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Abstract Privacy-preserving record linkage (PPRL) is

the process aimed at identifying records that represent

the same real-world entity across different data sources

while guaranteeing the privacy of sensitive information

about these entities. A popular PPRL method is to en-

code sensitive plain-text data into Bloom filters (BFs),

bit vectors that enable the efficient calculation of sim-

ilarities between records that is required for PPRL.

However, BF encoding cannot completely prevent the

re-identification of plain-text values because sets of BFs

can contain bit patterns that can be mapped to plain-

text values using cryptanalysis attacks. Various harden-

ing techniques have therefore been proposed that mod-

ify the bit patterns in BFs with the aim to prevent such

attacks. However, it has been shown that even hardened

BFs can still be vulnerable to attacks. To avoid any
such attacks, we propose a novel encoding technique for

PPRL based on autoencoders that transforms BFs into

vectors of real numbers. To achieve a high comparison

quality of the generated numerical vectors, we propose a

method that guarantees the comparability of encodings

generated by the different data owners. Experiments on

real-world data sets show that our technique achieves

high linkage quality and prevents known cryptanalysis

attacks on BF encoding.
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1 Introduction

It is generally recognised that linked individual-level

databases facilitate data analysis that is not feasible

on a single database [3]. Therefore, in domains ranging

from business analytics and national security to health

and social science research, increasingly records about

individuals need to be linked across databases that are

often held by different organisations. Record linkage has

been an active research area since the 1950s [27].

The lack of common unique entity identifiers (such

as social security numbers or patient identifiers) across

the databases to be linked means that linking records is

commonly based on available quasi-identifiers (QIDs),

such as the names, addresses, and dates of birth of the

individuals whose records are to be linked [7]. Given
these are personally identifiable information [26], con-

cerns about privacy and confidentiality limit or even

prevent such personal data from being used for the link-

age of records across databases [16,40].

Techniques generally known as privacy-preserving

record linkage (PPRL) have been developed in the past

two decades [16,44] with the aim of tackling the chal-

lenge of linking sensitive data without revealing any

private or sensitive information about the entities being

linked. The general approach of PPRL techniques is to

encode or encrypt sensitive identifying information and

conduct the linkage using these encoded or encrypted

values. At the end of a PPRL process, only the organ-

isations being involved learn which of their records are

matches (based on some decision model) with records

from the other database(s), but no organisation is able

to learn any sensitive information about records in the

database(s) held by other organisations. Furthermore,

external adversaries must be denied the discovery of any

meaningful information about the sensitive data [7].
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A diverse range of PPRL techniques has been devel-

oped [43], including techniques based on secure multi-

party computation (SMC), secure hash encoding, and

encoding of values into bit vectors. While SMC tech-

niques are accurate and provably secure, because PPRL

generally requires the calculation of similarities between

encoded values (due to errors and variations [9], or miss-

ing values [41], that can occur in QID values) these

techniques often have high computational costs [16].

PPRL techniques based on some form of hashing or

embedding of sensitive values, known as perturbation

based techniques [44], on the other hand provide ad-

equate privacy, linkage quality, and scalability to link

large sensitive databases. However, perturbation based

techniques commonly lack the security proofs provided

by SMC techniques [7].

As we discuss further in Sect. 3, one popular per-

turbation technique used in PPRL is based on BF en-

coding [4], where elements of a set (such as character

q-grams extracted from QID values) are hashed into bit

vectors [32]. BF based PPRL is now being employed in

practical linkage applications, mainly in the health do-

main [5,29,31].

The general PPRL workflow follows a three-party

protocol [7], where the data owners (DOs) generate BFs

based on encoding the QID values of records, and send

these BFs to a third party, called the linkage unit (LU).

The LU then compares pairs of BFs to calculate their

similarity, and classifies pairs into matches (two BFs

assumed to represent the same entity) and non-matches

(two BFs assumed to represent two different entities).

While BF encoding facilitates scalable and accu-

rate linkage of large databases, its drawback is the lack

of provable security. As a result, various attacks on

BF based PPRL encoding techniques have been devel-

oped [48]. These attacks mainly exploit the bit patterns

and their frequencies in a set of BFs [6,8,10,20,21,22,

25,28], or the similarities between BFs [11,45].

To overcome such attacks, different hardening tech-

niques have been proposed [30,34,35,39]. These tech-

niques modify the bit patterns of BFs with the aim

of removing the association of frequent patterns or the

positions of 1-bits with encoded values (such as char-

acter q-grams) that would allow the re-identification of

encoded values [48]. Other methods add fake records

or BFs to perturb frequency patterns [18]. However,

due to the addition of noise or modification of bit pat-

terns, existing hardening techniques have shown to neg-

atively influence the final linkage quality by increasing

the number of false matches (false positives) and/or re-

ducing the number of true matches (false negatives) [14].

In this paper we propose a novel encoding technique

using autoencoder networks [1] to transform bit pat-

terns in BFs that encode sensitive values into numeri-

cal vectors. For each DO, our technique independently

trains an autoencoder network using the DO’s BFs.

To guarantee comparability of the encodings generated

from the different autoencoders, we train a mapping

function that transforms the encodings from one DO

into the latent space of the second DO. This mapping

allows the LU to accurately calculate the similarities

between the encodings from the different DOs.

We make the following contributions: (1) We pro-

pose a novel PPRL encoding technique which applies

autoencoders on BFs to improve their privacy by pre-

venting attacks on frequent bit patterns in BFs. (2) Our

technique generates linkage results with high quality

by using the calculated encodings in a numerical vec-

tor space in combination with a mapping function that

allows the LU to accurately compare encodings from

multiple DOs. (3) We evaluate our proposed technique

using real-world data sets considering different parame-

ter settings, and we compare our method with existing

hardening techniques regarding linkage quality.

2 Related Work

Different methods have been proposed to attack BFs

with the goal of re-identifying the sensitive values en-

coded in a set of BFs [48]. Kuzu et al. [21] developed a

method that maps BFs to first names from the North

Carolina Voter Registration database based on their

frequencies and further constraints regarding common

q-grams and common BFs. Christen et al. [6] proposed

a frequent pattern mining based approach that iden-

tifies frequent bit patterns in BFs and aligns them to
q-grams considering the frequency distribution derived

from external resources such as telephone books. In con-

trast to other attacks, this attack can also be applied

on BFs that encode more than one attribute.

Different from previous attacks is a graph-based at-

tack proposed by Vidanage et al. [45] that uses a simi-

larity graph built from BFs that is matched to a simi-

larity graph built from plain-text values. The idea is to

generate for each BF and each plain-text value a set of

features that represent their neighbourhood in the cor-

responding similarity graph, and then perform a bipar-

tite matching between the feature vectors of BFs and

the feature vectors of plain-text records. However, for

accurate matching of these graphs, a mapping between

BF and plain-text value similarities is required [45].

To avoid the identification of associations between

bit patterns and plain-text values, hardening techniques

manipulate BFs by adding noise or modifying the en-

coding process of BFs with respect to the frequency

distribution of q-grams. Ranbaduge and Schnell [30]
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Fig. 1: Three-party protocol for PPRL based on BF

encoding and a hardening technique applied.

provided a comprehensive overview of different harden-

ing techniques including XOR folding, BLIP, Rule 90,

WXOR, and Resampling. XOR folding [34] divides a BF

into two halves and applies the bit-wise XOR operation

on the resulting shorter half-length BFs. BLIP [34,39]

uses a differential privacy mechanism to randomly se-

lect a set of bit positions in a BF and flipping them (0 to

1 or vice versa) depending on a flip probability f . Rule

90 [35] generates a hardened BF by XORing the bit at

position p with the bits at position (p − 1) mod l and

(p+1) mod l, where l is the length of a BF. The modulo

function ensures that each position in the hardened BF

is based on three bits.

The WXOR hardening method [30] uses a window-

based XOR approach where two windows, W1 and W2,

of width w > 1 slide over a BF of length l. The starting

position p of W1 slides from 0 to l − w, while W2 is

positioned at (p+1) mod l. For generating the window

at position p, the bit patterns of the two windows are

XORed. The Resample method [30] determines for each

position p of the BF to be hardened the XOR operation

of two randomly selected positions, i and j, ranging

from 0 to l − 1, with replacement.

All these discussed hardening techniques lower the

risk of a successful attack at the expense of linkage

quality [14]. In contrast, we propose a novel encoding

technique based on autoencoders that offers a complete

masking of any bit patterns while still providing linkage

quality comparable to the quality of unhardened BFs,

as we experimentally evaluate in Sect. 6.

3 Background

We now describe the PPRL process, BF encoding, and

autoencoders, which form the basis of our approach.

The PPRL Process: Figure 1 shows the three-

party PPRL protocol [7], where a LU receives QID val-

ues from two or more DOs that have been encoded, for

example, into BFs and (optionally) further hardened.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0

bl
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Fig. 2: BF encoding of the word ‘bloom’ converted into

the set of 2-grams (bigrams) {‘bl’, ‘lo’, ‘oo’, ‘om’} and

mapped into a bit vector of length l = 24 using k =

3 hash functions which, for example, map ‘bl’ to bit

positions 1, 5, and 16.

The LU compares these encodings and classifies the cor-

responding pairs of records as matches or non-matches.

The record identifier (ID) pairs of matched encodings

are returned to the DOs as result of the linkage.

The DOs encode their own QID values indepen-

dently according to the agreed encoding method and

parameters that define which QIDs are used and how

they are to be encoded. For BF encoding [32], this in-

cludes the number of hash functions k and the length

of BFs l to be used, and so on [7]. The DOs potentially

also apply an agreed hardening technique to transform

the generated BFs into hardened encodings [30].

Employing a LU avoids the direct exchange of data

between the DOs which would increase the risk of re-

vealing sensitive information in the encoded QID val-

ues. This is because BFs are easy to decode for DOs that

have knowledge about the encoding parameters [25].

Bloom Filter Encoding: BFs are bit vectors of

length l with an associated set of k independent hash

functions that map the elements of a set to positions

in the bit vector [4]. The idea of using a BF is to effi-

ciently determine whether a certain element in a set has

been encoded in a BF or not, based on the bit patterns

generated by the hash functions.

In the context of PPRL, BFs are generally based on

the encoding of textual QID values, such as the names

and addresses of people, that are converted into char-

acter q-gram sets [32]. Such sets are then mapped to

positions in a BF by using k hash functions, hi (with

0 ≤ i < k), as shown in Fig. 2. Methods to encode

numerical values (such as ages or medical data) [19,42]

and categorical codes (such as disease or occupation

codes) [36] into BFs have also been developed.

Autoencoders: Our approach is based on autoen-

coders to further encode BFs to prevent cryptanalysis

attacks. Autoencoders [1] are neural networks (NNs)

that can generate lower-dimensional representations with

a small information loss for high-dimensional input data.

In our case, we use the reduction of dimensions and
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Fig. 3: The extended three-party PPRL protocol using autoencoders in chronological order (left to right) and

separated by the different parties (the horizontal layers). The black-lined boxes represent the main steps of the

process, and the white boxes show the specific tasks for generating the models (yellow) and the data (blue) required.

the transformation of BFs from a binary l-dimensional

space into a continuous space as an advantage to hide

potentially vulnerable bit patterns in BFs.

Autoencoders are generally composed of two con-

nected NNs: an encoder f that maps data into a low-

dimensional space (of dimension d, with d < l), and a

decoder g, that maps values from the low-dimensional

space back into the original space. The two NNs are

trained in combination, and aim to fit the identity func-

tion on the data. Formally, an encoder f and a decoder

g are defined by the following functions, where w1 and

w2 are trainable weights [1]:

fw1 : [0, 1]l −→ Rd gw2 : Rd −→ [0, 1]l

An autoencoderA is then represented by the concatena-

tion of both functions utilising the trained NNs: A = g◦
f . In contrast to other dimensionality reduction meth-

ods, such as principal component analysis or singu-

lar value decomposition [13], autoencoders can provide

non-linear transformation functions for generating low-

dimensional encodings. The attained encoding function

is sensitive towards changes of the initial weights which

are randomly drawn, and therefore is a non-deterministic

function. Both of these properties suit our approach,

because (1) the space of possible BFs of length l, B =

{0, 1}l, is not isomorphic to a low-dimensional linear

space and therefore requires a non-linear mapping for

good low-dimensional representation; and (2) a deter-

ministic mapping would be easier to attack compared

to non-deterministic mapping because the encoding di-

mensions might carry some specific semantics.

4 PPRL using Autoencoders

To decrease the risk of attacks on BFs [48], we develop a

novel PPRL technique based on autoencoders [1]. One

main requirement for any encoding to be used for PPRL

is to preserve similarities [7]. To achieve this goal, we

have to select the autoencoder layout such that infor-

mation loss is minimal, and apply data transformation

steps to normalise the output of the encoder. The first

requirement ensures that most of the information being

encoded in BFs is preserved, while the second require-

ment homogenises the similarities across the different

dimensions of the encodings. We now present an ex-

tended PPRL protocol and describe its essential parts

in detail, as also outlined in Fig. 3.

Bloom Filter Hardening with Autoencoders:

In addition to the BF encoding step being the same as

in the basic protocol from Fig. 1, the extended protocol

consists of an encoding, a mapping, and a linking step.

In the encoding step, each DO trains their own au-

toencoder model as shown in Fig. 3. Each layer is fully

connected with the next layer since we cannot make any

assumptions about the order of bits in BFs (as can be

seen in Fig. 2). As activation function, we use the below

function (which we call leaky-capped ReLU ), where x is

the sum of the input values of a neuron multiplied by

the trainable weights, and α is a leakage parameter:

SRα(x) =


α · x x < 0

x 0 ≤ x < 1

1 + α(x− 1) 1 ≤ x

(1)
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Algorithm 1 Mahalanobis transformation applied on the encoded records Ei from data owner i ∈ {A,B}.
1: function mahalanobis(Ei)
2: Ei ← Ei - COLUMN MEAN(Ei) ▷ Row-wise subtraction of column means
3: C ← 1/(n− 1) · ET

i · Ei ▷ Calculate covariance matrix, where n is the number of encodings in Ei

4: T ← inverse matrix root(C) ▷ Calculate the square root of the inverse of the covariance matrix
5: return Ei · T
6: end function

7: function inverse matrix root(M)
8: Λ,B ← EIGEN(M) ▷ Compute the list of eigenvalues Λ and the corresponding list of eigenvectors B of M

9: S ← DIAG(1/
√
λ forλ in Λ) ▷ Compute the diagonal matrix using the eigenvalues

10: T ← B · S ·BT ▷ Determine the inverse square root matrix
11: return T
12: end function

The use of this activation function is motivated by

the fact that the correct output values of the autoen-

coder can only be 0 or 1, so any values outside the inter-

val [0, 1] are handled by mapping them to the boundary

of the interval, which is attained by choosing α = 0.

This would however result in a partially constant acti-

vation function for values below 0 or larger than 1, and

thus the gradient would be zero for those values, which

is undesirable for training.

For each BF of DOs A and B, the resulting encoders

fA and fB compute the corresponding encoding. To

ensure that each dimension of the encodings has the

same scale, we normalise the generated encodings using

the Mahalanobis transformation [24], as illustrated in

Algo. 1. To transform the encodings Ei of a DO A or

B by Mahalanobis, the covariance matrix C of Ei and

the inverse square root matrix T of C are computed.

The encodings Ei are then transformed by computing

the dot product between Ei and T .

Due to different autoencoders resulting from differ-

ent training data held by the DOs, the generated encod-

ings of the same or similar BFs are potentially quite dis-

similar, since the internal representation of the learned

function is highly sensitive to the training data. There-

fore, a direct comparison of encodings does not lead

to meaningful results. To guarantee comparability, in

the mapping step the LU trains a function m enabling

the transformation of encodings EB from DO B to the

vector space of DO A, as we describe in detail below.

The normalized encoded BFs, EA and EB , from

both DOs A and B are sent to the LU where the en-

codings EB are transformed using the trained function

m. In the linking step, the LU calculates the similar-

ities between the transformed encodings EB and EA

being used to classify record pairs into matches and

non-matches according to a similarity threshold δ. Due

to the high computational effort for evaluating the full

Cartesian product between the encodings EA and EB

by the LU, we use an approximate nearest neighbour

method [17] to reduce the number of encoded record

pairs to be compared. As similarity measure we use the

Cosine similarity and employ a threshold for classifying

record pairs as matches and non-matches. At the end,

the classified matches are sent as the result of the link-

age process from the LU back to the DOs , where each

match consists of a pair of record identifiers [7].

Comparing Separately Generated Encodings:

The crucial issue of separated encoder models is that

the resulting encodings are not directly comparable.

Therefore, the LU trains a mapping function m to map

an encoding e ∈ EB to the space of EA. Training such

a mapping function requires knowledge of a large num-

ber of pairs of encodings, generated by the two encoder

networks, for the same BF. Due to privacy issues, it

is however impracticable to generate such a set of BFs

that can be shared between the DOs and the LU.

Therefore, we propose a different method for gen-

erating training data, exploiting the fact that decoders

can generate records that resemble actual data, when

fed with random noise of the same distribution as the

actual encodings. Having two autoencoders AA = gA ◦
fA and AB = gB ◦ fB (for two DOs A and B), the rel-

evant mapping is given by m : fB(b) 7→ fA(b) for any

BF b. This mapping can formally be approximated by

m = fA ◦ gB , where fA and gB are known. Due to the

sensitivity regarding the privacy aspects we will discuss

in Sect. 5, both the decoder function gB of DO B and

the encoder function fA of DO A are learnt by the DOs

independently and not shared with any other party. To

determine a model for the functionm, we generate pairs

(x,m(x)), where x ∈ Rd is a random point from the en-

coding space. To prevent having to send gB and fA, as

well as the original BFs to the LU, we use several steps

as we describe next. This generation of training data is

shown in the Mapping box in Fig. 3:

1. The LU generates a list of random vectors R from

the encoding space Rd. As the Mahalanobis normal-

isation from Algo. 1 is applied to encodings, and

those are approximately normally distributed based

on the Central Limit Theorem [23], these vectors can
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be drawn from a d-dimensional standard normal dis-

tribution, where d is the dimension of the encoded

vectors generated by the encoders. The generated

random vectors R are sent from the LU to DO B.

2. DO B applies the inverse Mahalanobis transforma-

tion with the parameters of its normalisation on the

received random data from the LU, and decodes the

normalised random vectors R with its decoder gB .

3. The resulting BF-like bit vectors are sent to DO

A, that encodes them with its encoder fA and nor-

malises the resulting vectors by applying the Maha-

lanobis transformation (using the same parameters

as for normalising its real encodings). DO A then

sends these vectors back to the LU. The resulting

set of encodings R′ represents the output of the con-

catenation of the decoder gB and the encoder fA.

The randomly generated encodings R and the com-

puted encodings R′ are utilised by the LU to train a

NN representing the mapping function m to map DO

B’s encoded data to DO A’s encoding space.

While in general the LU should have minimal in-

formation about the encoding, having some knowledge

about the complexity of the autoencoders used by the

DOs does not enable it to decode the actual encodings

EA and EB . It will, however, be beneficial for choos-

ing a suitable network layout, as this network should

replicate the concatenation of B’s decoder and A’s en-

coder. Choosing the layout too small would result in a

low accuracy of the mapping whereas an overly complex

layout could lead to overfitting [2]. Therefore, we choose

a configuration to simulate the concatenation of a de-

coder and an encoder, such that the first half replicates

the layer dimensions of the decoder, while the second

half replicates the layer dimensions of the encoder. We

thereby obtain a NN with input and output dimensions

being equal to the encoding dimension d.

5 Discussion of Privacy Aspects

The goal of applying autoencoders on sensitive data

encoded into BFs is to increase the robustness of these

encodings against attacks. We claim that this encoding

method can decrease the vulnerability of BF encoding

by improving the following privacy aspects:

1. The majority of existing attacks on BFs exploit in-

formation about the frequencies of bit patterns in

sets of BFs and the corresponding q-gram frequen-

cies [48]. Due to the transformation of BFs from

{0, 1}l into encodings E in Rd, existing attacks on

bit patterns [8,47] are not applicable. This is be-

cause pattern analysis methods such as frequent pat-

tern mining cannot be used to determine frequent

1-bit patterns from numerical vectors in Rd. No ex-

isting attacks can determine a correlation between

the frequency of q-grams and the frequency of a cer-

tain pattern of numerical values.

2. The dimensionality reduction from l to d (with d <

l) results in information loss which potentially is

relevant for an attack. This loss therefore decreases

the accuracy of a possible attack on the encodings

generated by the autoencoders.

The transformation of BFs into numerical vectors

might, however, result in new patterns in the data that

were not available previously. We therefore need to as-

sess the distribution of the encodings in order to estab-

lish their resilience against privacy attacks.

Bloom Filter Reconstruction: We first consider

strategies for reconstructing BFs based on the gener-

ated encodings and information about the trained au-

toencoder models.

The task of the decoders, gA and gB , is to recon-

struct BFs. Therefore, the DOs have to guarantee that

these models are secure and they are not shared. More-

over, the encoders, fA and fB , allow the generation of

training data that can be used to train a NN that deter-

mines the inverse mapping of the encoder and therefore

replicates the decoder. Therefore, the encoders must

also be kept private by the DOs.

Similar to the autoencoders, publication of the map-

ping function m by the LU also imposes a security risk,

because it would allow DO A to transform the encoding

from DO B into its vector space and decode the results,

while DO B could run a similar attack by training an

inverse mapping. After that, DO A could use its de-

coder to approximately reconstruct the BFs of DO B,

from which it can potentially identify q-grams in the

QIDs held by DO B.

Considering this potential attack, the LU would have

to collude with one DO by releasing the private informa-

tion about the relation between the different encodings

in the form of the mapping function m. Furthermore,

the adversary would have to gain access to the DO’s

encoded data set Ei, either directly or via the LU.

In addition to the publication of the function m, a

further risk is a decomposition of m so that the LU can

generate a function gLU that can decode encodings EB

from DO B. Due to the loss in the training process of

m, we assume that the component of m approximating

gB will results in inaccurately decoded BFs. We plan to

investigate possible attacks based on the decomposition

of m by the LU as future work.

Distribution Analysis: Similarly to the pattern

based attacks on BFs [6,47], we assume that our au-

toencoder based encoding might be vulnerable to at-
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Fig. 4: Example of histograms of two dimensions re-

sulting in different histogram intersections for a set of

50,000 encodings he (blue) and the corresponding nor-

mal distribution hn (red) using b = 634 bins.

tacks if it is possible for an adversary to extract specific

characteristics from similarities in the encodings, for ex-

ample by clustering groups of vectors of encodings. The

resulting clusters might contain information about en-

codings, such as common q-gram combinations, which

could be assigned to characteristics of plain-text values

(like q-grams) using frequency information extracted

from plain-text data such as telephone directories or

voter databases [48].

To analyse the possible effectiveness of such cluster-

based attacks, we consider the distribution of encodings

in the generated numerical vector space. We assume

that an arbitrary clustering approach does not result

in accurate and well separated clusters if the encodings

generated by the autoencoders have a distribution that

is close to a multi-dimensional normal distribution (a

normal distribution in all d dimensions). We therefore

evaluate how closely the generated encodings approxi-

mate such a normal distribution as an indicator for their

vulnerability with regard to such a clustering attack.

To quantify the similarity of the distribution of a set

of autoencoder encodings compared to a normal distri-

bution N (0, 1), we use the histogram intersection mea-

sure [38,46]1. For each of the d dimensions, we generate

a histogram he of the encodings using b bins of equal

width, and similarly generate a histogram hn for a nor-

mal distribution with the same width and the same

number of bins and data points as for the number of

encodings. We automatically determine the width and

the number of bins using the approach by Freedman

and Diaconis [15]. We show examples of these normal

distributions for two selected dimensions in Fig. 4.

We calculate the histogram intersection I(he, hn) as

follows [38], where he[i] and hn[i] represent the number

of data points in bucket i (with 1 ≤ i ≤ b):

1 Because we do not have probability distributions we can-
not use Kullback–Leibler divergence or similar measures,
while tests for normal distributions such as the Shapiro-Wilk
test [37] are known not to work well on large data sets.

I(he, hn) =

b∑
i=1

min(he[i], hn[i]). (2)

To obtain a value between 0 and 1, we normalise

I(he, hn) by the number of records, and to obtain a

single privacy evaluation measure we calculate the av-

erage of the I(he, hn) over all d dimensions. The closer

the resulting value is to 1.0 the more similar the distri-

bution of encodings is to a normal distribution.

Vulnerability to Similarity Attacks: Attacks on

PPRL based on similarity graphs [11,45] compare a

graph generated when comparing plain-text values with

a graph generated comparing encoded values, where the

aim is to determine correspondences between plain-text

values and encoded values based on node features. The

success of a similarity graph attack depends on the com-

parability of both similarity graphs, and therefore any

PPRL method that calculates accurate similarities be-

tween encodings can be vulnerable to a similarity at-

tack [48]. Our autoencoder based PPRL approach also

calculates similarities, therefore we cannot prevent sim-

ilarity attacks completely. Nevertheless, due to the use

of encodings in Rd, a mapping between the different

similarity spaces is not trivially derivable. We plan to

investigate how to prevent similarity attacks on our ap-

proach in the future.

6 Experimental Evaluation

In this section we evaluate our proposed autoencoder-

based technique using real-word data sets. We first com-

pare the linkage results of our technique considering

a range of autoencoder layouts. We then compare our

technique with a standard BF based PPRL method as

baseline, as well as existing hardening techniques [30].

Data Sets: To evaluate our proposed encoding tech-

nique, we use voter registration databases from the US

states of North Carolina (N)2 and the Ohio (O)3 as used

by Franke et al. [14]. We use the same sub sets obtained

by selecting records from two different snapshots with a

certain overlap in matching records and different ratios

of variations and errors per record. The North Carolina

sub set consists of two data sources of 50,000 sampled

records each where 10,000 record pairs are matching,

while the Ohio voter files consist of two data sources

containing 120,000 records and 80,000 records, respec-

tively, with 40,000 matching record pairs.

2 https://www.ncsbe.gov/
3 https://www.ohiosos.gov/

https://www.ncsbe.gov/
https://www.ohiosos.gov/
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Fig. 5: Precision-Recall curves showing results for different autoencoder models with different numbers of dimen-

sions (64, 128, and 256) and their complexity (normal versus shallow) for the four data sets.

Table 1: The used QID attributes and the average num-

ber of q-grams per record from the NCVR (N) and Ohio

(O) voter data sets used to generate BFs.

Data Set Attributes Avr. q-gram

N-A4
First name, Last name,

14.8
Middle name,Year of birth

N-A5 N-A4 ∪ {City} 21.4

O-A4
First name, Last name,

14.3
Middle name, Birth date

O-A5 O-A4 ∪ {City} 21.4

We consider two sets, A4 and A5, of different QID

attribute combinations from which we generate the q-

gram sets to be encoded, as shown in Table 1. We use

q = 2 (bigrams) and employ k = 30 hash functions and

BFs of length l = 1024 using Random Hashing [33] for

both data sets, where we generate one BF per record.

Experimental Setup: To evaluate the BF base-

line using the original BFs and existing hardening tech-

niques, we use the Dice-coefficient to calculate similar-

ities between BFs [7] and the Cosine similarity for the

autoencoder encodings. To compare the linkage quality

of the different methods, we calculate the area under

the precision-recall curve (AUC-PR) [12] with respect

to different similarity thresholds δ to classify matches,

ranging from 0.4 to 1 in intervals of 0.02. To efficiently

compare encodings and BF, we use the Annoy library4

for nearest neighbour search. To facilitate repeatability,

we make our code and data sets available at https:

//github.com/vicolinho/pprl_autoencoder.

For our proposed method, we evaluate different au-

toencoder layouts. In order to generate the training

data for the mapping functionm, we sampled 200,000 d-

dimensional standard normal distributed vectors (where

d is the encoding dimension). The required training

4 https://github.com/spotify/annoy

pairs (x,m(x)), where x,m(x) ∈ Rd, are then gener-

ated in the mapping step described in Sect. 4.

Autoencoder Layouts and Parameters: For the

autoencoders used in our encoding technique, we eval-

uated different layouts to investigate the resulting link-

age quality. Specifically, we considered different dimen-

sions of the encoding layer (d = 64, 128, and 256), and

two different depths for the network where the shallow

network consists of three layers (input, encoding, and

output) while the other network includes an additional

hidden layer of 512 neurons, both in the encoder and in

decoder networks. We set the value of the customized

activation function in Eq. (1) to α = 0.2 for all layouts

as this provided good results in setup experiments.

Figure 5 shows the linkage quality for the four data

sets. We observe that an increase in the dimension leads

to an improvement of quality. For instance, the AUC-

PR values increase by up-to 0.1 for N-A5 and by around

0.2 for O-A5 when using 256 rather than 128 dimensions

for the shallow layout autoencoder model.

The network complexity influences the quality de-

pending on the number of dimensions. The models with

an additional layer perform better up-to a certain di-

mension, namely 128 for N-A5 and O-A5. With more

dimensions, the shallow models performed better than

the normal ones, as can be seen from the PR-curves

of the models with 256 dimensions (where the shal-

low model performs better). We hypothesise that au-

toencoders with an extra layer can represent complex

patterns more effectively than shallow models up to a

certain dimensionality. However, the additional layer

seems to lead to overfitting for higher dimensional mod-

els because linkage quality decreases.

Comparison with Hardening Methods:We now

compare our proposed method with the hardening tech-

niques [30] XOR, WXOR, BLIP, Rule-90 (R90), and

Resample (RES), as we described in Sect. 2. In Table 2

we show the AUC-PR results for the different data sets

and hardening techniques.

https://github.com/vicolinho/pprl_autoencoder
https://github.com/vicolinho/pprl_autoencoder
https://github.com/spotify/annoy
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Table 2: AUC of precision-recall curves for different hardening techniques and autoencoder layouts considering 128

and 256 dimensions, as well as the shallow (s) and normal models for the NCVR and Ohio data set with different

attribute combinations and different numbers of hash functions k. The best results are highlighted in bold font.

Data Autoencoder based Existing hardening techniques
k set Avr. 1-bit Avr. coll.% 128s 128 256s 256 None XOR WXOR R90 BLIP RES

30

N-A4 358.5 23.9 0.82 0.78 0.87 0.85 0.88 0.88 0.88 0.88 0.88 0.86
N-A5 475.4 35.3 0.71 0.72 0.81 0.77 0.73 0.72 0.72 0.73 0.72 0.71

O-A4 347.0 23.4 0.85 0.84 0.92 0.91 0.88 0.88 0.88 0.88 0.87 0.84
O-A5 490.4 31.2 0.73 0.79 0.93 0.91 0.66 0.67 0.66 0.66 0.65 0.64

20

N-A4 256.6 15.3 0.80 0.82 0.85 0.85 0.73 0.72 0.73 0.72 0.72 0.70
N-A5 349.7 22.6 0.73 0.74 0.81 0.77 0.75 0.75 0.75 0.75 0.75 0.72

O-A4 248.0 15.2 0.73 0.76 0.89 0.89 0.88 0.88 0.88 0.88 0.87 0.84
O-A5 347.1 23.6 0.66 0.68 0.89 0.88 0.63 0.64 0.63 0.63 0.63 0.61

To investigate the impact of different BF encodings,

we use different numbers of hash functions, k. The re-

sults we obtain indicate that our autoencoder based

technique achieves results comparable to existing hard-

ening techniques. Our approach outperforms the BF-

based approaches for the larger data sets O-A4 and

O-A5 when using the shallow networks with 256 di-

mensions.

We explain these improvements in linkage quality in

that the autoencoder learns to distinguish differences in

BFs resulting from rare q-gram variations compared to

common variations. Rare variations are usually a non-

frequently occurring character sequence, and therefore

the corresponding 1-bit patterns do occur rare in BFs.

Due to their rareness, their impact on the loss function

is negligible if these 1-bit patterns are ignored during

the training of autoencoders.

Moreover, the results show the robustness of the re-

sults regarding linkage quality when we consider differ-

ent fill ratios, collision ratios, and number of hash func-

tions. This robustness can be seen by similar results

obtained with a difference below 0.07 AUC-PR for 256

dimensions considering different attribute combinations

being encoded. In contrast to the autoencoder method,

the results of using BF based methods show drops of

up-to 0.25 AUC-PR between the O-A4 and O-A5 data

sets for k = 20.

We conclude that BF based methods are more sen-

sitive with regard to the number of hash functions and

the ratio of collisions in BFs. In general, a smaller num-

ber of hash functions leads to a decreasing linkage qual-

ity, while a higher average collision ratio per record re-

sults in a lower AUC-PR, as can be seen Table 2. The

sensitivity of the encoding parameters is also shown for

the data set N4, as the BF based methods lead to a

higher AUC-PR by 0.01 compared to our method only

for the configuration k=30 and a certain fill rate.

Table 3: Average histogram intersection of encodings

for the four data sets compared to a multidimensional

normal distribution, as discussed in Sect. 5.

Data
Set

Layout

64s 64 128s 128 256s 256

N-A4 0.959 0.959 0.963 0.949 0.964 0.955
N-A5 0.961 0.969 0.964 0.958 0.966 0.961

O-A4 0.950 0.924 0.963 0.946 0.968 0.956
O-A5 0.960 0.977 0.968 0.966 0.973 0.964

Privacy Analysis: We now discuss potential pri-

vacy risks based on the analysis of the two data sets.

Similarly to pattern mining attacks [6,47] the encod-

ings are vulnerable if they are clearly separable and the

separated encodings can be mapped to a corresponding

clear text value or q-gram cluster [48]. As an indicator

how well a data set is separable, we proposed a method

for measuring how similar our encodings are to a mul-

tidimensional normal distribution.

Therefore, we quantify the similarity by analysing

the distribution of the data set using the distribution

analysis described in Sect. 5. The average histogram in-

tersection regarding all dimensions is shown in Table 3.

We observe that the average histogram intersection

is higher for shallow models compared to models with

an extra hidden layer except for d = 64 using 5 at-

tributes. Moreover, an increasing number of dimensions

leads to higher histogram intersection results consider-

ing the shallow networks.

7 Conclusion

Privacy-preserving record linkage is an essential pro-

cess for integrating sensitive data [7], where Bloom filter

(BF) encoding is a popular technique used to efficiently
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mask plain-text values and facilitate similarity calcula-

tions between encoded values. However, research has

shown the vulnerability of BF encoding with regard to

various attacks [48]. This has led to the development of

multiple hardening techniques which manipulate BFs

such that the likelihood of associating a given BFs or

its bit pattern to a plain-text value, and therefore any

possible re-identification, decreases [14,30].

In this paper, we have proposed a novel encoding

technique based on autoencoders [1] which transforms

BFs into numerical vectors. These vectors prevent ex-

isting attacks that have shown to be successful on BFs.

Moreover, compared to other hardening techniques for

BFs, our technique generates high-quality linkage re-

sults by training a mapping function which transforms

the encodings of one DO into the vector space of the

other DO. This transformation guarantees the compa-

rability of numerical vectors. We showed that our tech-

nique can outperform existing hardening techniques for

BF both in terms of privacy and linkage quality.

In future work, we plan to analyse different autoen-

coder architectures for the encoding process and inves-

tigate the vulnerability of our method to clustering and

graph-based attacks in more detail [11]. Clustering at-

tacks are similar to pattern mining attacks [47] on BFs

in that they exploit the similarities between the fre-

quencies of patterns in plain-text and encoded values.

Graph-based attacks aim at aligning the nodes in two

similarity graphs generated from a plain-text and an

encoded data set, respectively, based on attribute- and

neighbourhood-similarities [45].
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