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Abstract. The limited analytical value of using individual databases
on their own increasingly requires the integration of large and complex
databases for advanced data analytics. Linking personal medical records
with travel and immigration data, for example, will allow the effective
management of pandemics such as the current COVID-19 outbreak by
tracking potentially infected individuals and their contacts. One major
challenge for accurate linkage of large databases is the quadratic or even
higher computational complexities of many advanced linkage algorithms.
In this paper we present a novel approach that, based on the expected
number of true matches between two databases, applies active learning
to remove compared record pairs that are likely non-matches before a
computationally expensive classification or clustering algorithm is em-
ployed to classify record pairs. Unlike blocking and indexing techniques
that are used to reduce the number of record pairs to be compared,
using recursive binning on a data dimension such as time or space, our
approach removes likely non-matching record pairs in each bin after their
comparison. Experiments on two real-world databases show that similar-
ity filtering can substantially reduce run time and improve precision, at
the costs of a small reduction in recall, of the final linkage results.

Keywords: Entity resolution · Efficiency enhancement · Binning

1 Introduction

Record linkage, as outlined in Fig. 1, is the process of identifying pairs of records
that correspond to the same entity in one or across two or more databases [3].
Due to the quadratic time complexity of comparing every possible pair of records
across two databases to be linked, the comparison step in record linkage is often
preceded by a blocking or indexing step [16], where similar records are grouped
into blocks such that only pairs of records within a block are compared. Addi-
tional meta-blocking [7] methods can be applied to further reduce the number of
record pairs that need to be compared by analysing records within and across
blocks to prevent redundant and superfluous record pair comparisons [16].

The pairwise comparison step of record linkage then consists of the calcula-
tion of similarities between two records, generally using string comparison func-
tions applied on attributes such as names and addresses [3]. A similarity graph
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Fig. 1. The steps of the record linkage process, with our contribution highlighted.

can then be generated where nodes correspond to records and edges to the cal-
culated similarities between them. However, even with blocking, indexing, and
meta-blocking applied, many of these similarities will be low, and furthermore
they do not correspond to true matches [3, 16]. In the classification step all com-
pared record pairs are then classified as matches (records assumed to correspond
to the same entity) or non-matches (records assumed to correspond to different
entities) using a decision model that can be as simple as a similarity threshold,
that can take match and error probabilities into account, or that uses training
data to learn a supervised classification model [3]. Given training data are often
not available in real-world linkage applications, unsupervised techniques need to
be used that exploit the structure of a similarity graph [2, 6, 10, 20].

While blocking, indexing, and meta-blocking can significantly reduce the
number of record pairs that need to be compared in the comparison step, the
similarity graph generated from pair-wise comparisons can still be very large.
For example, using a Min-hash LSH [13] based blocking on the data sets used in
the evaluation in Sect. 4 that contain 17,613 and 3,007,153 records, resulted in
similarity graphs containing over 4 and 34 million edges, respectively. Such large
graphs are commonly required to ensure that the vast majority of true matches
are included in order to obtain a high recall of the final linkage results [3].

Large similarity graphs can, however, challenge any algorithm used to clas-
sify record pairs because these graphs are likely very imbalanced and contain
many non-matching record pairs. The size of these graphs can also result in the
classification step to become the bottleneck of the record linkage process [6].

In our work we remove record pairs from a similarity graph that are unlikely
true matches before this graph is being used for clustering or classification. We
assume that for a given linkage problem an approximate number of expected
true matches can be obtained from a domain expert. For example, when linking
product databases from two online stores (where one-to-one links are expected),
then the number of true matches is limited by the number of records in the
smaller of two databases being linked. On the other hand, when linking birth
records of families, then the known distribution of family sizes in a population
can be used to estimate an expected number of true matches [19].

We develop an active learning process where we bin the record pairs in a
similarity graph according to a suitable data dimension, such as time or space.
For example, work on temporal linkage [11] has shown that people will move
over time and possibly even change their names, resulting in lower similarities
for true matches. Similarly, if people move longer distances then a larger number
of their address details will change (such as state or even country). Our approach
recursively splits a similarity graph into bins, where we then obtain, via active
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learning, information from a domain expert about the distribution of matches
and non-matches in these bins. We finally select a desired number of record pairs
with the highest similarities from each bin, resulting in a much reduced similarity
graph that still has a high recall of true matches, and that facilitates accurate
clustering or classification with substantially reduced run times.

2 Related Work

The need for linking databases has ensured research for over fifty years and
led to a diverse range of methods being developed [4, 5, 14]. Research into how
to improve the scalability of record linkage has concentrated on blocking and
indexing, and more recently meta-blocking [16]. The former aim to limit com-
parisons to only record pairs that are likely true matches, while meta-blocking
aims to prevent redundant record pair comparisons, or superfluous comparisons
between pairs already classified as non-matches [7]. Any good blocking, indexing,
and meta-blocking method needs to be able to group true matches into the same
block while records of different entities are grouped into different blocks [3].

Even though blocking, indexing, and meta-blocking help to improve the effi-
ciency of the comparison step, the classification step may still be inefficient due
to the presence of a large number of record pairs where many of them are likely
not matches. Apart from the parallelisation of linkage algorithms [7], limited re-
search has so far investigated how to improve the efficiency of the classification
step without compromising the final linkage quality.

For many real-world record linkage applications, obtaining complete ground
truth data (all true matching record pairs) is challenging due to large database
sizes [3]. Even though crowdsourcing has been explored for record linkage [23]
to mitigate the lack of ground truth data, allowing the public to classify record
pairs is not applicable in many domains due to privacy concerns [4]. Active
learning approaches, where a small number of selected record pairs are manually
classified by trusted domain experts, have therefore been adopted for record
linkage to generate ground truth data suitable to train supervised classifiers [17,
18, 24], or to generate high quality blocking results [21]. Active learning based on
domain expertise, while being able to generate high quality ground truth data,
can however only generate small numbers of labelled record pairs. Therefore,
approaches that consider a limited labelling budget are crucial [24]. To the best
of our knowledge, our approach is a first to explore how active learning can be
employed to conduct filtering of record pairs after their comparison to improve
the overall efficiency and effectiveness of the linkage process.

3 Active Learning based Similarity Filtering

We now describe our record pair similarity filtering approach based on domain
knowledge. Domain experts often have a good understanding about what the
number of true matches in their databases might be, depending upon the link-
age situation (such as one-to-one or many-to-many links) and application [3].
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As shown in Fig. 1, similarity filtering is an additional step applied between the
comparison and classification steps in the record linkage process [3]. The aim
of filtering is to improve effectiveness and run time of the classification step by
reducing the number of non-matching record pairs (represented by their similar-
ities) that are given to a classification or clustering algorithm [2, 6, 10, 20].

3.1 Problem Definition

Without loss of generality, we assume two databases, DA and DB , are to be
linked. A blocking method [16] has generated a set of candidate record pairs
(ri, rj), with ri ∈ DA and rj ∈ DB . These pairs have been compared using
comparison functions, such as approximate string comparators [3], applied on
a set of attributes, A, that generally includes names, addresses, and so on.
Each compared record pair is represented by a similarity vector, si,j , where
|si,j | corresponds to the number of compared attributes, |A|. Assuming all sim-
ilarities are in [0, 1] (with a similarity of 0 for totally different values and 1 for
an exact match), an overall normalised similarity for a pair can be calculated

as si,j =
∑|A|
k=1 si,j [k]/|A|. Each record pair is either a true match or a true

non-match, where we assume the true match status is unknown for all pairs. We
denote the sets of true matches and non-matches by M and N , respectively.

We also assume each record pair has a distance, di,j , in a specific data dimen-
sion, such as time and/or space. For example, records about people often contain
addresses, and using geocoding [12] these can be used to calculate geographical
distances between records. Similarly, for records that contain timestamps (such
as publication records, birth, marriage or death certificates, or census records)
temporal distances can be calculated between record pairs [11].

The set of compared record pairs can be represented as an undirected sim-
ilarity graph, G = (V,E), where each node (vertex) in V represents a record,
ri or rj , and an edge (ri, rj) ∈ E connects two records ri and rj if their overall
similarity si,j is at least a certain similarity threshold t, si,j ≥ t, with 0 ≤ t ≤ 1.
The problem we aim to solve can now be defined as follows.

Definition 1 (Similarity Graph Filtering). Given a similarity graph G =
(V,E), a budget βt of the number of manual classifications of record pairs that
can be conducted by an oracle, the expected number of true matches m in G, and
a multiplier ε for the number of links to select. The aim of similarity filtering is to
select a subset of record pairs (ri, rj) ∈ E into a similarity graph Gs = (Vs, Es),
with Vs ⊆ V and Es ⊂ E, based on manual classification of βt record pairs in
E, such that the number of matches in Es is maximised while |Es| = m · ε.

Our similarity filtering approach is based on the assumption that record pairs
that have a higher similarity are generally more likely to be true matches, i.e.
P ((ra, rb) ∈M |sa,b) > P ((re, rf ) ∈M |se,f ) if sa,b > se,f . While this assumption
does not necessarily hold for every record pair in G, it is a common assumption
used in record linkage [1, 22]. We also assume that the distances, di,j , of record
pairs affect the values in their corresponding similarity vectors, si,j , as is illus-
trated in Fig. 2. For example, the further people move the more details in their
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Fig. 2. Filtering of record pairs (links) with the highest similarities. Compared to using
all 80 links, with m = 20 and ε = 1, the filtered similarity graph contains a much smaller
number of true non-matches at the cost of losing only few true matches. If the top 20
links are chosen globally (no binning), then the recall of the filtered graph is only 0.8
(4 out of 20 true matches are missed), whereas when links are chosen locally using bin
specific thresholds, then recall would be 0.9 (only 2 true matches are removed by the
filtering process). If we set ε = 1.5 and select 30 record pairs then recall will be 1.

addresses will likely change. While a local move will result in a changed street
address only, a move further away can also lead to changed city, zipcode, and
even state values. As we discuss next, we employ a binning based active learn-
ing approach to identify different similarity thresholds for filtering on different
subsets (bins) of record pairs in E using the distances di,j of record pairs.

3.2 Binning based Filtering

After initialising the main data structures, in line 3 of Algo. 1 we generate the
first bin b1 with the full similarity graph G, and set the level of this bin to b1.l =
1. The budget β1, of how many record pairs are manually classified (labelled) by
the human oracle in this first bin is calculated with the CalcBudget() function.
Due to the recursive process of splitting a bin into two in each iteration, we
allocate a labelling budget that depends on the level of a bin. With a total
budget of βt, for a bin at level l we allocate a budget of βl = βt/(2

2l−1), such
that a budget of βt/2

l is allocated across all bins at level l. For example, with
βt = 1, 000, we will manually label β1 = 500 record pairs in b1 (with level l = 1),
β2 = 125 in each of the two bins at level l = 2, β3 = 31 in each of the four bins at
level l = 3, and so on. Note that the set of manually labelled (classified) record
pairs in a bin b, denoted by b.c, is propagated from a parent bin to its two child
bins in the recursive bin splitting process.

In line 5 of Algo 1 we calculate the optimal similarity threshold b1.t corre-
sponding to the m · ε record pairs with the highest similarities in b1. In line 6
the oracle then manually classifies β1 record pairs in bin b1 as b1.c using the
GetOracleLabels() function. This function conducts labelling such that both
the child bins of b1 inherit labelled record pairs from b1 based on the binning
method γ (which we describe below). The function selects record pairs for la-
belling that are close to the bin threshold b1.t, with β1/2 pairs selected above
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Algorithm 1: Binning based similarity graph filtering using active learning

Input:
- G: Pairwise similarity graph
- βt: Total budget (maximum number of record pairs the oracle can manually classify)
- βm: Minimum number of manual classifications a bin must contain
- m: Expected number of true matches
- ε: Multiplier for number of record pairs (links) to select
- γ: Binning method (either equal width or equal depth)

Output:
- Gs: Pairwise similarity graph containing m · ε selected links

1: B = [ ] // Initialise an empty list to store the final bins
2: Q = [ ] // Initialise a queue to hold bins to be processed further
3: b1 = InitBin(G); b1.l = 1 // Initialise first bin with all links in G and set bin level to 1
4: β1 = CalcBudget(βt, 1) // Get budget for the first bin
5: b1.t = GetTopPairsThresh(b1,m · ε) // Get the threshold for the top m · ε links
6: b1.c = GetOracleLabels(b1, β1, γ) // Manual Classification of β1 links in bin b1

7: b1.s = CalcScore(b1) // Calculate the score for bin b1

8: Q.add(b1) // Add the first bin to the queue

9: while (Q 6= []) do: // Process queue sorted by bin scores
10: bp = Q.pop() // Get the next (parent) bin to process based on its score

11: bl,br = SplitBin(bp, γ) // Split parent bin into two based on binning method γ
12: βc = CalcBudget(βt,b

p.l + 1) // Get the budget for the two child bins

13: if ((|bl.c|+ βc) ≥ βm) and ((|br.c|+ βc) ≥ βm) then: // Enough labels in both bins

14: bl.c = bl.c ∪GetOracleLabels(bl, βc, γ); br.c = br.c ∪GetOracleLabels(br, βc, γ)

15: tl, tr = CalcBestThresh(bl,br) // Run Algorithm 2 to get optimal bin thresholds

16: if (tl == bp.t) and (tr == bp.t) then: // Best thresholds are same as for parent bin
17: B.add(bp); go to line 9 // Add parent bin to final bin list and process next bin

18: bl.t = tl; bl.s = CalcScore(bl); Q.add(bl) // Add both child bins to queue
19: br.t = tr; br.s = CalcScore(br); Q.add(br)

20: else if (|bl.c|+ βc) ≥ βm) then: // Only the left child bin has enough labels

21: bl.c = bl.c ∪GetOracleLabels(bl, βc, γ); bl.s = CalcScore(bl); Q.add(bl)
22: B.add(br) // Add right child bin to final bin list
23: else if (|br.c|+ βc) ≥ βm) then: // Only the right child bin has enough labels
24: br.c = br.c ∪GetOracleLabels(br, βc, γ); br.s = CalcScore(br); Q.add(br)

25: B.add(bl) // Add left child bin to final bin list
26: else: B.add(bp) // Add parent bin to the final bin list
27: Gs = (Vs = ∅, Es = ∅) // Initialise empty similarity graph of selected links
28: for b ∈ B do: // Iterate through the bins in the final bin list
29: Gs.insert(GetLinks(b,b.t)) // Generate the final similarity graph with selected links
30: return Gs // Return the final similarity graph

and β1/2 pairs below the threshold. This helps to effectively shift the bin thresh-
old depending upon the manual labels obtained, as we discuss below. We then
calculate the score b1.s of bin b1 in line 7, where we describe four score functions
in Section 3.4. These scores are used to order the queue Q and determine which
bin to process next in the iterative phase of our approach.

We iteratively process bins in Q starting in line 9 as long as the queue is
not empty. In line 10 we select the next (parent) bin, bp, with the highest score,
which we then split into two child bins, bl and br, using the binning method γ.
The function SplitBin() performs either equal width or equal depth binning [8]
on the parent bin bp as specified by γ, using the distances di,j of each record pair
in bp. SplitBin() also increases the level of the child bins as bl.l = bp.l+ 1 and
br.l = bp.l + 1, propagates the optimal threshold (bl.t = bp.t and br.t = bp.t),
and splits the set of manual classifications in bp according to the binning method
such that bl.c ∪ br.c = bp.c.
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In line 12 we calculate the oracle budget βc for the child bins based on their
level, and in line 13 we check if both child bins will contain enough manual
classifications (based on their allocated budgets as well as the labels inherited
from their parent). The reason for checking if a bin can have at least βm labels is
to avoid underfitting (where not enough manual labels are available in a bin to
calculate an optional similarity threshold). If both bins can have βm labels, then
in line 14 we obtain new manual classifications (bl.c and br.c) for them, and in
line 15 we calculate the new optimal similarity thresholds for the child bins using
the function CalcBestThres(), as we describe in Sect 3.3. If it turns out that the
optimal threshold of the parent, bp.t cannot be improved (in line 16) because
the distribution of the similarities of links in both child bins is homogeneous
(highly similar), then we add the parent bin bp to the final list of bins B in line
17, and go back to line 9 to process the next bin in Q.

Otherwise, in lines 18 and 19, for each child bin bl and br, the threshold is
set to its calculated optimal value, its bin score is calculated, and then both child
bins are added to the queue Q. On the other hand, if only one of the two child
bins can have at least βm labels, in lines 20 to 25 we obtain manual classifications
for that bin, update the remaining budget and the score of that bin, and add it
to Q, while the other child bin (the one not having enough labels) is added to
the final list of bins B. If neither child bin can have at least βm labels then in
line 26 we add the parent bin bp to the final list of bins B.

Subsequent to processing all bins in Q, we generate the filtered similarity
graph of selected links (record pairs), Gs, in lines 27 to 29 by looping over all
bins in b ∈ B, and adding all record pairs with a pairwise similarity of at least
the bin threshold b.t into the graph Gs.

3.3 Calculating Optimal Bin Similarity Thresholds

We now describe the functionality of the CalcBestThresh() function (used in
line 15 in Algo. 1), as outlined in Algo. 2. The input to Algo. 2 is a bin pair bl

and br, and the function calculates a pair of optimal thresholds, tl and tr, which
minimise the total number of false negatives across both bins. The algorithm
starts with obtaining the lists of false negatives, fnl and fnr, in the two bins,
where true matching records pairs (as manually classified by the oracle) that have
a similarity below the thresholds bl.t and br.t are considered as false negatives.
We assume that record pairs in a bin are sorted based on their similarities. In
lines 2 and 3, we then calculate the initial total number of false negatives, ft,
and initialise a list S with a tuple made of ft and the initial thresholds.

The loop starting in line 4 (with ⊕ representing list concatenation) then
shifts thresholds for each false negative record pair fn in both child bins, where
the function ShiftThresh() sets the threshold of one of the bins (bl or br)
to the similarity value of fn. The threshold of the other child bin is adjusted
such that the total number of record pairs with a similarity greater than the
thresholds is unchanged. This ensures that we select m · ε links at any time,
despite the changing thresholds. The new thresholds tl and tr are returned by
ShiftThresh(), and we then obtain the lists of false negatives fnl and fnr for
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Algorithm 2: Calculate optimal bin similarity thresholds, function CalcBestThres()

Input: Output:

- bl,br: Left and right child bins - tl, tr: Optimal bin threshold pair

1: fnl = GetFalseNeg(bl,bl.t); fnr = GetFalseNeg(br,br.t) // Get list of false negatives
2: ft = |fnl|+ |fnr| // Get the initial total false negative count

3: S = [(ft,b
l.t,br.t)] // Initialise a list with bin thresholds and total false negative count

4: for fn ∈ fnl ⊕ fnr do: // Iterate through list of all false negative record pairs

5: tl, tr = ShiftThresh(bl,br, fn) // Shift thresholds in child bins

6: fnl = GetFalseNeg(bl, tl); fnr = GetFalseNeg(br, tr) // Get new false negatives lists
7: if (|fnl| > ft) or (|fnr| > ft) then: // One bin exceeds the false negative total
8: break // Stop shifting threshold in a given direction

9: else: S.add((|fnl|+ |fnr|, tl, tr)): // Add thresholds and total false negative count

10: tl, tr = GetMinFalseNegThres(S) // Get thresholds with minimum total false negatives

11: return tl, tr // Return the optimal thresholds

tl and tr. In lines 7 and 8 we check if at least one of the bins has more false
negatives than the original total false negative count, ft, and if so we end further
shifting of thresholds because no more improvement can be gained (a threshold
combination that results in one of the bins having more false negatives compared
to the original cannot be improved). If the condition in line 7 is not met, in line
9 we add the new total false negative count |fnl| + |fnr| together with the new
threshold pair tl and tr to the list S. In line 10, we finally obtain the optimal
bin threshold pair tl and tr that has a minimum total false negative count, and
in line 11 we return this threshold pair.

3.4 Bin Scoring Functions

An important aspect of our recursive binning approach is the ordering of the
queue Q based on the bin scores, b.s, which determine how bins are being
processed. Our aim is to calculate an optimal threshold for each bin such that
the total number of false negatives is minimised before the budget is used up.
We describe four variations of the function CalcScore(). In all variations we only
consider the record pairs manually classified by the oracle in a given bin, b.c.

1. False negative count (scorefn): With this approach we calculate the num-
ber of false negative record pairs contained in a bin b, where a false negative
is a pair that has been classified as a true match by the oracle and that has
a similarity below the bin threshold b.t. Using this scoring function means
bins that contain more false negatives will be at the top of the queue Q, and
processed first.

2. Bin recall (scorer): With this approach we calculate the recall of bin b as
the proportion of manually classified true matches with a similarity above
b.t over all manually classified true matches in b. With this scoring function
we process bins in Q such that those bin with lowest recall are processed
first. This allows us to further explore bins that have fewer true positives
and adjust their thresholds to improve their recall.

3. Normalised false negative count (scorenfn): This approach is similar to
the scorefn approach, except that we divide the score scorenfn by the bin
size |b|, to find the bins with the largest proportion of false negatives.
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4. Adjusted bin recall (scorear): This approach is similar to the scorer

function except that we adjust the original scorer value by dividing it by
the bin size |b|. With this approach, larger bins that have a lower bin recall
value will be processed first, whereas with the scorer approach we order
bins independent of their sizes.

We next evaluate our active learning based similarity filtering approach.

4 Experimental Evaluation

The aim of our experiments is to evaluate how applying similarity filtering be-
fore classification, as shown in Fig. 1, can improve the overall record linkage
process by reducing run time and memory consumption, while at the same time
improving or at least retaining linkage quality as obtained without filtering.

We evaluated our novel filtering technique using two real world data sets
for which ground truth data are available. The Isle of Skye (IoS) data set [19]
contains 17,614 birth records from Scotland from 1861 to 1901, where the aim
is to link (cluster) all birth records (siblings) by the same mother. The North
Carolina voter (NCVR) data set (see: https://dl.ncsbe.gov) contains records
with personal details (such as names and addresses) of US voters from the years
2011 to 2020, from where we selected around 3 million records of voters who were
represented by multiple records across several years and where at least one (likely
several) of their name and/or address values changed over time (as a voter moved
and/or changed their name). The number of true matches for IoS is m = 40,891
while for NCVR it is m = 6,978,001. For the data dimensions used for binning,
we calculated time distances as the number of days between two birth records
in IoS and the number of months between two voter records in NCVR, while we
calculated geographical (space) distances using address geocoding [12] for IoS
and the distances between zipcodes for NCVR, respectively. We will make our
programs and similarity graphs available to allow repeatability.

As evaluation metrics we use precision and recall as commonly used to eval-
uate record linkage algorithms [9], where recall is the proportion of true matches
that were correctly included in a filtered similarity graph, while precision is the
proportion of true matches in a filtered similarity graph. For the final clustering
results, recall measures the proportion of correctly classified true matches and
precision the proportion of true matches in the set of classified matches.

As illustrated in Fig. 2, as baseline we explore a simple filtering approach
using a global threshold for selecting the m record pairs (links) with the highest
similarity, assuming m was provided by a domain expert. We then investigate
our active learning based filtering approach, where we explore if the binning of
record pairs can help improve the quality of the filtered similarity graph.

In a set of initial experiments we found that equal depth binning [8] al-
ways produced better results than equal width binning on both data dimensions
time and space, and that a value of βm = 25 for the minimum number of
manual classifications per bin always gave the best results. We therefore use
these parameter settings in all our experiments. We then set the total budget as
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Fig. 3. Precision and recall results of the full similarity graph (unfiltered) compared
with the quality of the graph filtered with a global threshold (top m links), as well as
binwise thresholds for different total budgets and against different data dimensions.

βt = [200, 500, 1000] (as well as to unlimited for the IoS data set), to investigate
how different budgets influence the quality of the generated filtered similarity
graphs. All of the four scoring functions discussed in Sect. 3.4 produced very
similar results, with the false negative count score function, scorefn, obtaining
slightly better results, and we therefore used this function in all our experiments.

In Fig. 3 we show the precision and recall results obtained for the original
full similarity graph, as compared with the filtered graphs for the global thresh-
old, as well as results for binning when using different total budgets. For all
filtered graphs, both precision and recall values are the same because we limit
the number of record pairs in the filtered graph to m, the number of true matches
as estimated by a domain expert. We can see that the precision of the filtered
graphs are far better compared to the original graph, since our filtering approach
was able to remove a large proportion of the true non-matching record pairs.

Our aim of capturing more true matches with binning, compared to using a
global threshold, has been successful mostly for the IoS data set with the time
data dimension with a 4.5% maximum improvement even with a limited budget.
The maximum recall improvement we can obtain with a fully supervised method
(unlimited budget) is nine percent and therefore obtaining an improvement of
4.5% with a limited total budget of βt ≤ 1000 shows that our approach of using
active learning can lead to improved similarity filtering. The fact that recall can
be improved using bin-wise thresholds indicates that linked records in different
bins do have different similarity distributions of true matching record pairs.

Our binning approach has worked well for the IoS data set on the time di-
mension, since for birth record pairs we find patterns such as no true matches
between zero to nine months (an impossible age gap for siblings). For experiments
on the space dimension on IoS, and time dimension on NCVR, the maximum
recall improvement obtained is less, which indicates less distinct differences in
the bins generated on these data dimensions. With NCVR in the space dimen-
sion, recall drops with βt = 500. This indicates that certain numbers of manual
classifications can lead to wrong binning due to incorrectly set classification
thresholds that result in wrong selection of record pairs in some bins. Therefore,
clear patterns across a data dimension are needed for our approach to work.

Table 1 shows the percentage difference in time, precision, and recall obtained
with three clustering algorithms on the full similarity graphs compared to run-
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Table 1. Percentage changes for time (T), precision (P), and recall (R), of clustering
the filtered similarity graphs (using the time data dimension) compared to clustering
the full graphs. Significant reductions in time and graph sizes (|G|=4 M and |Gs|=41 K
for IoS, while |G|=34.5 M and |Gs|=6.9M for NCVR) and improvements in precision
can be seen, at the costs of some reductions in recall.

Global threshold btot = 200 btot = 500 btot = 1, 000

T / P / R T / P / R T / P/ R T / P / R

Robust [15] -71/129/-12 -70/122/-10 -69/122/-9 -69/122/-9
IoS Star [6] -98/71/-17 -98/70/-16 -98/71/-15 -98/71/-15

Conn [6] -100/8154/-19 -99/6519/-17 -99/5996/-17 -99/5996/-17

NCVR Star [6] -65/12/-16 -65/12/-16 -63/16/-14 -66/13/-16
Conn [6] -97/1348/-7 -97/1302/-8 -97/1379/-8 -97/1155/-8

ning these algorithms on the filtered graphs. We used three algorithms that have
been used for record linkage; robust graph clustering [15], star clustering [6], and
simple connected components clustering [6]. Robust graph clustering results are
not shown for NCVR because we could not run this algorithm on the full NCVR
graph in reasonable time. This highlights the advantage of similarity filtering
to reduce the run times of computationally expensive algorithms used for link-
ing large databases. For most experiments, precision has improved considerably
with small losses in recall, while the time taken to run clustering was reduced
quite significantly as well. The reduction in recall is justifiable especially for the
IoS data set, where the results show the reduction in time and the improvement
in precision to be more than five fold the reduction in recall. The percentage
reductions in recall are slightly reduced when bin-wise thresholds are applied on
the IoS data set compared to using a global threshold. Such improvements were
obtained while reducing the similarity graph size from four million record pairs
to only around forty thousand pairs for IoS, and a reduction from over 34 million
to less than seven million record pairs for NCVR, as shown in the table.

5 Conclusions and Future Work

Record linkage is increasingly challenged by database sizes and the lack of ground
truth data available in linkage applications. While blocking, indexing, and more
recently meta-blocking, aim to reduce the number of record pairs that need to
be compared, here we have presented a novel similarity filtering approach that
removes compared pairs of records that have low similarities and are therefore
unlikely true matches. Combining recursive binning of record pairs with active
learning, we identify thresholds in bins that result in a substantially filtered set
of record pairs while maintaining high recall of these pairs. Experiments on two
real-world data sets have shown that even with a small manual labelling budget
we can obtain filtered record pairs of high quality. As future work we aim to
improve our method of how to select suitable record pairs for manual labelling,
and we plan to incorporate the manually labelled matches and non-matches into
the final clustering process using constraint clustering approaches.
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