Clustering-based Scalable Indexing for
Multi-party Privacy-preserving Record Linkage*

Thilina Ranbaduge, Dinusha Vatsalan, and Peter Christen

Research School of Computer Science, College of Engineering and Computer Science
The Australian National University, Canberra ACT 0200, Australia
{thilina.ranbaduge,dinusha.vatsalan, peter.christen}@anu.edu.au

Abstract. The identification of common sets of records in multiple
databases has become an increasingly important subject in many ap-
plication areas, including banking, health, and national security. Often
privacy concerns and regulations prevent the owners of the databases
from sharing any sensitive details of their records with each other, and
with any other party. The linkage of records in multiple databases while
preserving privacy and confidentiality is an emerging research discipline
known as privacy-preserving record linkage (PPRL). We propose a novel
two-step indexing (blocking) approach for PPRL between multiple (more
than two) parties. First, we generate small mini-blocks using a multi-bit
Bloom filter splitting method and second we merge these mini-blocks
based on their similarity using a novel hierarchical canopy clustering
technique. An empirical study conducted with large datasets of up-to
one million records shows that our approach is scalable with the size of
the datasets and the number of parties, while providing better privacy
than previous multi-party indexing approaches.

Keywords: hierarchical canopy clustering; Bloom filters; scalability.

1 Introduction

Many real-world applications require data from multiple databases to be in-
tegrated and combined to improve data analysis and mining. Record linkage
(also known as entity resolution or data matching) is the process of identifying
matching records that refer to the same entity from multiple databases [3].

The lack of unique entity identifiers in databases requires the use of quasi-
identifiers (QIDs) [16], such as first name, last name, address details, etec. to link
records across databases. However, due to privacy and confidentiality concerns
organizations generally do not want to share any sensitive information regarding
their entities with other data sources. Finding records in multiple databases that
relate to the same entity or having approximately the same values for a set of
QIDs without revealing any private or sensitive information is the research area
known as ‘privacy-preserving record linkage’ (PPRL) [SU16].

* This research is funded by the Australian Research Council under Discovery Project
DP130101801.

The naive pair-wise comparison of multiple data sources is of exponential
complexity in terms of the number of parties. This makes record linkage appli-
cations not scalable to large databases and increasing number of participating
parties. Applying indexing is a possible solution aimed at improving scalabil-
ity [4]. Indexing reduces the large number of potential comparisons by removing
as many record sets as possible that correspond to non-matches, such that expen-
sive similarity comparisons are only required on a smaller number of candidate
record sets. Indexing for PPRL needs to be conducted such that no sensitive in-
formation that can be used to infer individual records and their attribute values
is revealed to any party involved in the process, or to an external adversary [I§].

We propose a novel indexing mechanism for multi-party PPRL that can
provide better scalability, blocking quality, and privacy compared to previous
approaches. Our approach efficiently creates blocks across multiple parties with-
out revealing any private information. Specific contributions of our paper are
(1) a two-step blocking protocol which consists of (2) a multi-bit splitting ap-
proach for Bloom filters and (3) a hierarchical canopy clustering algorithm; and
(4) an empirical evaluation using large datasets, and a comparison with other
multi-party approaches in terms of efficiency, effectiveness and privacy.

2 Related Work

Can we do efficient and effective indexing for record linkage? This is a problem
that has been considered for several decades. According to a survey by Chris-
ten [4], a variety of indexing approaches have been developed. Some of these
have been adapted for PPRL [I6], including standard blocking [I], mapping
based indexing [8], clustering [SITO/TY], and locality sensitive hashing [7]. How-
ever, performing scalable record linkage that provides high linkage quality while
preserving privacy is an open research question that needs further investigation.

Bloom filters are commonly used for encoding of records in PPRL due to their
capability of computing similarities. Lai et al. [II] proposed a multi-party ap-
proach that uses Bloom filters to securely transfer data between multiple parties
for private set intersection. This approach was recently adapted by Vatsalan et
al. [T7] for multi-party PPRL, however their approach does not address blocking.

Schnell [I5] introduced a new blocking method for record linkage, based on
the concept of a multi-bit tree data structure [9] to hold a set of Bloom filters.
This approach was further extended by Ranbaduge et al. [13] as a blocking
mechanism for multi-party PPRL. Their experimental results showed that the
proposed approach is scalable with the dataset size and the number of parties,
and provides better linkage quality and privacy than a phonetic based indexing
approach. However, the blocks generated using this approach might miss some
true matches due to the recursive splitting of Bloom filter sets.

Clustering is the process of grouping records such that records within a cluster
are similar to each other, while dissimilar records are in different clusters. Several
clustering approaches have been adapted for private blocking [S/T0/T9], however
neither of these techniques considers blocking of more than two databases.

Canopy clustering [6/12] is a technique for clustering large high dimensional
datasets. It can generate candidate record sets by efficiently calculating similar-
ities between blocking key values. Records are inserted into one or more over-
lapping clusters based on their similarity to the cluster centroid. Each cluster
then forms a block from which candidate sets are generated. However, the use
of canopy clustering for indexing in PPRL has so far not been studied.

3 Clustering based Indexing for Multi-party PPRL

We now introduce the building blocks required for our clustering based PPRL
indexing approach, and then study the indexing protocol in detail.

3.1 Building Blocks

Bloom Filters: are bit vectors proposed by Bloom [2]. In a Bloom filter initially
all the bits are set to 0. To map an element of a set into the domain between 0
and m —1 of a Bloom filter of length m, k independent hash functions hq, ..., kg
are used. Furthermore, to store n elements of the set S = {s1, s2,...,s,} into a
Bloom filter, each element s; € S is encoded using the k hash functions and all
bits having index positions h;(s;) for 1 < j < k are set to 1.

Q-grams: are character sub-strings of length ¢ in a string [3]. For example,
the string “PETER” can be padded with character ‘.’ and the resulting ¢-gram
set (for ¢ =2)is {_P, PE,ET,TE,ER, R_}. In our approach we encode ¢-gram
sets of the quasi-identifiers (QIDs) into Bloom filters. First, the selected QIDs of
a given record are converted into a g-gram set. Then each g-gram set is encoded
into a Bloom filter by using k hash functions.

Secure Summation Protocol: is a method used in secure multi-party com-
putation [5], and has been used in several PPRL approaches [I3I17]. The basic
idea is to compute a summation of private inputs of P parties without revealing
individual values to any other parties, and at the end of the computation no
party knows anything except its own input and the final sum [5].

3.2 Basic Multi-bit Indexing Protocol

We now describe our indexing approach for multi-party PPRL. The construction
of the index of an individual party consists of two main phases:

1. Multi-bit Bloom filter splitting: This phase can be further extended into three
steps, which are:
(a) Generate Bloom filters for the records in the dataset.
(b) Perform secure summation to find the best splitting bit position.
(c) Split the set of Bloom filters into mini-blocks.

2. Merge mini-blocks using clustering.

Algorithm 1: Multi-bit Bloom filter splitting by party P;, 1 < i < P

Input:

- Dj: Dataset belonging to party P;

- Smin: Minimum mini-block split size
- Smaz: Maximum mini-block split size

A: Set of selected attributes
dmaz: Maximum split degree
bsy: Bit selection threshold

Output:

-C: Set of Bloom filter mini-blocks

1: B = generateBloomfilters(Dj, A)

2: Q = [B] // Initialization of queue

3: while Q # () do

4: b= Q.pop() // Get the current block

5: R = generateRatios(b) // Generate local bit ratios

6: Ry = secureSummation(R) // Get ratios globally

7: BC; = getCombinations(Rg,dmax,bs¢) // Get bit combinations

8: BC, = secureSummation(BC) // Get combinations globally
9: mb; = splitData(BCy,b) // Create mini-blocks

10: if all (|mb;| > Smin) then: // If mini-blocks large enough
11: if any (Jmb;| > smaz) then: // If mini-blocks too large

12: Q.push(mb;) // Add to queue for further splitting
13: else: // Block sizes are acceptable
14: C.add(mb;) // Add mini-blocks to final set

15: return C

Generating large blocks of different sizes makes the comparison step more
problematic and requires more computational time. With our approach, a user
has control over the block sizes by merging blocks until the size of blocks reaches
an acceptable lower limit suitable for comparison. The aim of our protocol is to
divide (split) the set of records in the datasets into mini-blocks (phase 1) and
merge these mini-blocks based on their similarity (phase 2). Merging of mini-
blocks by clustering reduces the overall running time requirement compared to
using a clustering technique for blocking the datasets [I0JI9]. These merged
blocks can then be compared using private comparison and classification tech-
niques to determine the matching record sets in different databases [I7]. Each
party follows these phases to construct the blocks from their own dataset.

3.3 Multi-bit Bloom Filter Splitting

Before performing the clustering algorithm, the set of records needs to be en-
coded into Bloom filters, and split into sets of smaller blocks (which we call
mini-blocks). All P parties need to agree upon a bit array length m (length of
the Bloom filter); the length (in characters) of grams ¢, the k hash functions,
and a set of QID attributes that are used to block the records. The parameters
Smin and Spmaz specify the lower and upper bound of the acceptable size of a
mini-block, respectively. The overall splitting approach for each party P;, where
1 < i < P, is outlined in Algorithm 1.

In line 1, each party iterates over its dataset to encode each record into a
Bloom filter. Once all the parties have generated their sets of Bloom filters they
are added into a queue @ as a single block. At each iteration the first block of
Bloom filters b that is available at the front of () is processed. In line 5, each party
calculates a vector of length m that contains the ratios between the number of

Party A Party B Party C

Bloom filter set A Bloom filter set B Bloom filter set C
A1l 0 [1] 1 0 0 B1| 1 [1] O |[1] O Ci| 1 1] 1 |1 O
A2 1 |0] 1 0 1 B2 1 [0 1 [O0] 1 Cc2| 1 [0] 1 [1] O
A3 T[oJO0O]JO0TJ]O B3[0 [0] T [o][O C3[1T JI] 1 [0] O
A4 T JI[T] 1TT]0O B4 1 J1I] 1T 1] 1 C4l 1T J0] 0 O] 1
Abs Diff from 0.5 Abs Diff from 0.5 Abs Diff from 0.5
(/A0 1/AT1/4T1/7] (/AT0T174T0 0]
Phase 1.a: Bloom filter generation and calculation of 0/1 bit ratios and absolute differences from
50% filled.

Random vector (R) = [10]5]12]13]6]

[10.25]0]12.25]13.25]6.25] — [10.5] 0] 12.5] 13.25] 6.25] — [11] 0] 12.75| 13.25] 6.5]

Secure sums: [1]0]0.75]0.25]0.5]

Final absolute differences from 50% filled: [0.33 [0 [0.25 [0.083 [0.167]

Selected bit positions: {2, 4}

Phase 1.b: Secure summation of absolute differences and selecting best bit positions for splitting
(dimaz = 2, and bs; = 0.2)

Fig. 1. Selecting dpqz = 2 best bit positions for multi-bit Bloom filter splitting.

0’s and 1’s for each bit position in the Bloom filters, using f;; = abs(0.5 — Of),
where f;; is the ratio value of bit position j of party F;, 0;; is the number of 1’s
in position j, and [is the number of Bloom filters processed in a given block.

Once all parties have computed their own ratio vector, we use an extended
secure summation protocol to compute common bit positions suitable for split-
ting (line 6). The globally summed ratio vector Ry is used to find the dyaqe
best splitting bit positions. The bit positions with a sum less than the bit se-
lection threshold bs; are then selected into the set I; of splitting bit positions
as I; ={j | (5§ - Zil fij) < bst}. The dimqs bit positions in I; with the low-
est ratio values (which we call match-bits) are selected as the best splitting bit
positions. Fig. 1 illustrates an example of selecting best splitting bits.

Based on the selected bit positions, each party generates all possible bit com-
binations BC; (line 7). An example of bit positions {j,, j,, j.} would generate
the set of combinations {{jxajZﬂjz}a {]au]y}v {jy’jz}7 {j:mjz}a {]33}3 {]y}v {]Z}}
The value of d,,q, needs to be kept small as this generation grows exponentially
with dj,q,. For each combination, the Bloom filters in the current block are pro-
cessed to analyze the sizes of resulting mini-blocks with different bit patterns. For
a bit combination {j, j, }, for example, the set of bit patterns is {00, 01, 10, 11}.
Once the current block is processed for all possible bit combinations, we find the
common best bit combination BCy in line 8 in Algorithm 1. The current block
is split into mini-blocks according to this globally accepted bit combination.

After splitting, if any of the mini-blocks contains less than s,,;, records, then
these mini-blocks will not be included into the final mini-block set C (line 10).
Instead they are merged back into a single block which is added to C. If all of
the resulting mini-blocks contain a number of records greater than s,,;,, then
each mini-block is checked against the value of $,,4,. All the mini-blocks that
contain records greater than $,,,, are added to @ for future splitting (line 12 in

Algorithm 1). If the number of records is less than s,,,, at all parties, then these
mini-blocks are added to C. The parameters s,,;, and S;,q. allow the user to
control the number of iterations that occur in the multi-bit splitting algorithm.

4 Merge Mini-blocks by Clustering

Our clustering of mini-blocks is based on a canopy technique [6/T2]. The gen-
erated mini-blocks are merged into larger clusters by inserting records into one
or more overlapping clusters based on their similarity to their nearest cluster
centroid. This allows us to perform computationally efficient indexing. We use
a normalized Hamming distance based similarity calculation for computing the
similarity of clusters: simgy(x,y) = 1 — % | ¢; # y; and 1 < i < m, where
simpy (x,vy) is the normalized Hamming distance similarity between the two bit
vectors x and y, simpg(x,y) =1 if and only if x = y.

Each mini-block generated by the multi-bit splitting algorithm is initially
considered as a separate cluster, which we refer to as a mini-cluster. A Bloom
filter a. is selected as the centroid for each mini-cluster which has the highest
similarity to all other Bloom filters in the cluster. For this selection process we
use a maximum average Hamming distance based similarity calculation which is

shown in .

aC:argrr}lax{W|ai,aj€C7 1<i,j<|C|,andi7éj} (1)

We use threshold-based canopy clustering for merging similar mini-clusters.
Before starting the clustering algorithm, all parties need to agree upon the tight
similarity threshold s;, loose similarity threshold s;, and the maximum merge
size MSma, which controls the size of merged clusters (blocks) and indirectly
controls the number of iterations of the merging process. For merging of mini-
clusters we suggest two canopy based clustering algorithms, which are:

— Standard canopy clustering (SCC): Mini-clusters are merged until the result-
ing cluster size increases to msy,q,. This algorithm merges a set of similar
mini-clusters greedily in a given iteration.

— Hierarchical canopy clustering (HCC): The merging of mini-clusters is based
on an agglomerative clustering approach until ms,,., is met. In a given
iteration, the two most similar mini-clusters are merged.

4.1 Merge Mini-clusters with Standard Canopy Clustering

The suggested SCC approach for merging of mini-clusters is shown in Algorithm
2. In line 2, each party iterates over the set of mini-clusters C. At each iteration
the mini-cluster at the front of C is processed as the initial cluster (line 3). As
discussed above, the centroid is computed for the initial cluster (line 4).

Algorithm 2: Merge mini-clusters using
standard canopy clustering

Algorithm 3: Merge mini-clusters using
hierarchical canopy clustering

Input:

- s¢: Tight similarity threshold

- s;: Loose similarity threshold

- MSmaz: Maximum merge size

- C: Set of mini-clusters ([c1,...,¢])

- simp (-, +): Similarity comparison function

Output:

- O: Set of merged clusters

1: O0=90

2: while C # 0 do:

3: ¢ = C.pop()

4: a, = getCentroid(cy)

5: Czy = Cg

6: while |czy| < Msmae do:
7 ¢y = C.next()

8: a, = getCentroid(cy)
9: s = simy(az,ay)
10: if s < s; then:

11: Copy = Cgy +Cy

12: del ¢,

13: if s < s; then:

14: Coy = Cay T Cy

15: del ¢,

16: O.add(cgzy)

Input:

- s¢: Tight similarity threshold

- s;: Loose similarity threshold

- MSmaz: Maximum merge size

- C: Set of mini-clusters ([c1,...,¢])

- simp (-, +): Similarity comparison function

Output:

- O: Set of merged clusters

1: O=90

2: while C # 0 do:

3: ¢ = C.pop()

4: a, = getCentroid(cy)

5: for ¢, € C do:

6: ay, = getCentroid(cy)
7 s = simy(az, ay)

8: if s < s; then:

9: Czy = Cox +Cy

10: del ¢z, cy

11: if s < s5; then:

12: Czy = Cz +Cy

13: del ¢,

14: if |cpy| > MSmae then:
15: O.add(cay)

16: else:

17: C.add(cazy)

The initial cluster is compared and merged with other mini-clusters in the
set until the size of the cluster reaches ms,,q, as shown in lines 5 to 15. At the
merging step, the computed similarity value s (line 9) is checked against s; and
s;- As per lines 10 to 12, if s < s¢, then the mini-clusters will be merged. The
merged mini-clusters are removed from the set C if they are within s; (line 12).

If s < s;, then the merge is performed between the mini-clusters but only the
initial cluster is deleted from the set C (line 15). Once the size of the resulting
merged cluster cg, reaches ms,q., the cluster is added to the set of merged
clusters O (line 16). Therefore at each iteration a set of mini-clusters which
are similar to the initial cluster are merged until the overall cluster size reaches
MSmaz- EBach cluster generated by this approach will become a block to be used
in the comparison step in the PPRL pipeline.

4.2 Merge Mini-clusters with Hierarchical Canopy Clustering

In the SCC algorithm described in Sect. [4-1] depending on the sizes of the mini-
clusters that are merged, the final cluster size can grow beyond ms,,q; which
will result in more record set comparisons. We propose a novel threshold-based
hierarchical canopy clustering (HCC) approach which guarantees that clusters
are only merged up-to the size limit ms,,q, as shown in Algorithm 3.

To merge clusters, each party iterates over its set of mini-clusters C (line 2).
At each iteration one mini-cluster is selected and the centroid is computed as
discussed in Sect. [4] (lines 3 and 4). A similarity value s is computed between
the initial cluster and other mini-clusters in C (line 7). The computed value s

is checked against s; and s; for merging (lines 8 to 13). Similar to Algorithm 2,
mini-clusters are merged if the value s satisfies the threshold values.

After each iteration, the size of the resulting merged cluster is checked against
MSmaz- If the size of the merged cluster is less than ms;, 4., the cluster is added
back into C as a new mini-cluster ¢’ (line 17). This enables ¢’ to be merged
further with other close mini-clusters. Therefore, at each iteration the two most
similar mini-clusters are merged into one. Once the size of a merged cluster
reaches MSyqz, it is added to the final set of merged clusters O.

5 Analysis of the Protocol

We now analyze our protocol in terms of complexity, privacy, and quality.

Complexity: By assuming there are N records in a dataset with each having
an average of n g-grams, we analyze the computational and communication
complexities in terms of a single party.

In the first phase of our protocol all records are encoded using k hash func-
tions. The Bloom filter generation for a single party is of O(k-n- N) complexity.
In the multi-bit splitting step, the parameters smin, Smaz and dpq, are used
to control the size of mini-blocks generated. Suitable values for the parameters
Smin and S,z Need to be set as the size of the mini-blocks decides the number
of iterations that occur in the splitting phase. At each iteration, a set of Bloom
filters is split into 29me= mini-blocks. The number of iterations in the splitting
phase can be calculated as log2(N/Smaz)/dmaz- Therefore, the splitting of N
Bloom filters into a set of mini-blocks is of O(N - loga(N/$maz)/dmaz)-

In the second phase of our protocol, merging mini-clusters requires the pro-
cessing of |C| merged clusters. The computation of the centroid for all mini-
clusters is of O(s2,.. - |C|) complexity. Merging mini-clusters using the SCC
approach requires a total computation of O(mSmaz/Smaz - |Cl|), where at each
iteration Mmsmaz/Smax clusters are merged. At each iteration in the HCC ap-
proach the two most similar mini-clusters are merged which requires a total of
O(|C|?) computations.

The parties only need to communicate with each other to perform the secure
summation protocol in the phases of multi-bit splitting and the merging of mini-
clusters, with each message of length m and |C|, respectively. By assuming each
party directly connects to all other parties, the P parties require P messages
to be sent in each iteration. Therefore the entire protocol has a communication
complexity of O(m - P -loga(N/Smaz)/dmaz +m - |C|) for P parties.

Quality: We analyze the quality of our protocol in terms of effectiveness
and efficiency [I9]. The SCC approach merges mini-clusters greedily which can
generate clusters with sizes larger than ms,;,q,. This results in the SCC approach
to have higher effectiveness and lower efficiency compared to the HCC approach.
Both the SCC and HCC approaches retrieve more similar records compared to a
previous approach [13], as the similarity between mini-clusters is used to merge
the clusters up-to ms;qz-

For |C| merged clusters, with each containing ms,., records, the number
of candidate record sets generated for each party is ms;q, - |C|. The param-
eter ms,q, limits the size of the clusters generated by one of the clustering
algorithms, which indirectly determines the number of merged clusters gener-
ated by the protocol. In the worst case scenario a merged cluster can be of size
2(MSmaz — 1) if the two mini-clusters merged are each of size mspma, — 1. A
suitable value for ms,,, therefore needs to be set by considering factors such
as the dataset size and the number of parties, such that both high effectiveness
and high efficiency are achieved while guaranteeing sufficient privacy as well.

Privacy: We assume that each party follows the honest-but-curious adver-
sary model [I8]. All parties participate in a secure summation protocol for ex-
changing of ratio values of Bloom filters with other parties. During these summa-
tions, each party computes the sum of its ratio values but neither of the parties
is capable of deducing anything about the other parties’ private inputs [5].

Our protocol performs a generalization strategy on clusters that makes re-
identification not possible. The parameter ms,,q; is used to guarantee that every
resulting cluster contains at least ms,,q, records. This ensures all clusters that
are generated have the same minimum number of records, which guarantees k-
anonymous mappings (kK = ms;q.) privacy [8/19]. The merging of mini-blocks
makes the protocol more secure and harder for dictionary and frequency at-
tacks [18]. A higher value for ms;,.. provides stronger privacy guarantees but
requires more computations as more candidate record sets will be generated.

6 Experimental Evaluation

We evaluated our protocol using the North Carolina Voter Registration (NCVR)
databaseﬂ We based our experiments on the datasets used in and provided
by [13], which contain from 5,000 to 1,000, 000 records for 3, 5, 7 and 10 parties.
In each of these sub-sets, 50% of records were matches. Some of these datasets
included corrupted records which allowed us to evaluate how our approach works
with ‘dirty’ data. The corruption levels were set to 20% and 40%.

We implemented a prototype of our protocol using Python (version 2.7.3). All
experiments were run on a server with 64-bit Intel Xeon (2.4 GHz) CPUs, with
128 GBytes of main memory and Ubuntu 14.04. The programs and test datasets
are available from the authors. We used four attributes commonly used for record
linkage as QIDs: Given name, Surname, Suburb (town) name, and Postcode. We
set the Bloom filter parameters as m = 1000 bits, & = 30 hash functions, and
q = 2 by following earlier Bloom filter work in PPRL [I3|14]. For compara-
tive evaluation we used the single-bit tree (SBT) multi-party PPRL blocking
approach by Ranbaduge et al. [13] as to our knowledge there are no other block-
ing approaches for multi-party PPRL available. We also used a phonetic based
blocking approach (PHO) as a baseline [8/I7] to comparatively evaluate the level
of privacy. We named our multi-bit splitting, standard canopy clustering, and
hierarchical canopy clustering as MBS, SCC, and HCC, respectively.

! Available from: ftp://alt.ncsbe.gov/data/

(a) Average running time per party with different datasets (b) Total running time with different parties for 500K dataset

10° {{@mm SBT Ea SBT
ZZ MBS 10° {|EEl SCC
7 scC . HCC
10" (| M HCC

Time (s)

OO & & 0 2 @ o
AR

Vi
7
/
7
7

NN\

5K 10K 501 100
Dataset size Number of parties

15}

Fig. 2. (a) Average blocking runtime per party for different dataset sizes and (b) total
blocking runtime for the 500K dataset with different number of parties.

In the PHO approach we used Soundex [4] as encoding function for all QIDs
except Postcode where the first three digits of the value were used as the block-
ing key. Based on a set of parameter evaluation experiments we set the MBS
parameters dp,q; = 3, bst = 0.1, Symaz = 50 and Spmin = Smaz/2. We set the SCC
and HCC parameters of s¢, s;, and ms,q. to 0.9, 0.8, and 500, respectively, as
these values gave us the minimum overlap between clusters.

We measured the average total runtime for the protocol to evaluate the com-
plexity of blocking. The reduction ratio (RR), which is the fraction of record sets
that are removed by a blocking technique, and pairs completeness (PC), which
is the fraction of true matching record sets that are included in the candidate
record sets generated by a blocking technique, were used to evaluate the blocking
quality. These are standard measures to assess indexing in record linkage [3].

Fig. 2 illustrates the scalability of our approach in terms of the average
time required with different dataset sizes and number of parties. As expected
the MBS-SCC approach requires less runtime than the MBS-HCC approach but
both show a linear scalability with the size of the datasets and number of parties.

Fig. 3(a) illustrates that RR remains close to 1 for all dataset sizes and for
different number of parties. This shows our approach significantly reduces the
total number of candidate record sets that need to be compared. Fig. 3(b) to
(d) illustrate the PC of our approach with different dataset sizes and corruption
levels, indicating that our approach can provide significantly better blocking
quality than the earlier proposed SBT approach [13].

To evaluate the privacy of our approach we use the measure probability of
suspicion (Ps) [18], which is defined for a value in an encoded dataset as 1/ng,
where ng is the number of values in a global dataset (G) that match with
the corresponding value in the encoded dataset D. As shown in Fig. 4(a), the
MBS-SCC and MBS-HCC approaches both provide significantly better privacy
compared to the PHO approach which has a maximum Py of 1 (under the worst
case assumption of the global dataset G being equal to the linkage dataset i.e.
G = D). By increasing the parameter ms,,q, stronger privacy can be guaranteed
in our approach. Fig. 4(b) shows that the PHO approach [8II7] creates a large
number of blocks of size 1 which makes this approach not suitable for PPRL.

(a)Reduction ratio with 0% corruption (b)Pairs Completeness with 0% corr

1.00| el e el

1.0000f

0.9995 0.99

0.9990

0.9985| 0.97

Reduction Ratio
Pairs Completeness

e—e 3 SBT e e 35SCC e @ 3HCC
0.96 a—4 5SBT &4 55CC 44 5HCC
=8 7 SBT ®4a 7SCC E@ 7 HCC
#—& 10 SBT * = 10 SCC * % 10 HCC
100K 500K

o—e 3SBT e - 35SCC e e 3HCC
0.9980 a— 5SBT &4 55CC a4 5HCC
m—a 7 SBT =@ 75CC =@ 7HCC
A=« 10SBT *# - 10SCC '+ 10 HCC

5K 10K 50K 100K 5001 - 5K 10K 50K
Dataset size Dataset size
(c)Pairs Completeness with 20% corruption (d)Pairs Completeness with 40% corruption
BT AT @ R i i m im A@n m mem i ma m m en @ R e TR}

°
®

°
3

o
n
Pairs Completeness

Pairs Completeness
o
b

o
=

100K 500

5K 10K 50K
Dataset size Dataset size

Fig. 3. (a) Reduction ratio with 0% corruption and (b) to (d) pairs completeness with
0%, 20%, and 40% corruption for different dataset sizes. Note the different y-axis scales.

(a) Probability of suspicion for 500K dataset (b) Block sizes generated for 500K dataset

s
10° | 10° T
-+ PHO
10* +
s
]
=4 2
9 10
2 5 == - —
5 @
S ¥ 10
S °
] @
5 H
£10? 10"
M —
10% PHO SBT scc HCC
500

K 200K 300K 200K
Records sorted according to their probabilities 500K dataset

Fig. 4. (a) Probability of suspicion (Ps) and (b) block sizes generated by the different
approaches using the 500K dataset.

According to Fig. 4(b), the MBS-HCC approach provides clusters within the
acceptable size limit of ms,,,4; Which results in better block structures compared
to the SBT and MBS-SCC approaches. This illustrates that our novel MBS-HCC
technique provides better privacy than the other compared approaches while
achieving higher results for both RR and PC.

7 Conclusion

We proposed a novel blocking protocol for multi-party PPRL based on multi-bit
Bloom filter splitting and canopy clustering. We suggested a novel agglomera-
tive hierarchical canopy clustering algorithm which generates canopies (blocks)
within a specific size range. We demonstrated the efficiency and effectiveness of

our approach on datasets containing up-to one million records. The evaluation
results indicated that our approach is scalable with both the size of the datasets
and the number of parties. Our approach outperforms a previous multi-party
private blocking and a phonetic based indexing approach in terms of blocking
quality and privacy. A limitation in our approach is the assumption of the semi-
honest adversary model. We plan to extend our protocol to adversary models
that are applicable for malicious parties and evaluate the privacy over other at-
tack methods applicable to PPRL [I8]. We will also investigate the parallelization
of our approach to improve its performance.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Al-Lawati, A., Lee, D., McDaniel, P.: Blocking-aware private record linkage. In:
ACM IQIS. pp. 59-68. Baltimore (2005)

Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM 13(7), 422-426 (1970)

Christen, P.: Data Matching — Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer (2012)

Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-
plication. IEEE TKDE 24(9), 1537-1555 (2012)

Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.: Tools for privacy pre-
serving distributed data mining. SIGKDD Explorations 4(2), 28-34 (2002)
Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional
data sets for data integration. In: ACM SIGKDD. pp. 475-480. Edmonton (2002)
Durham, E.: A framework for accurate, efficient private record linkage. Ph.D. the-
sis, Faculty of the Graduate School of Vanderbilt University, Nashville, TN (2012)
Karakasidis, A., Verykios, V.: Secure blocking+secure matching = secure record
linkage. Journal of Computing Science and Engineering 5, 223-235 (2011)
Kristensen, T.G., Nielsen, J., Pedersen, C.N.: A tree-based method for the rapid
screening of chemical fingerprints. Algo. for Molecular Biology 5(1), 9 (2010)
Kuzu, M., Kantarcioglu, M., Inan, A., Bertino, E., Durham, E., Malin, B.: Efficient
privacy-aware record integration. In: ACM EDBT. Genoa, Italy (2013)

Lai, P., Yiu, S., Chow, K., Chong, C., Hui, L.: An efficient Bloom filter based
solution for multiparty private matching. In: SAM. Las Vegas (2006)

McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional
data sets with application to reference matching. In: ACM SIGKDD. Boston (2000)
Ranbaduge, T., Vatsalan, D., Christen, P.: Tree based scalable indexing for multi-
party privacy-preserving record linkage. In: AusDM, CRPIT 158. Brisbane (2014)
Schnell, R., Bachteler, T., Reiher, J.: Privacy-preserving record linkage using
Bloom filters. BMC Medical Informatics and Decision Making 9(1) (2009)
Schnell, R.: Privacy-preserving record linkage and privacy-preserving blocking for
large files with cryptographic keys using multibit trees. In: JSM. Montreal (2013)
Vatsalan, D., Christen, P., Verykios, V.: A taxonomy of privacy-preserving record
linkage techniques. JIS 38(6), 946-969 (2013)

Vatsalan, D., Christen, P.: Scalable privacy-preserving record linkage for multiple
databases. In: ACM CIKM. pp. 1795-1798. Shanghai (2014)

Vatsalan, D., Christen, P., O’Keefe, C.M., Verykios, V.: An evaluation framework
for privacy-preserving record linkage. JPC 6(1), 35-75 (2014)

Vatsalan, D., Christen, P., Verykios, V.: Efficient two-party private blocking based
on sorted nearest neighborhood clustering. In: ACM CIKM. San Francisco (2013)

	Clustering-based Scalable Indexing for Multi-party Privacy-preserving Record Linkage
	Introduction
	Related Work
	Clustering based Indexing for Multi-party PPRL
	Building Blocks
	Basic Multi-bit Indexing Protocol
	Multi-bit Bloom Filter Splitting

	Merge Mini-blocks by Clustering
	Merge Mini-clusters with Standard Canopy Clustering
	Merge Mini-clusters with Hierarchical Canopy Clustering

	Analysis of the Protocol
	Experimental Evaluation
	Conclusion

