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Abstract. Research in the social sciences is increasingly based on large
and complex data collections, where individual data sets from different
domains need to be linked to allow advanced analytics. A popular type
of data used in such a context are historical registries containing birth,
death, and marriage certificates. Individually, such data sets however
limit the types of studies that can be conducted. Specifically, it is impos-
sible to track individuals, families, or households over time. Once such
data sets are linked and family trees are available it is possible to, for
example, investigate how education, health, mobility, and employment
influence the lives of people over two or even more generations. The link-
age of historical records is challenging because of data quality issues and
because often there are no ground truth data available. Unsupervised
techniques need to be employed, which generally are based on similar-
ity graphs generated by comparing individual records. In this paper we
present a novel temporal clustering approach aimed at linking records
of the same group (such as all births by the same mother) where tem-
poral constraints (such as intervals between births) need to be enforced.
We combine a connected component approach with an iterative merging
step which considers temporal constraints to obtain accurate clustering
results. Experiments on a real Scottish data set show the superiority of
our approach over a previous clustering approach for record linkage.
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1 Introduction

Databases that contain personal information, such as censuses or historical civil
registries [18], generally contain records that describe a group of individuals,
where each individual can occur with different types of roles [6]. A baby is born,
then recorded as a daughter or son in a census, and later she or he might marry
(as a bride or groom) and become the mother or father of her or his own children.
Being able to link such records across different databases will allow the recon-
struction of whole populations and open a multitude of studies in the health
and social sciences that currently are not feasible on individual databases [4].
Studying these issues is important to identify how societies evolve over time and
discover the changes that influenced and contributed for social evolution [14].
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The process of identifying the sets of records that correspond to the same
individual is known as record linkage, entity resolution, or data matching [5].
Record linkage involves comparing pairs of records to decide if a pair refers to
the same entity (known as a match) or to different entities (a non-match). In
this process, generally, the similarities between the values in selected attributes
are compared to decide if two records are similar enough to be classified as a
match (if for example all similarities are above a given threshold) [5]. For certain
applications such a simple pair-wise linkage does however not provide enough
information to identify matching records with high accuracy [6].

In contrast to traditional pair-wise record linkage, group linkage [17] has re-
cently received significant attention because of its applicability of linking groups
of individuals, such as families or households [6,11]. The identification of relation-
ships between individuals can enrich and improve the quality of data, and thus
facilitate more sophisticated analysis of different socio-economic factors (such as
health, wealth, occupation, and social structure) of large populations [4].

Historical record linkage [19] involves the linkage of records from historical
censuses, as well as birth, death, and marriage certificates, to construct longitu-
dinal data sets about a population. This problem has been studied in the past
two decades by researchers working in different domains. In 1996 Dillon investi-
gated an approach to link census records from the US and Canada to generate a
longitudinal database to examine changes in household structures [9]. IPUMS is
a large project which aims to curate and ultimately link large demographic data
collections [19]. The Life-M project is another example of transforming histor-
ical records into a multi-generational longitudinal database [3]. The Digitising
Scotland project [8], which this work is part of, aims to link civil registration
events recorded in Scotland between 1856 and 1973 to create a linked database
covering the whole population of Scotland spanning more than a century to allow
researchers to conduct studies that currently are not possible.

Here we address one specific step used in historical record linkage as con-
ducted by demographers and historians [18]: the bundling (clustering) of birth
records by the same mother to identify siblings. Once sibling groups have been
identified, they can be linked to census, marriage, and death records using group
linkage techniques [6,11]. Linked bundles of siblings allow a variety of studies,
for example, about fertility and mortality and how these change over time [18].

Contributions: In this paper we investigate how clustering techniques for
record linkage [13,20] can be employed for grouping records where temporal con-
straints exist between record pairs. We propose and evaluate a novel temporal
clustering approach which first creates temporally possible connected compo-
nents with high precision using only links of high similarities [21], and then
employs an iterative refinement step that merges those connected components
that are highly similar and temporally possible. We conduct an empirical study
on a real historical data set which has been extensively linked semi-manually
by domain experts [18] providing us with ground truth data to calculate link-
age quality. We show that our temporal clustering approach can outperform a
state-of-the-art clustering technique for record linkage in terms of linkage quality.
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2 Related Work

Classification techniques for record linkage can be categorised into supervised
and unsupervised methods. Unsupervised clustering techniques view record link-
age as the problem of how to identify all records that refer to the same entity
and to group these records into the same cluster. Hassanzadeh et al. [13] pre-
sented a framework to comparatively evaluate different clustering techniques for
record linkage. Saeedi et al. [20] proposed a framework to perform clustering for
record linkage on a parallel platform using Apache Flink. In their evaluation,
star clustering [2] was one of the best performing techniques compared to other
clustering methods. In star clustering, records that have high similarities with
other records are selected as the centres of possibly overlapping clusters, where
the overlapping clusters then need to be split in an iterative second step.

Saeedi et al. [21] recently proposed a novel clustering algorithm based on the
strengths of links between records as categorised into strong, normal, and weak
(as we discuss in the next section). Connected components are formed based
only on strong links initially, which are then refined by adding normal links.

Neither of these clustering approaches, however, has considered temporal
constraints. In our recent work [16] we have considered temporal aspects as an
improvement to star clustering. While this improved star clustering algorithm
was able to achieve better results compared to a greedy temporal clustering ap-
proach, it still resulted in low linkage quality due to the requirement of splitting
overlapping clusters. Our aim is to improve linkage quality using a novel tem-
poral clustering method which employs the concepts of link strength [21], and
integrates them with temporal constraints and an iterative cluster merging step.

3 Overview of Temporal Graph Clustering

Our methodology to conduct temporal graph clustering for group linkage consists
of three major phases. In this section, we first describe how we model tempo-
ral constraints, and then detail how we generate the initial similarity graph. In
Sect. 4 we then propose a connected component generation phase, and in Sect. 5
an iterative refinement phase which merges similar temporally consistent con-
nected components. For notation we use bold letters for clusters, lists, and sets
(with upper-case bold letters for sets and lists of sets, lists, and clusters), and
normal type letters for numbers and strings. Lists are shown with square and
sets with curly brackets, where lists have an order but sets do not.

Modelling Temporal Constraints: One aspect of all three phases of our
temporal clustering approach is the consideration of temporal constraints of
which pairs of records to consider for linkage. Temporal constrains between
records can include that the birth record of a person must be before their death
record, a marriage record can only occur once an individual has reached a cer-
tain age, or (for our clustering problem) the same mother can only give birth to
several babies according to certain biological limitations (at least nine months
apart or within a few days for multiple births such as twins) [18].
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We model such temporal constraints as a list T of time intervals where it is
plausible (or not) for two records to be linked (such as a mother to give birth to
two babies). We assume each record ri ∈ R includes a time-stamp, ri.t, such as
a date of birth, marriage, or death. Based on these time-stamps we can calculate
the temporal difference ∆ti,j = ri.t − rj .t between two records where ∆ti,j is
positive if ri.t > rj .t (i.e., ri refers to a life event that occurred after rj).

The list T contains time intervals and temporal plausibilities, p, where p = 1
means two records are temporally plausible and p = 0 means they are not, in the
form of tuples (∆tstart, pstart, ∆tend, pend), with ∆tstart < ∆tend. For example,
for birth records, T = [(0,1,2,1), (3,0,273,0), (274,1,12783,1), (12784,0,99999,0)]
means that two births by the same mother up-to two days apart are plausible,
as are two births nine months to 35 years (274 to 12,783 days) apart, but not
two births between three days to nine months or more than 35 years apart.

We calculate the temporal plausibility, pi,j , for a pair of records (ri, rj), by
first identifying the corresponding time difference interval in T for ∆ti,j , and
then calculating the pair’s temporal plausibility using linear interpolation as:

pi,j =


pstart, if ∆ti,j = ∆tstart,

pend, if ∆ti,j = ∆tend,

(pend − pstart) · (∆ti,j−∆tstart)

(∆tend−∆tstart)
+ pstart, if ∆tstart < ∆ti,j < ∆tend.

(1)

If the calculated pi,j is below a given minimum temporal plausibility thresh-
old pmin (provided as input to Algo. 1), then the corresponding record pair is
deemed not to be temporally plausible and it will not be compared. Currently
we assume the list T of temporal constraints is provided by domain experts. As
future work, we aim to develop techniques to learn such temporal constraints
using true matching record pairs available in ground truth data.

Similarity Graph Generation: In the first phase of our approach, as de-
tailed in Algo. 1, we calculate pair-wise record similarities. This is a standard
record linkage approach [5] using techniques such as approximate string compar-
isons and a locality sensitive hashing (LSH) [15] based blocking approach.

The main input to the algorithm is a list of records, R, which we aim to
link and cluster (in our case we aim to determine which birth records are by the
same mother). In order to calculate the pair-wise similarity between record pairs,
we use a list of attributes A and approximate string comparison functions S,
such as Jaro-Winkler and edit distance [5], as appropriate to the type of data in
an attribute. The calculated attribute similarities may or may not be weighted
using the provided list of weights w (unweighted if all elements of w are set to 1).
In general record linkage, assigning different weights to attributes can increase
the quality of the generated links between records [5]. Higher weights can, for
example, be assigned to first and last name similarities compared to occupation
because names are more likely to help identify matching record pairs.
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Algorithm 1: Pair-wise similarity graph generation
Input:
- R: List of records to be linked
- A: List of attributes from R to be compared
- S: List of similarity functions to be applied on attributes from A
- w: List of weights given to attribute similarities, with |w| = |S|
- T: List of temporal constraints
- b, r Number of bands and band size for min-hash based LSH blocking
- pmin: Minimum temporal plausibility for record pairs to be compared
- spmin: Minimum pair-wise similarity for record pairs to be added to the generated graph

Output:
- G: Undirected pair-wise similarity graph

1: V = ∅, E = ∅, G = (V,E) // Initialise an empty graph
2: L = MinHashLSHIndexing(R, b, r) // Generate a min-hash index
3: for l ∈ L do: // Loop over all min-hash blocks
4: for (ri, rj) : ri ∈ l, rj ∈ l, ri.id < rj .id do: // Loop over all record pairs in a block
5: if IsTempPlausible(ri, rj ,T, pmin) then: // Check the temporal plausibility of pair
6: si,j = CompareRecords(ri, rj ,A,S,w) // Calculate record pair similarity
7: si,j = NormaliseSim(si,j ,w) // Normalise the similarity
8: if si,j ≥ spmin then:
9: UpdateGraph(G, (ri, rj), si,j) // Add edge and nodes (if they do not exist) to G
10: return G

To prevent a full comparison of every possible record pair (ri, rj) : ri, rj ∈ R
we employ blocking using min-hash based LSH [15] as parameterised using b (the
number of min-hash bands) and r (the band size). Only record pairs (ri, rj) in
the same LSH block will be compared in detail (line 6 in Algo. 1). Furthermore,
before comparing records, in line 5 we check if a pair of records is temporally
plausible with regard to the list T of temporal constraints, as described above.
The generated undirected similarity graph, G, basically contains records as nodes
and edges between records if the calculated normalised similarity, si,j between
two compared records ri and rj is at least the provided minimum threshold,
spmin, and the two records are also temporal plausible with regard to T.

4 Temporal Connected Component Clustering

In the second phase of our approach, based on the ideas of link strength (de-
scribed below) as proposed by Saeedi et al. [21], we generate a set of connected
components (clusters) using the similarity graph G, where every pair of records
in a cluster must be temporally consistent. The original connected component
based clustering approach by Saeedi et al. [21] differs from ours in that it does not
consider temporal constraints and also assumes the linkage of records across mul-
tiple data sources only. The requirement of incorporating temporal constraints
makes the problem much more complex, since simply obtaining the connected
components does not ensure temporal consistency between all records within a
component, as the example in Fig. 1 shows.

Extending the ideas described by Saeedi et al. [21], and using a minimum
cluster similarity threshold, scmin, with scmin ≥ spmin (the pair-wise similarity
threshold used in Algo. 1), we categorise the edges in G into three types:

– Strong: An edge (ri, rj) is strong if (1) the corresponding similarity si,j is
the highest similarity for both records ri and rj with regard to any other
edges they have with other records in G, and (2) si,j ≥ scmin.
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Fig. 1: Example iterative temporal cluster refinement in the base cluster generation
phase, as detailed in Algo. 2, where in each step we identify the best edge(s) to be
removed that most improve the temporal consistency of the cluster(s).

– Norm: An edge (ri, rj) is normal if (1) the corresponding similarity si,j is
the highest similarity for either record ri or rj (but not both) with regard
to any other edges they have with other records in G, and (2) si,j ≥ scmin.

– WeakHigh: An edge (ri, rj) is weak high if (1) it is neither strong nor
normal, and (2) si,j ≥ scmin.

As detailed in Algo. 2, one or several of these edge types are used to create the
initial connected components (named base clusters). Edges (ri, rj) with similarity
si,j < scmin are ignored. The temporal implausible base clusters are then split
further until all are temporally consistent.

First, in lines 1 to 7 of Algo. 2, we generate the connected components based
on the edges in G of the selected edge type(s) bt (one or several of Strong,
Norm and WeakHigh, as described above) which we retrieve in the set Eb in
line 2. We then check, in line 5, if all pairs of records in a connected component ci
are temporal plausible. If they are then ci is added to the set of base clusters, Cb,
and removed from the set of connected components Ccc. At the end of this step
the clusters left in Ccc are those that contain record pairs that are temporally
implausible (like two birth records five months apart).

We next process the clusters in Ccc (lines 8 to 19) one by one. We pick one
cj ∈ Ccc (line 9) and generate a list N which for each node vi ∈ cj contains its
average similarity with the other nodes in cj , its neighbours in cj , and the other
nodes in cj it is temporally not plausible with. In line 13, using the function
GetNodeToRefineCluster() we identify from N the best vi ∈ cj to process
which reduces by most the number of temporal implausible edges in cj .

To select the best node vref , in line 13 we first attempt to find the first
node in N with a non-empty intersection between its set of neighbours nref and
the set of neighbours of nodes which vref is temporal inconsistent with, nntref .
If the intersection is empty for all nodes in N, vref will be the node with the
lowest average similarity in the cluster, the lowest number of neighbours, and
that is involved in the highest number of implausible edges in cj . In the example
shown in Fig. 1, assuming the nodes with non-temporal connections are ordered
as N = [f, e, a, g, c], we select node f first since it is the first node in N with a
non-empty intersection (nref ∩ nntref = {b, d}). Subsequently (Fig. 1 (b)), we
check nodes e and a in that order, for non-empty intersection. However, since
the intersection is empty for both nodes a and e, node e is selected for removal.



Robust temporal graph clustering for group record linkage 7

Algorithm 2: Connected component base cluster generation
Input:
- G: Undirected pair-wise similarity graph
- T: List of temporal constraints (as discussed in Sect. 3)
- pmin: Minimum plausibility threshold for record pairs to be added to a cluster
- scmin: Minimum similarity for record pairs to be added to a cluster
- bt: Type(s) of edges to use to create base clusters

Output:
- Cb: Set of generated temporal consistent base clusters

1: Cb = { } // Initialise an empty set of clusters
2: Eb = FindTempEdges(G, bt, scmin) // Get temporal edges of type bt
3: Ccc = GetConnComp(G,Eb) // Get the set of connected components
4: for ci ∈ Ccc do: // Iterate through the connected components
5: if IsTempPlausibleCluster(ci,T, pmin) do:
6: Cb = Cb ∪ {ci} // Add the cluster to the final cluster set
7: Ccc = Ccc \ {ci} // Remove the processed cluster

8: while Ccc 6= ∅ do: // Iterate through the temporal inconsistent clusters
9: cj = Ccc.pop() // Get the first connected component
10: N = [ ] // Initialise a list to hold cluster nodes and node information
11: for vi ∈ cj do: // Iterate through the nodes in cluster cj

12: N.add((CalcSim(vi, cj ,G), GetNeigh(vi, cj),
GetTempNotP lausible(cj , vi,T, pmin), vi))

13: nref ,nntref , vref = GetNodeToRefineCluster(N) // Select node to refine cj

14: Cr = GetTempImproved(cj , vref ,nref ,nntref ) // Partition cj based on vref
15: for ci ∈ Cr do:
16: if IsTempPlausibleCluster(ci,T, pmin) do:
17: Cb = Cb ∪ {ci} // Add cluster to the final base cluster set
18: else:
19: Ccc = Ccc ∪ {ci} // If not temporal, add cluster to Ccc to be refined
20: return Cb

Based on the selected node vref , and sets nref and nntref , we then partition
the cluster cj (line 14) using the function GetTempImproved() which returns
the set Cr of two or more temporally improved clusters. In lines 15 to 19 we
check each cluster ci ∈ Cr if it is temporally consistent (in which case we add
it to the set of base clusters, Cb) or not (in which case we add it to the set of
clusters Ccc to be processed further). In Fig. 1, the edges that node f has with
its neighbours {b, d} are removed first, and then edges of node e are removed
next resulting in the three temporally consistent clusters shown in Fig. 1 (c).

The algorithm ends once all clusters in Ccc have been processed and the set
of temporally consistent base clusters, Cb, that is to be refined in the next phase
of our approach, is returned in line 20 of Algo. 2.

5 Iterative Cluster Merging

In the final phase of our approach we merge base clusters that have high overall
similarities between all their individual records. This process is iterative, in that
merged clusters will be further compared until no cluster is highly similar with
any other cluster. We ensure all merged clusters are temporally consistent.

As detailed in Algo. 3, we use a priority queue and sets of similar clusters to
keep track of cluster pairs that are similar in order to prevent a full pair-wise
recalculation of cluster similarities each time a merged cluster is generated. We
start the algorithm (lines 1 and 2) by initialising the empty set of final clusters
to be generated, Cf , and the empty priority queue, Q, which will hold cluster
pairs and their similarities.
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Algorithm 3: Similar base cluster merging
Input:
- G: Undirected pair-wise similarity graph
- Cb: Base clusters (as generated in Algo. 2)
- T: List of temporal constraints (as discussed in Sect. 3)
- pmin: Minimum plausibility threshold for record pairs to be considered temporal consistent
- smmin: Minimum similarity threshold for clusters to be merged
- mt: Type of edges to use to merge base clusters
- mm: Method to merge base clusters (cluster similarity calculation method)
- wsim: Weight to assign to cluster similarity versus cluster coverage

Output:
- Cf : Final set of generated clusters

1: Cf = { } // Initialise an empty set of final clusters
2: Q = [ ] // Initialise an empty priority queue which will be sorted by similarity
3: Em = FindTempEdges(G,mt, smmin) // Get temporal edges of type mt
4: for (ci, cj) ∈ Cb, i < j do: // Loop over all cluster pairs in Cb

5: Q.add((CalcSim(ci, cj ,G,Em,mm,wsim), ci, cj)) // Add cluster pair and its similarity

6: while Q 6= ∅ do: // Iterate through cluster pairs in Q
7: sx,y, cx, cy = Q.pop() // Get the most similar cluster pair from Q
8: Sx = {cp : (cp, cx) ∈ Q ∧ sp,x ≥ smmin, cp 6= cy} // Set of clusters highly similar to cx

9: Sy = {cq : (cq, cy) ∈ Q ∧ sq,y ≥ smmin, cq 6= cx} // Set of clusters highly similar to cy

10: RemoveAllTuplesWithCluster(Q, cx) // Remove tuples containing cx from Q
11: RemoveAllTuplesWithCluster(Q, cy) // Remove tuples containing cy from Q
12: if (sx,y ≥ smmin) and IsTempPlausibleClusterPair(cx, cy,T, pmin) do:
13: cmer = cx ∪ cy // Merge clusters if similarity is high enough and if temporally plausible

14: if Sx ∪ Sy = ∅ do: // If no clusters are similar with cx or cy

15: Cf = Cf ∪ {cmer} // Add merged cluster to final clusters
16: else:
17: for cz ∈ Sx ∪ Sy do: // Add cmer with clusters similar to cx or cy into Q
18: Q.add((CalcSim(cz, cmer,G,Em,mm,wsim), cz, cmer))

19: else:
20: Cf = Cf ∪ {cx, cy} // Add cluster pair cx and cy to final clusters if non-mergeable
21: return Cf

In lines 3 to 5, we calculate the similarities between every pair of base clusters
in Cb, where we consider a set of edge types, mt, different to Algo. 2, with one
or several of Strong, Norm, and WeakHigh, as described before.

In line 5 we calculate the similarity between a cluster pair ci and cj using
the function CalcSim() which also takes as input a merge method, mm, and
a cluster similarity weight, wsim. mm determines how the overall similarity be-
tween clusters is calculated, where it can be one of the aggregation functions
minimum, average or maximum. The aggregated similarity between two clusters
is assigned a weight of wsim whereas a weight of 1−wsim is assigned for coverage.
The coverage is the ratio between the number of edges across ci and cj in Em,
and the number of edges across ci and cj in G, which reflects the proportion of
edges covered in our similarity calculation. The cluster similarity, sx,y, returned
by CalcSim() is the weighted sum of similarity and coverage.

The main loop starts in line 6 and iterates over each cluster pair tuple in
the queue Q. For both clusters in the tuple, cx and cy, we next (lines 8 and 9)
identify all other clusters that they are similar with, and we keep these clusters in
two sets Sx and Sy, respectively. We then remove all tuples in Q that contain cx
or cy since they should not be re-processed. In line 12 we check if the similarity
between cx and cy is at least the minimum cluster merge similarity smmin and
if they are temporally consistent with each other. If this is the case we merge
clusters cx and cy into cmer in line 13.
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If both cx and cy are not similar with any other clusters (i.e. both Sx and Sy

are empty; the test in line 14), then based on the triangular inequality we know
that the merged cluster cmer cannot be merged further with any other clusters.
Therefore cmer is added to the set of final clusters, Cf , in line 15. Otherwise, in
line 17 we calculate the similarity of the merged cluster, cmer, with each cluster
in Sx and Sy and add new tuples into the queue in line 18.

If a cluster pair in the queue was not similar enough or not temporally con-
sistent, we do not merge cx and cy but instead add both into Cf in line 20.
Finally we return the set of merged and temporally consistent clusters, Cf .

6 Experimental Evaluation

We evaluated our temporal clustering approach using a real Scottish data set, as
provided by [18], that covers the population of the Isle of Skye over the period
from 1861 to 1901. This data set consists of 17,614 birth certificates, where each
of these contains personal details about a baby and its parents such as their
names, address, marriage date, occupations, and the birth date. As with other
historical data [1,11], this data set has a very small number of unique name values
(2,055 first and only 547 last names), and the frequency distributions of names
are also very skewed. Many records have missing addresses or occupations, and
for unmarried women the details of a baby’s father are mostly missing.

This data set has been extensively curated and linked semi-manually by
demographers who are experts in the domain of linking such historical data [18].
Their approach followed long established rules for family reconstruction, leading
to a set of linked birth records. We thus have a set of manually generated links of
births that allows us to compare the quality of the different clustering techniques,
and to evaluate how temporal constraints can improve linkage quality.

We used three different subsets of attributes to compare record pairs and
generate the similarity graph G discussed in Sect. 3: All (parents names, ad-
dresses, occupations, and marriage dates), Parent names and addresses, and
Parent names only. To compare attribute values we used approximate string
comparison functions such as Jaro-Winkler and edit-distance [5]. We used both
unweighted (UW) and weighted (W) similarities, where weights were calculated
based on the traditional Fellegi and Sunter record linkage approach [10]. We thus
ended up with six different similarity graphs G where we set spmin = 0.7 to only
include pair-wise links with at least this normalised similarity.

As discussed in Sect. 4, we evaluated different combinations of the edge types
Strong, Norm, and WeakHigh in our approach. For Algo. 2 we generated base
clusters with only Strong edges because these clusters showed much higher pre-
cision (95%) in set-up experiments compared to using other edge type combina-
tions. In Algo. 3 we used ‘Norm’, ‘Norm with WeakHigh’ (where base clus-
ters were merged using both edge types in the same run), as well as ‘Norm and
WeakHigh’ (where base clusters were first merged using Norm edges and then
the resulting clusters were merged again using WeakHigh edges). As discussed
in Sect. 5, we used the three cluster merge methods (mm): Min (minimum pair-
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Fig. 2: Precision and recall of our approach with different merge methods (as discussed
in Sect. 5) for different similarity graphs as described in Sect. 6.

wise record similarity across two clusters), Avr (average pair-wise similarity),
and Max (maximum pair-wise similarity). We also ran experiments where we
did not consider any temporal constraints, i.e. we set T = [ ] in all algorithms.

We calculated linkage quality as precision (the ratio of true links identified
against all links within clusters) and recall (the ratio of true links identified
against all true links) [5]. We do not present F-measure results given recent
work has identified some problematic aspects with this measure when used for
record linkage [12]. Instead we present the area under the precision-recall curve
(AUC-PR) which has shown to be robust for class imbalance problems [7].

We compared the proposed approach with our recent star clustering based
method [16], as this is the only approach we are aware of that uses temporal
aspects for group linkage. We applied LSH [15] (blocking) to limit the number
of record pairs being compared, resulting in a recall of 99.7% of true matches for
the similarity graph G. We set the similarity threshold in Algos. 2 and 3 from
1.0 to 0.7 in 0.05 steps, and the weight wsim in Algo. 3 to 0.5. We implemented
all techniques using Python 2.7, and the programs and similarity graphs are
available from the authors to facilitate repeatability.

Fig. 2 shows precision and recall curves of our approach with different edge
combinations. As can be seen, the edge combination ‘Norm with WeakHigh’
provided the best linkage quality compared to other edge combinations. The
reason for this is that when using Norm edges only, many true links that are in
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Table 1: The area under the precision-recall curve (AUC-PR) results (averages and
standard deviations) of our approach and star based clustering [16], with (T) and
without (NT) temporal constraints for different similarity graphs.

Similarity graph ConnComp (T) Star (T) ConnComp (NT) Star (NT)

All (UW) 0.72± 0.012 0.70± 0.003 0.64± 0.005 0.63± 0.003
All (W) 0.77± 0.014 0.74± 0.006 0.69± 0.005 0.68± 0.004
Names and addresses (UW) 0.87± 0.006 0.70± 0.014 0.83± 0.002 0.73± 0.003
Names and addresses (W) 0.86± 0.007 0.69± 0.016 0.80± 0.003 0.72± 0.007
Names only (UW) 0.88± 0.002 0.72± 0.018 0.85± 0.001 0.78± 0.015
Names only (W) 0.80± 0.002 0.65± 0.016 0.73± 0.001 0.69± 0.019

Averages 0.82± 0.064 0.70± 0.030 0.76± 0.083 0.71± 0.051

the WeakHigh category are ignored. It also appears that merging clusters in a
single run using the ‘Norm with WeakHigh’ method provided better results
than conducting the cluster merging in two phases (as done in the ‘Norm and
WeakHigh’ method). We also noted that the quality of clustering does not
change much with the merge method mm (Min, Avr, or Max) because most
clusters generated only contained between 2 to 4 records.

Finally, Table 1 shows AUC-PR results of our approach with different simi-
larity graphs. The average and standard deviations of AUC-PR values across the
three merge methods are reported for the best edge combination ‘Norm with
WeakHigh’ from Fig. 2. As can be seen, our approach achieved the highest
AUC-PR value of 0.88 with temporal constrains while it resulted in an AUC-PR
value of 0.85 without any temporal constraints. We conducted a t-test to evaluate
the statistical significance between the AUC-PR values of 0.88 and 0.85, which
resulted in a p-value less than 0.0001. Such high statistical significance confirms
that the use of temporal constraints can improve the overall linkage quality in our
approach. Further, as this table shows, our approach outperformed both tempo-
ral and non-temporal star clustering in terms of linkage quality for all similarity
graphs which indicates our approach is suitable to cluster records, such as the
births by the same mothers in the context of historical record linkage, with high
linkage quality.

7 Conclusions and Future Work

We have presented a temporal clustering approach for group record linkage.
Our approach first generates a graph that represents the similarities calculated
between individual records, and then generates temporally consistent connected
components which are merged to obtain a set of high quality clusters. Our exper-
imental evaluation on a real data set from Scotland has shown that our approach
can substantially outperform a previous temporal clustering approach for record
linkage. In the future we aim to conduct empirical evaluations for different data
sets and parameter settings. We further plan to conduct a complexity analysis
on the proposed algorithms and also learn temporal constraints for different time
intervals using ground truth data based on true matching record pairs.
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