFs b, and by securely without revealing the
actual time-stamp of its record to the other DOs. Hence the DOs participate in a
secure multi-party computation protocol in line 5 of the algorithm.

In the function getTemplnterval() both DOs first need to identify the BF with
the lowest time-stamp. For this computation the DOs uses a homomorphic encryp-
tion based protocol proposed by Lin et al. [I5] which follows Yao’s Millionaires
problem [35]. Next the DO with the lowest time-stamp computes a list of new
time-stamps T by adding each time interval I € T identified in phase 1. Next,
for each new time-stamp ¢ € T the DOs follow the same computation they used
to find the lowest time-stamp to identify the appropriate time interval I for a BF
pair (line 5).

Next, each DO uses the identified time interval I to get the corresponding
masking BF generated in phase 2 in the function getMaskedBF() in line 6. The
masking BF is conjuncted with each corresponding BF to generate the masked BF.
Each DO performs the masking process independently, such that BF pair b, and
by are masked into corresponding BFs b, and b, by DO; and DOyj, respectively.

Next the DOs calculate the Dice similarity [2] s between the conjuncted BFs
b, and b; and classify the BF pair as a match if s is grater than or equal a
minimum similarity threshold s; agreed by both DOs. To calculate the similarity
between the BF's securely we first need to calculate the inner dot product between
b, and by, which provides the number of 1 bit positions common in both b;, and
bfy. To perform this computation we utilised a somewhat homomorphic encryption
scheme proposed by Naehrig et al. [I8] along with a ciphertext packing technique
proposed by Yasuda et al. [36].

The somewhat homomorphic scheme bases its security on the ring learning
with errors problem [I7] which ensures a given secret message cannot be distin-
guished from noisy data. For more details on this homomorphic scheme we refer
the reader to [I8]. The cryptanalysis packing method introduced by Yasuda et
al. [36] improves the efficiency of homomorphic computations by allowing a num-
ber of secret messages to be encrypted into a single ciphertext and performing
computations on this ciphertext.

To compute the inner product between two BFs, this packing method allows
us to encrypt a binary vector as coefficients of a polynomial value and the inner
product of two BF's can be performed homomorphically using a single multiplica-
tion operation upon these encrypted coefficients. For each BF we can compute two
packed ciphertexts named forward pack and backward pack where the forward pack
consists the encrypted coefficients while the backward pack contains the inverse
form of the forward pack. To get the inner product of two BFs we need to multiply
the forward pack of one BF with the backward pack of the other BF, where once
decrypted the constant term in the resulting polynomial gives the inner product
of these BFs. For more details on this packing technique and its security proofs
we refer the reader to [36].

The function compDotProduct() in line 7 computes the inner product of b}, and
by, in our protocol. In this function DO; first generates the forward pack of b, and
sends this pack to DO; with DO;’s public key pk. Using pk DO, generates the
backward pack of by and performs the multiplication using the forward pack of

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 21

b, and the backward pack of bj,. DO; then sends the encypted result s, to DO;
with the Hamming weight of by, (represented as HW() in Algorithm 5). DO; then
computes the Dice similarity s between b}, and b}, using the decrypted value of s,
and the Hamming weights of b, and b;, (line 8). If this similarity s is at least the
minimum similarity threshold s; (line 9) then DO; finally sends the similarity s to
DO; indicating the compared BF pair b}, and b}, can be classified as a match. Once
all the BF pairs are compared the corresponding matching records identifiers can
be shared between the DOs for further analysis purposes.

5 Discussion of the Protocols

We now analyse our protocols in terms of complexity and privacy. We assume
d database owners (DOs) are participating in each protocol and each DO has a
database with n, records. We assume all the parties in the protocol are directly
connected to each other through a secure communication channel.

5.1 Complexity Analysis

We first discuss the computation complexities for each step of the temporal PPRL
protocol with a LU described in Section We analyse these complexities in
terms of a single DO and the LU independently. As illustrated in Figure [in
phase 1 all the DOs need to participate to compute the list of time intervals T;.
In the function getInterval() in Algorithm 1, each DO samples ns records from its
database to compute a time interval I € T;. This requires each DO to loop over
each record in the selected sample to check if at least ny entities can be found with
two or more records that have time distances within I. This results in a O(ns-nr)
complexity for each DO to generate ny time intervals in the first step of phase 1.

In the next step each DO computes the number of times an entity changes
the attribute values in its records and the number of times a pair of entities share
the same value for each attribute A € A. In the function compChangeCounts()
in Algorithm 1, each DO loops over the attribute values of each attribute A € A
of the ns records sampled from its database to calculate these counts. Hence, the
second step of phase 1 is of O(n? - nj - |A]) complexity, where |A| represents the
number of attributes.

Once the change counts are computed, each DO encrypts its list of these counts
before sending the list to the LU. This requires O(ns -|A|) complexity in the third
step of phase 1. Each DO sends its encrypted list of change counts to the LU in
step 4 where the LU performs homomorphic addition on each change count in
these lists. This homomorphic addition is of O(d - ny - |A|) complexity. As shown
in Figure[d] in the last step of phase 1 each DO computes the decay probabilities
using the summation of the lists of encrypted change counts. Hence, the function
computeDecay() in Algorithm 1 requires a complexity of O(n;-|A|) for computing
decay probabilities for each attribute A € A under each time interval I € T7;.

In the first step of the phase 2 of our temporal PPRL protocol with a LU, all
DOs encode the records in their databases into BF's and send their BF databases
to the LU. We assume each attribute A € A has an average of nq q-grams. Hence,
the generation of BF's for a single database is of O(nr-ng-ng-|A|) complexity. Once

22 Thilina Ranbaduge, Peter Christen

the BF's are generated, in the second step of phase 2 one DO needs to generate
the list of masking BFs to be used in the similarity calculation step in phase 3.
The generation of masking BFs of length [is of O(ns -1 |A|) complexity.

In the third phase the LU performs HLSH blocking [8] upon the BFs received
from the DOs. This requires the LU to iterate over each BF in each encoded
database. Each BF is added into (I/u) blocks over) iterations. Hence, the function
compLSH Blocking() in Algorithm 3 is of O(d-n,-A-1/u) complexity. By assuming
each block B € Lp contains n, BFs from different databases, ny(n, — 1)/2 BF
pairs need to be compared by the LU for each B. Therefore, the comparison of
the list of blocks Lp is of O(n} - |Lg|) complexity.

We now analyse the computation complexities of the temporal protocol with-
out a LU as proposed in Section [£:2] As illustrated in Figure[5] in the first phase
the DOs collaboratively compute the list of time intervals T; and then compute
the decay probabilities independently. Similar to Algorithm 1, in the function
getInterval() in Algorithm 4, each DO samples ns records from its database to
compute a time interval I € T;. Hence, each DO requires a computational com-
plexity of O(ns - nr) to generate ny time intervals in the first step of phase 1.

Next in lines 6 and 7 each DO samples ns records from its database to com-
pute change counts and decay probabilities, respectively. Hence, the function
compChangeCounts() and computeDecay() in Algorithm 4 are of O(n2 -ny - |A|)
and O(ny - |A]) complexities, where |A| represents the number of attributes. As
described in Section [£:2} each DO follows the steps in Algorithm 2 to encode each
of its records into BF's which requires a complexity of O(n;, - ng - ng - |Al).

In the third phase of the temporal PPRL without a LU protocol, each DO
blocks their BF databases independently. The computational complexity of the
function compBlocking() in Algorithm 5 depends on the blocking technique used
to generate the blocks. By assuming each DO generates the same number of blocks
np and each block B € LiB of DO; contains n, = (nr/ng) BFs, then ny(ny —1)/2
BF pairs need to be compared for each B. By assuming the generation of the
forward and backward packs of a BF' consumes a constant time, the comparison of
lists of blocks L and L% of DO; and DOy, respectively, is of O(np n%) complexity.

5.2 Privacy

We analyse the privacy of our temporal PPRL protocol with a LU described in
Section by assuming each DO is honest and does not collude with any other
party that participates in the protocol. We also assume the LU follows the honest-
but-curious adversary model [16, 24, [32]. This is a common assumption in PPRL
protocols [32] [33]. To consider the worst-case scenario, let us assume all DOs and
the LU have access to a publicly available database G where the private databases
held by the DOs are subsets of G, Vie[lyd]Di C G.

In the time interval computation step in phase 1, each DO ensures that each
time interval they compute contains records of at least nj entities. This provides
k-anonymous privacy [26] (k = ny) for the entities in each database because none
of the DOs will be able to identify specific information about individual entities
in a time interval [32]. For example, for the database of a given DO, if a given
time interval I contains change counts only about a single entity that changes its
last name then another DO could analyse the records in G to identify potential

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 23

entities who have changed their last names in I. Hence, when ng > k neither of
the DOs would be able to identify a unique entity in a database of another DO.

In the third phase of our protocol the LU applies a privacy-preserving blocking
and comparison step upon the BF's it receives from all DOs. The LU does not
know anything about the parameters used in the BF generation process and the
random sequence R that has been used to permute the bit positions in these BF.
Since the masking BFs are also permuted in the same way, without knowing R
the LU cannot identify the sets of bit positions that have been allocated to each
attribute A € A. Hence, even if the LU uses a frequency analysis using G upon
the BFs [5] it cannot learn any information about the attribute values that have
been encoded in the BFs.

We analyse the privacy of our temporal PPRL protocol without a LU de-
scribed in Section by assuming each DO follows the honest-but-curious adver-
sary model [16] 24} [32]. Apart from the step of generating the list of time intervals
and BF comparison, each DO performs all other step in the protocol independently
without any collaboration with other DOs. As described above, each DO ensures
that each time interval computation provides k-anonymous privacy [26] for the
entities in its database, and therefore none of the DOs would be able to identify
an entity in a database of another DO.

In the third phase of the temporal PPRL without a LU protocol, each DO per-
forms blocking independently. Besides an initial agreement of parameter settings
to be used, the blocking technique does not require any further communication be-
tween the DOs that would reveal information about their blocks. We also assume
each block contains at least k = n,/np records, where n, is the total number of
records in a database D (assuming all databases are of size n,. = |D|) and np is
the number of blocks generated for D, to ensure k-anonymous privacy [26]. There-
fore, no DO can learn anything about any other DOs sensitive data during the
independent blocking step.

In the BF comparison step, two DOs, DO; and DOj;, compare the BF pairs
in their common blocks. In this step let us assume DO; generates a public and
private keys, pk and sk, respectively, and sends pk to DO;. As we described in
Section to compare a BF pair (bs,by), where b, and by belong to DO; and
DOj, respectively, DO; sends the forward pack of masked b, to DO;. Since DO;
does not know the private key sk and the masking key used by DO;, DO, cannot
learn anything about b,. DO; next performs the multiplication of the forward pack
of masked b, with the backward pack of its masked BF b, and sends the computed
inner product result back to DO;. Since the masking key used to mask bit positions
of by is only known to DO, (as explained in Section each DO generates its
own list of masking keys without sharing them with any other DO), DO; cannot
infer information about the bit positions of b, that are set to 1. Hence, no DO can
learn anything about the encoding of any other DOs sensitive data during the BF
comparison step which makes the re-identification of attribute values difficult.

Furthermore, DO; sends the Hamming weights of its masked BFs to DO;
to compute the Dice similarity of BF pairs that are to be compared. This can
allow DO; to conduct a frequency attack, where the frequency distribution of the
Hamming weights is matched with the distribution of known attribute values, such
as last names [5]. However, DO; only receives the Hamming weights of masked BFs
of DO; where the masking depends on the temporal distances of the BF pairs that
need to be compared. Hence, a frequency attack by DO; becomes difficult because

24 Thilina Ranbaduge, Peter Christen

Table 2 The average numbers of entities with value changes due to updated records for
different attributes in the datasets (NC-20E and NC-0E) used in our experimental evaluation.

Number of entities with value changes
Number First Last Street Cit Zincod
of DOs Name Name Address "y 1peode
2 42,922 197,163 1,609,251 | 820,783 1,114,127
3 41,667 | 191,068 | 1,557,560 | 791,020 | 1,073,184
5 31,385 | 140,785 | 1,228,758 | 612,135 836,311
7 29,661 | 136,147 | 1,203,799 | 606,838 822,097
10 24,569 | 106,656 | 1,011,569 | 496,717 684,267

the frequency distribution of the Hamming weights of the original BFs of DO; is
different from the Hamming weights of its corresponding masked BFs.

6 Experimental Evaluation

We now provide the details of the experimental evaluation of our proposed tem-
poral PPRL protocols. The programs and test datasets are available from the
authors.

6.1 Experimental Setup

For experiments we used a real voter registration dataset (NCVR) from the US
state of North Carolina (NC) (available from: http://dl.ncsbe.gov/). We have
downloaded this dataset every second month from October 2011 to April 2018 (in
total 25 datasets) and built a compound temporal dataset that contains over 8
million records of voter names and addresses. The records (about the same voter)
in these datasets can be grouped into three categories: (1) exact matching: those
records that are exactly matching with each other, (2) unique: those records that
are only appearing in one dataset, and (3) updated: those records where at least
one attribute value has changed over a two month period. We used first name, last
name, street address, city, and zipcode as the set of attributes A, because these
are commonly used for record linkage [32] [33].

From these NCVR datasets we extracted records to generate datasets for dif-
ferent subsets of DOs, including 2, 3, 5, 7, and 10 DOs, by assigning each dataset
to a DO in a round robin fashion. For example, with 2 or 10 DOs in total, each DO
is assigned at least 12 and 2 NCVR datasets, respectively. We generated two vari-
ations of datasets for each DO by extracting records from each dataset assigned to
it. In the first variation (named as NC-20E) we extracted 20% of exact matching
records with all unique and updated records, while in the second variation (named
as NC-0E) we only include unique and updated records. Each dataset in NC-20E
and NC-0E contains the average numbers of 5,185,859 and 3,705,233 records, re-
spectively. Table [2] provides an overview of attribute value changes in the updated
records in the datasets we generated.

We evaluated the scalability of our protocol using runtime. We measured the
runtime required for each phase of our approach with different database sizes and
different numbers of databases. The linkage quality of our protocol is measured

http://dl.ncsbe.gov/

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 25

using precision and recall [2]. Precision is calculated as the ratio of the number
of true matched BF pairs found against the total number of candidate BF pairs
compared across databases, while recall is calculated as the ratio of the number of
true matched BF pairs against the total number of true matched BF pairs across
all databases. We do not present F-measure results given recent work has identified
some problematic aspects with this measure when used for record linkage [9].

To evaluate the privacy we used the recently proposed cryptanalysis attack by
Christen et al. [5]. This attack aligns frequent BFs and plain-text values in a public
database G to allow re-identification of the most frequent values encoded in these
BFs. We conducted this attack assuming the worst-case scenario of an attacker
gaining access to a database D of a DO, where G = D, and trying to re-identify
the values in D by using the BFs of another DO the attacker gained accessed to.
However, note that such an attack is highly unlikely in practice since the DOs do
not send their own databases to any other party. In the temporal PPRL protocol
with the LU, we assume the LU acts as an attacker and tries to re-identify the
attribute values encoded in the BFs it receives from a DO, while in the temporal
PPRL protocol without the LU we assume one DO acts as the attacker.

For comparison with our temporal PPRL protocol with a LU we used a non-
temporal state-of-the-art PPRL technique proposed by Schnell et al. [25] because
there are no existing PPRL techniques we are aware of that can be used for tem-
poral PPRL. This approach uses the cryptographic long-term key (CLK) approach
for encoding records into BFs. In CLK, each DO first converts the attribute val-
ues of each record in its database into a set of g-grams and then each g-gram is
encoded into a BF using k£ hash functions. Each DO sends its BFs to the LU for
comparison, and if the Dice similarity of a pair of BFs is at least a given threshold
(st) then it is classified as a match [25].

To compare our temporal PPRL protocol without a LU, we used the non-
temporal multidatabase PPRL technique proposed by Vatsalan and Christen [29]
30] as a baseline approach. This approach distributively computes the conjunc-
tion of a set of BFs from multiple DOs to perform privacy-preserving approximate
matching for multidatabase PPRL. Once the conjuncted BF segments are com-
puted by the respective DOs, a secure summation protocol is initiated among the
DOs to securely sum the number of common 1-bits in the conjuncted BF segments,
as well as the total number of 1-bits in each DOs BF. These two sums are then
used to calculate the Dice coefficient similarity of the set of BFs. If the calcu-
lated similarity is at least a given threshold (s¢) then it is considered as a match.
A filtering approach is employed to reduce the number of comparisons based on
segment similarity, such that if a sub-set of BF segments of candidate BFs (as
calculated by a respective DO) has a lower similarity compared to a segment sim-
ilarity threshold (sm) then the BFs do not have to be compared with any of the
BFs from the other DOs. Following the settings used by the authors [29] [30], we
set sy, the same as s; so that each segment contributes the same to the overall BF
similarity s;. However, it is important to note that this approach cannot be used
with two parties due to the use of a secure summation protocol [7] which makes
the protocol only usable with three or more parties (DOs).

We set the sample size ns of Algorithms 1, 2, and 4 to 50,000, and computed
the list of time intervals of Algorithms 1 and 4 from 1 to 10 years in one-year
gaps, and from 10 to 50 years in ten-year gaps by setting ni, = 10. We set the
public (pk) and private (sk) key lengths to 128 bits [20]. Following earlier work

26

Thilina Ranbaduge, Peter Christen

Table 3 The average runtime in seconds required for each phase of our temporal PPRL

protocol with the LU compared with the non-temporal baseline approach [25].

Our temporal PPRL approach with the LU
Number Decay Bloom filter Bloom filter Non-temporal PPRL
of records | Generation | Generation Comparison with the LU [25]
10,000 3,997.1 19.0 56.3 54.2
50,000 4,005.4 96.0 286.4 282.5
100,000 4,018.2 201.4 595.2 559.6
500,000 4,053.7 998.7 2,899.7 2,788.3
1,000,000 4,105.8 2,156.2 5,819.4 5,761.8
5,000,000 4,567.3 9,876.8 25,923.5 28,805.6

in PPRL [25] [32] 33|, in phase 2 and the baseline CLK encoding in non-temporal
PPRL we set the BF parameters as [= 1,000 bits, £ = 30 hash functions, and ¢
= 2. Following [25] and [29] we set the threshold s; in Algorithms 3 and 5 to 0.8,
and used the Dice coefficient [2] as the function sim() in Algorithm 3.

In phase 3 of our temporal PPRL with the LU protocol, for HLSH blocking we
used parameter settings in a similar range as used by the authors [8], where the
number of iterations is set to A = 20 and the number of bits to be sampled from
the BFs at each iteration is ;1 = 100. For ease of comparison we applied the same
blocking technique in the non-temporal technique proposed by Schnell et al. [25].

As used in the multidatabase approach proposed by Vatsalan and Christen [29]
30], we applied a Soundex-based phonetic blocking technique [2] for the blocking
step in our temporal PPRL protocol without the LU. In this blocking technique
the corresponding BFs in the blocks of each DO with the same phonetic codes are
compared and classified together [12]. We used the attributes first name and last
name as the blocking keys.

We implemented all the approaches using the Python programming language
(version 2.7.3) and used the HEIlib library (available from: https://github. com/
shaih/HE1ib) to implement the somewhat homomorphic scheme used in Algo-
rithm 5. All experiments were run on a server with 64-bit Intel Xeon (2.4 GHz)
CPUs, 128 GBytes of main memory, and running Ubuntu 16.04.

6.2 Results and Discussion

We now discuss the experimental results of our approaches. We first discuss the
scalability and linkage quality of our temporal PPRL protocol with and without
the LU. We also analyse the statistical significance of linkage quality results of our
approaches compared with the baselines. Finally, we describe the resilience of our
approaches against the cryptanalysis attack described in Section [6.1}

Scalability and linkage quality of temporal PPRL with the LU

Table [3]shows the scalability of our temporal PPRL protocol with the LU in terms
of average runtime required in each phase with different database sizes. As can
be seen from this table, the runtime required in phase 1 does not vary with the
database size because we use the same sample size ns (ns = 50,000 records) in the
change count computation step for each database. As we expected the runtime
required by a DO to encode its database in the second phase and the runtime
required by the LU to compare the BF pairs in the third phase scale linearly with

https://github.com/shaih/HElib
https://github.com/shaih/HElib

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 27

(a) First name, Last name, (b) First name, Last name,
and Street address in NC-20E Street address, City, and Zipcode in NC-20E
1.0 1.0
0.9 0.9
0.8 0.8
0.7, 0.7,
0.6 [Precision 0.6 [Precision
“l|Em Recall "l Recall
0.5 - —- 0.5 - —-
Number of databases Number of databases
(c) First name, Last name, (d) First name, Last name,
and Street address in NC-20E Street address, City, and Zipcode in NC-20E

1.0 1.0

0.9 0.9

0.8 0.8

0.7 0.7,
0.6 [Precision 0.6
A Recall
A [T
0.5 9 3 0.5
Number of databases Number of databases

Fig. 6 The linkage quality results with different numbers of databases for the NC-20E
datasets. The top row shows the results for our temporal PPRL approach with the LU, as
described in Section [{.I] and the plots in the bottom row show results for the non-temporal
baseline PPRL protocol proposed by Schnell et al. [25].

the number of records and the number of databases, respectively. However, we
noted that our approach consumes more runtime compared to the non-temporal
baseline approach [25] because each DO has to calculate the decay probabilities in
phase 1 which requires the comparison of ns(ns — 1)/2 record pairs.

Figures[f]and [7]shows the linkage quality of our temporal PPRL approach with
the LU compared with the non-temporal PPRL technique with the LU. Figures [6]
(a) and (b) and [7] (a) and (b) show that our protocol achieves better precision
compared to the non-temporal approach proposed by Schnell et al. (Figures |§| (c)
and (d) and [7] (c) and (d)) for the NC-20E and NC-OE databases, respectively.

As illustrated in Figuresm (b) and (d) the proposed temporal PPRL approach
achieves a precision of 0.913 while the non-temporal baseline approach achieves
a precision of 0.802 for the linkage of 10 databases with five attributes in A,
respectively. This is because the use of masking BFs helps to adjust the similarities
between pairs of BFs based on the time distance between them. We noted that
our temporal PPRL protocol with the LU achieves higher precision even with an
increasing number of attributes used in the linkage process. This is because the
similarities of all BF pairs are adjusted separately for each attribute which reduces
the number of false positives in the BF comparison phase.

However, as shown in Figures[7] (a) to (d) the recall drops in the linkage of the
NC-0E databases compared to the NC-20E databases shown in Figures|6] (a) to (d).
This is because each record of an entity in NC-OE contains one or more attribute
value changes that potentially results in the corresponding BF's of true matching
record pairs to be grouped into different blocks in the HLSH based blocking step

28 Thilina Ranbaduge, Peter Christen

(a) First name, Last name, (b) First name, Last name,

and Street address in NC-OE Street address, City, and Zipcode in NC-0E
1.0
0.9
0.8
0.7 7*
0.6 [Precision 0.6 [Precision

"l E Recall "l E Recall ﬁ
0.5 T—mmmr 1T 0.5 T—mmmr s
2 3 5 7 10 2 3 5 7 10
Number of databases Number of databases

(c) First name, Last name, (d) First name, Last name,

and Street address in NC-0OE Street address, City, and Zipcode in NC-0E
1.0 1.0
0.9 0.9
0.8 0.8
0.7, 0.7
0.6 [Precision 0.6 [Precision

7 Recall
I LI I I N4
0.5 2 3 5 7 10 0.3 2 3 10
Number of databases Number of databases

Fig. 7 The linkage quality results with different numbers of databases for the NC-0E datasets.
The top row shows the results for our temporal PPRL approach with the LU, as described in
Section [£.1] and the plots in the bottom row show results for the non-temporal baseline PPRL
protocol proposed by Schnell et al. [25].

Table 4 The t-test results that compare the precision and recall values between our temporal
PPRL approach with the LU and the non-temporal baseline approach [25] for different numbers
of DOs for the NC-20E and NC-0E datasets.

Precision Recall

Number
of DOs 2 3 5 7 10 2 3 5 7 10

NC-20E | 0.495 | 0.113 | 0.127 | 0.028 | 0.021 | 0.89 | 0.98 | 0.85 | 0.48 | 0.37
NC-0E | 0.006 | 0.008 | 0.003 | 0.002 | 0.003 | 0.98 | 0.91 | 0.86 | 0.92 | 0.76

in Algorithm 3. Hence, further investigation is required to incorporate temporal
information into the blocking of BFs.

As shown in Table 4, we conducted a t-test to evaluate the statistical signifi-
cance between precision and recall values between our proposed temporal PPRL
approach with the LU and the non-temporal baseline approach for the NC-20E and
NC-0E datasets with different number of DOs. As can be seen, for precision the
p-values ranged between 0.021 and 0.003 for 10 DOs with the NC-20E and NC-0E
datasets, respectively. Such high statistical significance confirms that the use of
temporal information can improve the overall linkage quality (precision) in our ap-
proach. Further, based on the obtained p-values it can be seen that the reduction
of recall in our approach compared to the non-temporal baseline approach is not
statistically significant. As shown in Table 4, we also noted the p-values for preci-
sion for 2, 3, and 5 databases are not highly significant with the NC-20E datasets.
This is because the skewness of exact matching records in the NC-20E datasets
which leads to high precision for both temporal and non-temporal approaches.

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 29

Table 5 The average runtime in seconds required for each phase of our temporal PPRL pro-
tocol without the LU compared with the non-temporal PPRL technique proposed by Vatsalan

and Christen [29] [30].

Our temporal PPRL approach without the LU

Number Decay Bloom filter Bloom filter Non-temporal PPRL
of records | Generation | Generation Comparison without the LU [29, [30]

10,000 3,782.5 19.0 183.8 3.7

50,000 3,855.1 96.0 786.1 32.3

100,000 3,981.9 201.4 1,635.2 189.1

500,000 4,001.7 998.7 5,879.7 828.9
1,000,000 4,075.4 2,156.2 9,718.3 4,824.1
5,000,000 4,212.5 9,876.8 46,634.1 —

(a) First name, Last name,

and Street address in NC-20E

(b) First name, Last name,

Street address, City, and Zipcode in NC-20E

1.0

0.9

0.8

0.7

0.6

1.0

0.9

0.8

0.5 LI

0.7,
0.6 [Precision
"l |Em Recall

| - I

0.5

[Precision

ZA Recall
| |
2 3

Number of databases

(c) First name, Last name,
and Street address in NC-20E

L1
3
Number of databases

(d) First name, Last name,
Street address, City, and Zipcode in NC-20E

I
2

1.0

0.9

0.8

0.7,

0.6

0.5

[Precision
ZA Recall

1.0

0.9

0.8

0.7

0.6

0.5

3 Precision
7 Recall

2

3

2

3

Number of databases

Number of databases

Fig. 8 The linkage quality results with different numbers of databases for the NC-20E
datasets. The top row shows the results for temporal PPRL without the LU, as described
in Section |4.2] and the plots in the bottom row show results for the non-temporal baseline
PPRL protocol proposed by Vatsalan and Christen [29] [30] for 1,000,000 records.

Scalability and linkage quality of temporal PPRL without the LU

We next discuss the experimental results of our temporal PPRL approach without
the LU compared with the non-temporal approach proposed by Vatsalan and
Christen [29] [30]. Table [5| shows the average runtime required by a DO for each
phase. As can be seen, in the decay generation phase our temporal PPRL protocol
without the LU consumes less runtime compared to the temporal PPRL protocol
with the LU (as shown in Table [3). This is because each DO computes the decay
probabilities independently without any communication with other DOs.

Similar to our temporal PPRL with the LU protocol, the runtime required
by the temporal PPRL protocol scales linearly in the BF generation and the BF
comparison phases with the number of records and the number of databases, re-
spectively. However, we noted that our temporal protocol consumes more runtime

30 Thilina Ranbaduge, Peter Christen

(a) First name, Last name, (b) First name, Last name,
and Street address in NC-OE Street address, City, and Zipcode in NC-0E

1.0

0.9

0.8
0.7,
0.6 [Precision
“l|Em Recall
0.5 Tmmmr T
2 3 5 7 10 5 7 10
Number of databases Number of databases
(c) First name, Last name, (d) First name, Last name,
and Street address in NC-0OE Street address, City, and Zipcode in NC-0E
1.0 1.0
0.9 0.9
0.8 0.8
0.7, 0.7
0.6 [Precision 0.6 [Precision
e Recall "l lE Recall
0.5! 0.5
2 3 5 7 10 2 3
Number of databases Number of databases

Fig. 9 The linkage quality results with different numbers of databases for the NC-0E datasets.
The top row shows the results for temporal PPRL without the LU, as described in Section
and the plots in the bottom row show results for the non-temporal baseline PPRL protocol
proposed by Vatsalan and Christen [29] [30] for 1,000,000 records.

Table 6 The t-test results that compare the precision and recall values between our temporal
PPRL approach without the LU and the non-temporal baseline approach [29 [30] for different
numbers of DOs for the NC-20E and NC-0E datasets.

Precision Recall
Number |- | 4 5 7 10 | 2] 3 5 7 10
of DOs
NC-20E - 0.062 | 0.074 | 0.017 | 0.021 - 0.41 | 0.31 | 0.59 | 0.13
NC-0E - 0.049 | 0.011 | 0.012 | 0.008 - 0.28 | 0.72 | 0.13 | 0.19

compared to the non-temporal approach by Vatsalan and Christen [29, [30]. This is
due to the homomorphic encryption based computation required in the similarity
calculation for each BF pair in Algorithm 5.

We also measured the memory required for each DO where on average our
temporal PPRL protocol only uses between 30% to 40% of the memory required
by the non-temporal PPRL approach by Vatsalan and Christen [29]. As shown
in Table [b] we were unable to conduct experiments for the non-temporal PPRL
approach with database sizes larger than 1 million records due to their memory
requirements. Such memory consumption occurs due to the exponential number
of BF comparisons and logical conjunctions the protocol calculates which limits
the non-temporal protocol to a small number of databases.

We measured the linkage quality of our temporal PPRL protocol without the
LU in terms of precision and recall for NC-20E and NC-0E dataset, as illustrated
in Figures [and [9} respectively. Similar to the temporal PPRL protocol with the
LU, our temporal PPRL protocol without the LU achieves higher precision even
with an increasing number of attributes used in the linkage process compared to

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 31

(a) Re-identification percentage (b) Re-identification percentage

for temporal PPRL with the LU for non-temporal PPRL with the LU
I 1-1 corr Wrong [2 4 N 1-1 corr Wrong [2 4

1-m corr No 3 EEE S5 1-m corr No 3 EE 5

100
80
60|
40,
20,

O ZAN H ZIN

50 00 1 20 50
Number of frequent values Number of frequent values

Percentage of re-identification

Percentage of re-identification

N
\
\
\
\
\
\
N

wzzzzz7zz2z2:22272

N
\
\
\
\
\
\
&

2 2
1

o
o
=

Fig. 10 Results of the cryptanalysis attack performed on the (a) temporal and (b) non-
temporal PPRL approaches with the LU with different number of attributes.

the non-temporal PPRL approach. However, with our temporal PPRL protocol
without the LU we noted an average of 5 to 10% reduction in precision in contrast
to the temporal PPRL protocol with the LU (Figures 7 and 9). This is because
the independent masking process by each DO can result in a matching BF pair to
have a low similarity in the BF comparison phase.

Similar to our temporal PPRL with the LU approach, we conducted a t-test
to compare precision and recall results of our temporal PPRL without the LU
approach with the non-temporal baseline approach. As shown in Table 6, a high
statistical significance can be seen for precision which suggests that temporal infor-
mation can successfully be used in the linkage process to improve the linkage qual-
ity. Also, the p-values for recall show that the reduction in recall of our approach
is not statistically significant compared to the non-temporal baseline approach.
However, as shown in Figures 8 and 9, we also noted that recall is improved due to
the phonetic blocking techniques we used in Algorithm 5 compared to the HLSH
approach used in Algorithm 3. Overall it can be seen that the use of temporal
information in the linkage process can improve the linkage quality compared to
non-temporal approaches.

Resilience to a cryptanalysis attack

We performed the cryptanalysis attack [5] in the third phase of our temporal
PPRL approach with the LU assuming the LU is conducting the attack on the
masked BF's it received from DOs, while we assume a DO is conducting the attack
on the masked BFs it received by another DO in our temporal PPRL approach
without the LU. We evaluate the re-identification accuracy [5] of the attack by
calculating (1) the percentage of correct guesses with 1-to-1 matching, (2) the
percentage of correct guesses with 1-to-m (many) matching, (3) the percentage of
wrong guesses, and (4) the percentage of no guesses, where these four percentages
sum to 100. These four categories are labeled as 1-1 corr, 1-m corr, Wrong, and No
in Figures|10] and respectively. We conducted the attack for different numbers
of attributes (two to five) and attribute combinations.

Figure [10| shows the re-identification results from the cryptanalysis attack ap-
plied in the third phase of our temporal PPRL protocol with the LU approach.
As can be seen in this figure, in both temporal (Figure [L0| (a)) and non-temporal
(Figure [10| (b)) PPRL approaches the attack can exactly or partially re-identify a
considerable percentage of encoded plain-text values when two attribute are used
in the BF encoding process. This is because the frequencies of g-grams can be cor-
rectly identified as a lower number of g-grams is mapped to a certain bit position.

32

Thilina Ranbaduge, Peter Christen

(a) Re-identification percentage

for temporal PPRL without the LU

(b) Re-identification percentage
for non-temporal PPRL without the LU

C C
o i<l
i = 11 corr Wrong 3 2 1 L . 11 corr Wrong [2 1
Eg 1-m corr No 3 EEE S5 E 1-m corr No 3 EE 5
5100 my S 3 S 100 S 3
% 80| é % § g 80 % §
i \ \| B \ \
< | N N < N N
5 60 ||/ N N 5 60 N N
. \ \ \ \
® / N N 2 N \
40 |1 N N & 40 N N
g 0l \ \| . \ \
€ 20 % N N € 20 N \
< 0! %\ A& i /& = 0! INNE: A& AN B A&
& 10 20 50 100 & 10 20 50 100

Number of frequent values Number of frequent values

Fig. 11 Results of the cryptanalysis attack performed on the (a) temporal and (b) non-
temporal PPRL approaches without the LU with different number of attributes.

Table 7 The number of 1-to-1 (1-1) and 1-to-many (1-m) correct re-identifications by the
cryptanalysis attack with two attribute combinations for different numbers of frequent values
with our temporal approaches and the non-temporal baseline approaches.

With the LU Without the LU
Temporal Non-temporal Temporal Non-temporal
Number of 1-1 Im | 1-1 Im | 1-1 1-m 1-1 1-m
frequent values
10 4 0 2 0 3 0 2 0
20 4 1 1 1 2 1 1 1
50 2 5 0 2 1 3 0 2
100 2 5 0 2 1 2 0 2

We also note that for two attribute combinations more values are re-identified in
our approach compared to the non-temporal approach. This is because g-grams
from different attributes are mapped to independent bit positions in a RBF, and
therefore the frequencies of these g-grams can potentially be analysed. However, as
we increase the number of attributes an attacker could not re-identify any plain-
text values as not enough frequency information is available to identify g-grams
that are encoded in the BF's. Hence, conducting such cryptanalysis upon BF's that
are encoded with g-grams from different attributes will unlikely be successful.

As shown in Figure (a), the re-identification accuracy of the attack decreases
in our temporal PPRL approach without the LU compared to the temporal PPRL
protocol with the LU (as shown in Figure [L0|(a)). This is because each DO masks
its own database independently and the masking keys of a DO are not shared with
any other party. We also noted that, in both temporal (Figure [11] (a)) and non-
temporal (Figure (b)) PPRL approaches, the attack can exactly or partially
re-identify a similar percentage of encoded plain-text values when two attributes
are used in the BF encoding process. This is because the masking process removes
a certain amount of 1-bits from the encoded BF's in our temporal approach which
results in certain g-grams to be incorrectly identified by the attack. Hence, this
leads to more wrong re-identifications.

Table 7 shows the number of 1-to-1 and 1-to-many correct re-identifications by
the cryptanalysis attach performed on our temporal approaches compared with
non-temporal baseline approaches. As can be seen, similar to the temporal PPRL
approach with the LU, for two attribute combinations the attack can still identify
attribute values encoded in BF's. However, as we encode more attributes the success
of the attack reduces as not enough frequency information is available to identify g-

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 33

grams that are encoded in BFs. Furthermore it can be noted that the independent
masking of BFs by a DO improves the privacy of entities compared to the masking
by a third party LU. Hence, our temporal PPRL protocol without a LU is more
applicable to linkage scenarios where the participating parties are semi-honest [16].

7 Conclusion

We have proposed a novel scalable privacy-preserving framework for temporal
record linkage. Our framework consists of two protocols that can be used in dif-
ferent linkage scenarios (with and without a third party) that are applicable in
real-world applications. Each protocol has three main phases, where in the first
phase all database owners (DOs) securely compute decay probabilities (likelihoods
that an entity changes it attribute values and two entities share the same values
for attributes over a given period of time). In the second phase all DOs encode
their databases using Bloom filter (BF) encoding. In the third phase we use a set
of masking BFs that are generated based on the decay probabilities calculated in
the first phase to adjust the attribute similarities between pairs of BFs to iden-
tify the matching record pairs. Our experimental evaluation with real databases
showed that the proposed temporal approaches can achieve better linkage qual-
ity when incorporating temporal information into the linkage process compared
to non-temporal PPRL approaches while providing privacy to individuals in the
databases that are being linked.

As future work we aim to investigate the use of active learning strategies [4]
for learning decay probabilities to overcome the need of training data in the first
phase of our approach. We plan to incorporate other secure BF encoding mecha-
nisms [33] in our approach to improve privacy. Extending our protocol to dynamic
databases [3], where records are added and updated dynamically, is another re-
search direction that needs further investigation.

Acknowledgements This work was funded by the Australian Research Council under Dis-
covery Project DP160101934.

References

1. Chiang YH, Doan A, Naughton JF (2014) Modeling entity evolution for tem-
poral record matching. In: ACM SIGMOD, pp 1175-1186

2. Christen P (2012) Data Matching — Concepts and Techniques for Record Link-
age, Entity Resolution, and Duplicate Detection. Springer

3. Christen P, Gayler RW (2013) Adaptive temporal entity resolution on dynamic
databases. In: PAKDD, Springer, pp 558-569

4. Christen P, Vatsalan D, Wang Q (2015) Efficient entity resolution with adap-
tive and interactive training data selection. In: IEEE ICDM

5. Christen P, Schnell R, Vatsalan D, Ranbaduge T (2017) Efficient cryptanalysis
of Bloom filters for privacy-preserving record linkage. In: PAKDD

6. Christen V, Grof§ A, Fisher J, Wang Q, Christen P, Rahm E (2017) Temporal
group linkage and evolution analysis for census data. In: EDBT, pp 620-631

34

Thilina Ranbaduge, Peter Christen

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Clifton C, Kantarcioglu M, Vaidya J, Lin X, Zhu M (2002) Tools for privacy
preserving distributed data mining. SIGKDD Explorations 4(2):28-34
Durham EA, Toth C, Kuzu M, Kantarcioglu M, Xue Y, Malin B (2013) Com-
posite Bloom filters for secure record linkage. TKDE

Hand D, Christen P (2018) A note on using the F-measure for evaluating
record linkage algorithms. Statistics and Computing 28(3):539-547

Hu Y, Wang Q, Vatsalan D, Christen P (2017) Improving temporal record
linkage using regression classification. In: PAKDD

Inan A, Kantarcioglu M, Ghinita G, Bertino E (2010) Private record matching
using differential privacy. In: International Conference on Extending Database
Technology, ACM, pp 123-134

Karakasidis A, Verykios V (2011) Secure blocking+ secure matching= secure
record linkage. Journal of Computing Science and Engineering 5(3):223-235
Li F, Lee ML, Hsu W, Tan WC (2015) Linking temporal records for profiling
entities. In: ACM SIGMOD, pp 593-605

Li P, Dong XL, Maurino A, Srivastava D (2011) Linking temporal records.
VLDB Endowment 4(11):956-967

Lin HY, Tzeng WG (2005) An efficient solution to the Millionaires problem
based on homomorphic encryption. In: Applied Cryptography and Network
Security, Springer, pp 456—466

Lindell Y, Pinkas B (2009) Secure multiparty computation for privacy-
preserving data mining. JPC 1(1):5

Lyubashevsky V, Peikert C, Regev O (2012) On ideal lattices and learning
with errors over rings. Cryptology ePrint Archive, Report 2012/230, https:
//eprint.iacr.org/2012/230

Naehrig M, Lauter K, Vaikuntanathan V (2011) Can homomorphic encryption
be practical? In: 3rd ACM Workshop on Cloud Computing Security Workshop,
ACM

Paillier P (1999) Public-key cryptosystems based on composite degree residu-
osity classes. In: EUROCRYPT, Springer-Verlag, pp 223-238

Ranbaduge T, Christen P (2018) Privacy-preserving temporal record linkage.
In: IEEE ICDM, pp 1161-1171

Ranbaduge T, Vatsalan D, Christen P (2014) Tree based scalable indexing
for multi-party privacy-preserving record linkage. In: AusDM, CRPIT 158,
Brisbane

Ranbaduge T, Vatsalan D, Christen P (2015) Clustering-based scalable index-
ing for multi-party privacy-preserving record linkage. In: PAKDD’09, Springer
LNAI, Vietnam

Randall S, Ferrante A, Boyd J, Semmens J (2013) The effect of data cleaning
on record linkage quality. BMC Med Inform Decis Mak

Randall SM, Ferrante AM, Boyd JH, Bauer JK, Semmens JB (2014) Privacy-
preserving record linkage on large real world datasets. JBI 50(0)

Schnell R, Bachteler T, Reiher J (2009) Privacy-preserving record linkage using
Bloom filters. BMC Med Inform Decis Mak 9

Sweeney L (2002) K-anonymity: A model for protecting privacy. International
Journal of Uncertainty Fuzziness and Knowledge Based Systems 10(5):557-570
Vatsalan D, Christen P (2012) An iterative two-party protocol for scalable
privacy-preserving record linkage. In: AusDM, CRPIT 134, Sydney, Australia

https://eprint.iacr.org/2012/230
https://eprint.iacr.org/2012/230

A Scalable Privacy-Preserving Framework for Temporal Record Linkage 35

28.

29.

30.

31.

32.

33.

34.

35.
36.

Vatsalan D, Christen P (2013) Sorted nearest neighborhood clustering for
efficient private blocking. In: Pacific-Asia Conference on Knowledge Discovery
and Data Mining, Springer, pp 341-352

Vatsalan D, Christen P (2014) Scalable privacy-preserving record linkage for
multiple databases. In: ACM CIKM, pp 1795-1798

Vatsalan D, Christen P (2016) Multi-party privacy-preserving record linkage
using Bloom filters. arXiv preprint arXiv:161208835

Vatsalan D, Christen P, Verykios V (2013) Efficient two-party private block-
ing based on sorted nearest neighborhood clustering. In: ACM CIKM, San
Francisco, pp 1949-1958

Vatsalan D, Christen P, Verykios VS (2013) A taxonomy of privacy-preserving
record linkage techniques. JIS 38(6)

Vatsalan D, Sehili Z, Christen P, Rahm E (2017) Privacy-Preserving Record
Linkage for Big Data: Current Approaches and Research Challenges, Springer
International Publishing, pp 851-895

Yakout M, Atallah M, Elmagarmid A (2009) Efficient private record linkage.
In: IEEE International Conference on Data Engineering, pp 1283-1286

Yao AC (1982) Protocols for secure computations. In: IEEE SFCS

Yasuda M, Shimoyama T, Kogure J, Yokoyama K, Koshiba T (2015) New
packing method in somewhat homomorphic encryption and its applications.
Security and Communication Networks 8(13):2194-2213

