
Flexible and Extensible Generation and Corruption of
Personal Data ∗

Peter Christen and Dinusha Vatsalan
Research School of Computer Science, The Australian National University,

Canberra ACT 0200, Australia
{peter.christen, dinusha.vatsalan}@anu.edu.au

ABSTRACT
With much of today’s data being generated by people or re-
ferring to people, researchers increasingly require data that
contain personal identifying information to evaluate their
new algorithms. In areas such as record matching and de-
duplication, fraud detection, cloud computing, and health
informatics, issues such as data entry errors, typographical
mistakes, noise, or recording variations, can all significantly
affect the outcomes of data integration, processing, and min-
ing projects. However, privacy concerns make it challenging
to obtain real data that contain personal details. An al-
ternative to using sensitive real data is to create synthetic
data which follow similar characteristics. The advantages of
synthetic data are that (1) they can be generated with well
defined characteristics; (2) it is known which records rep-
resent an individual created entity (this is often unknown
in real data); and (3) the generated data and the generator
program itself can be published. We present a sophisticated
data generation and corruption tool that allows the creation
of various types of data, ranging from names and addresses,
dates, social security and credit card numbers, to numerical
values such as salary or blood pressure. Our tool can model
dependencies between attributes, and it allows the corrup-
tion of values in various ways. We describe the overall archi-
tecture and main components of our tool, and illustrate how
a user can easily extend this tool with novel functionalities.

Categories and Subject Descriptors
H.2.6 [Database management]: Database Applications—
Data mining ; H.2.4 [Database management]: Systems—
Textual data-bases

General Terms
Experimentation

∗This work was partially funded by the Australian Research
Council (ARC) under Linkage Project LP100200079; and by
Fujitsu Laboratories (Japan).

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’13 San Francisco, California USA
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2507815.

Keywords
Synthetic data; data generator; data matching; duplicates

1. INTRODUCTION
Much of the data generated today either refer to people

or they are generated by people. Examples include shop-
ping and travel transactions; electronic health and financial
records; taxation, social security, and census records; emails,
tweets, blog posts, and so on. For researchers who work on
the development of novel algorithms that process, integrate,
or analyze data that contain personal identifying informa-
tion, it is often difficult to obtain real data because of pri-
vacy and confidentiality concerns. These concerns prohibit
the publication of data collections that contain personal in-
formation. Public data collections have shown to be highly
valuable resources for research in areas such as information
retrieval and machine learning [2, 8]. Without real data,
it is however difficult to properly evaluate the performance
and accuracy of novel algorithms. Only a few ‘real’ data
sets that contain personal information are available for re-
search [1, 4]. The intrinsic details of real data, such as data
entry errors, phonetic variations, typographical mistakes,
nicknames, measurement variations, random noise, depen-
dencies between values, and values changing over time, can
however crucially influence the performance of algorithms
that work on data that contain personal information [1].

The alternative to using real sensitive data is to create
synthetic data based on real data. Such synthetic data
should exhibit similar characteristics as real data with re-
gard to distributions of values, errors, noise, variations, and
dependencies between attribute values. Generating synthetic
data is a non-trivial process, and as a result many researchers
implement their own simple ad-hoc methods for data gener-
ation and/or corruption (the process of adding noise and er-
rors to data). While several data generators that can create
personal data have been developed in the past (summarized
in Section 2), all of them are limited in their functionality to
generate data with certain characteristics only, their inabil-
ity to be extended to novel types of data, and their lack of
capability to generate data for Unicode character sets other
than ASCII. Our tool is a first that overcomes these limita-
tions. It is freely available at: http://dmm.anu.edu.au/geco

2. RELATED WORK
Several tools specifically aimed at generating data that

contain personal information have been developed in the
past. A first such generator was presented by Hernandez and

http://dmm.anu.edu.au/geco

Existing
data set

P
ho

ne
tic

O
C

R

M
is

sp
el

l

wr, r, start
le, ile, end

z, s, middle
m, rn

Look−up files
ph, f, all

gail, gayle

su
rn

am
e

Attribute functions
look−up files

. . .

miller, 294
smith, 378
taylor, 147

ci
tyboston, 39

. . .

. . .

Compound attribute
look−up files

ny,17,ca,24

male, 65,

&
 s

ta
te

female, 35,

ge
nd

er

m
ar

ita
l

&
 s

al
ar

y

single, 23,

ny,19,ca,21

. . .

Step 1:

records
original

Generate
Step 2:

records
original
CorruptGenerated

data set
with original

records

Generated

records

data set
with original
and duplicate

Compound attribute

Generate

blood pressure

salary & age

& age
. . .

generation functions

phone number

. . .
age normal

Attribute generation
functions

Generate credit
card number

Figure 1: Overview of our data generation and corruption process, shown with simplified look-up files.

Stolfo [6]. It allowed the generation of records using lists of
names, cities, states and zipcodes (without frequency infor-
mation) and their corruption using edit-based modifications
and swapping of categorical values. In 2003, Bertolazzi et
al. [3] described an improved generator which allowed values
to be randomly set to missing, and which provided a larger
number of corruption functions. Arehart and Miller [1] de-
scribed how they created a ground truth data set of 70,000
culturally diverse names drawn from different sources and
manually incorporated diverse name variations.
The Febrl record linkage system provides a data genera-

tor that allows inclusion of frequency information, as well
as look-up files for nicknames and misspellings [4]. A recent
extension of this generator enables the modeling of some
specific attribute dependencies, and allows the generation
of groups of records that correspond to a family [5]. These
dependencies and groups are however hard-coded and not
extensible. Talburt et al. [7] recently presented the SOG

tool for creating temporal records that represent people’s
occupancy. SOG can model the address history of individ-
uals and couples by generating sequences of records with
address changes based on collected real data sources.
Even though synthetic data have various advantages, the

main challenge faced when developing a data generator is
that the created data must represent the intrinsic charac-
teristics of real data as much as possible. Our approach,
described next, aims to tackle this challenge.

3. OVERALL ARCHITECTURE
Figure 1 provides a conceptual overview of our approach

to data generation and corruption. In the first step, pre-
sented in the following section, we generate original records
based on look-up files and attribute generation functions.
In the second step, the original records are corrupted to
form new records, called duplicate records. Different types
of corruptions can be applied, as will be described in Sec-
tion 5. More than one duplicate record can be generated for
one original record. Alternatively to corrupting the original
records, an existing data set, possibly containing real data,
can be corrupted by only invoking the corruption step.
Each generated original record is given a unique identifier,

and each duplicate record is also given a unique identifier
that designates the original record it is based on, as can
be seen in Figure 5. The original and duplicate records are
written into a comma separated values (CSV) text file which
allows easy portability and further processing. The number
of records that can be generated is unlimited (subject to
available memory size only).

def gen_ssn(): # Return a random social security number
num1 = str(random.randint(1,999)).zfill(3)
num2 = str(random.randint(1,99)).zfill(2)
num3 = str(random.randint(1,9999)).zfill(4)
return num1+‘-’num2+‘-’+num3

Figure 2: Python code to generate a random social
security number (without checking its validity).

The key novelties of our data generation and corruption
tool are that it (1) allows flexible definition of dependencies
between up-to three attributes; (2) is easily extensible with
new functionalities (via Python programs and look-up files);
and (3) is Unicode compatible, therefore data in any charac-
ter set can be generated and/or corrupted. We show Python
code snippets to illustrate how our tool can be configured.

4. DATA GENERATION
A user configures the data generation process by defin-

ing the attribute types to be generated, their names, and
type specific parameter settings. The values in an attribute
are either generated independently from values in other at-
tributes, or sets of attributes can be generated in a com-
pound way with values depending on each other.

As shown in Figure 3, the main parameters to be set in
the generation process are the name of the output file to be
written, if a header line (with attribute names) is written
into the output file, the number of original records that are
to be generated, the details of the attributes to be generated
and their names, as well as the Unicode encoding to be used.

4.1 Generating individual attributes
Two types of individual attributes can be generated. The

first is based on frequency look-up files that contain categor-
ical values and their relative frequencies, where the proba-
bility that a certain value will be generated depends upon
these frequencies.

The second type of individual attribute is based on a
user defined function which randomly generates values. Any
function can be used, as long as it returns a value (as a
string) each time it is called. Functions can be designed to
generate a specific type of data, such as a credit card num-
ber, a phone number, a date, or a social security number
(as Figure 2 shows); or they can be more general functions
that for example generate uniformly or normally distributed
numerical values in a certain range (functions can have pa-
rameters to be flexible). Users can easily extend our tool by
writing their own Python functions according to their needs.

sname_attr = GenFreqAttr(attr_name = ‘last_name’,
freq_file = ‘last_name_freq.csv’)

ssn_attr = GenFuncAttr(attr_name = ‘ssn’,
function = attrgenfunct.gen_ssn)

gender_city_attr = GenCateCateAttr(
cate1_attr_name = ‘gender’,
cate2_attr_name = ‘city’,
lookup_file = ‘gender_city.csv’)

attr_name_list = [‘last_name’, ‘gender’, ‘city’, ‘ssn’]

attr_data_list = [sname_attr, ssn_attr, gender_city_attr]

test_gen = GenDataSet(output_file_name = ‘test_file.csv’,
write_header_line = True,
rec_id_attr_name = ‘rec_id’,
number_of_records = 10000,
attribute_name_list = attr_name_list,
attribute_data_list = attr_data_list,
unicode_encoding = ‘ascii’)

Figure 3: Settings to generate a data set with 10,000
original records consisting of four attributes, to be
written into the file test_file.csv.

4.2 Generating compound attributes
Real-world data commonly show dependencies between

attributes, and it is therefore important that such dependen-
cies can be modeled. For example, a person’s blood pressure
might depend upon their gender, while their salary might de-
pend upon their age. As an original record is generated, the
value in one attribute can depend upon a randomly selected
value in one or two other attributes. The configuration of
these dependencies is based on special types of look-up files,
and function definitions similar to the individual attribute
generation functions described above. Our tool allows four
types of attribute dependencies to be specified.1

(1) Categorical-categorical: This type of compound
attribute generates categorical values in two attributes, where
a value in the second attribute depends upon the value gen-
erated in the first attribute. This allows for example the
generation of values in an attribute state that depend upon
the values in a gender attribute, leading to different distri-
butions of males and females in different states. Values in
such compound attributes are generated based on look-up
files that contain frequencies of combinations of categori-
cal values. Figure 3 shows how such a compound attribute
(gender city attr) is defined.
(2) Categorical-continuous: This type of compound

attribute generates categorical values in the first attribute,
and in the second attribute continuous values that depend
upon the categorical values in the first attribute. This allows
for example the generation of an attribute that contains con-
tinuous salary values that depend upon the values in a mari-

tal status attribute. Values in such compound attributes are
generated based on look-up files that contain categorical at-
tribute values and their frequencies of occurrences, and the
functions and their parameters used to generate the values
in the continuous attribute.
(3) Continuous-continuous: This type of compound

attribute generates two continuous values, where values in
the second attribute depend upon the values generated in

1Allowing dependencies between any number of attributes
would require complicated look-up file formats, thus making
it more difficult to configure our data generator.

edit_corr = CorrValEdit(pos_funct = pos_mod_normal,
char_set_funct = char_set_ascii,
insert_prob = 0.5,
delete_prob = 0.2,
substitute_prob = 0.3,
transpose_prob = 0.0)

miss_val_corr = CorrMissVal()
phon_corr = CorrValPhonetic(lookup_file = ‘phonetic.csv’)
sname_ms_corr = CorrCateVal(lookup_file = ‘sname_miss.csv’)

attr_corr_data = {‘last_name’:[(0.2, edit_corr),
(0.5, sname_ms_corr),
(0.3, phon_corr)],

‘gender’:[(1.0, miss_val_corr)],
‘city’:[(0.6, edit_corr),

(0.4, phon_corr)],
‘ssn’:[(1.0, miss_val_corr)]}

test_cor = CorrDataSet(num_of_org_rec = 10000,
num_of_mod_rec = 5000,
attribute_name_list = attr_name_list,
max_num_dup_per_rec = 5,
num_dup_dist = ‘zipf’,
max_num_mod_per_attr = 1,
num_mod_per_rec = 2,
attr_corr_prob = {‘last_name’:0.5,

‘gender’:0.1, ‘city’:0.3, ‘ssn’:0.1},
attr_corr_funct = attr_corr_data)

Figure 4: Settings to corrupt the records generated
in Figure 3 and generate 5,000 duplicate records.

the first attribute. This allows for example the generation
of values in an attribute blood pressure that depend upon
the values in an age attribute. Any user defined function
that generates numerical values can be used for the second
(dependent) attribute, while the values in the first attribute
can be generated following either a uniform or normal distri-
bution with parameters provided by the user, with further
functions left for future work.

(4) Categorical-categorical-continuous: The last type
of compound attribute generates values in two categorical
and one continuous attributes, where the values in the sec-
ond categorical attribute depend upon the values in the first
categorical attribute, and the values in the continuous at-
tribute depend upon the values in the second categorical
attribute (and therefore indirectly also on the first categor-
ical attribute). This allows for example the generation of
an attribute that contains numerical blood pressure values
that depend upon categorical gender and city values. Simi-
lar to the other compound attributes, look-up files are used
to specify the categorical values and their frequencies, and
the functions used to create the continuous values.

5. DATA CORRUPTION
To simulate real-world ‘dirty’ data [4, 6], researchers often

not only need to generate data, but also corrupt data by
applying various types of modifications to their data. Such
corruptions simulate data entry errors that can occur during
manual typing, scanning and OCR, or speech recognition of
dictated information. Various combinations of these three
major types of data entry errors can occur [5].

In the second step of our data generation and corruption
process, the corruption module allows the specification of
different types of modifications that are applied on selected
attributes with certain probabilities, as is shown in Figure 4.
The six types of corruption functions available are:

(1) Missing value corruptor: This function simply re-
places an attribute value with an empty string.
(2) Character edit corruptor: This function randomly

selects a position in an attribute value (based on real-world
studies more likely towards the middle or end of a value [4]),
and applies one of four edits at that position: insert a new
character, delete the character, substitute the character with
a new character, or transpose the character with one of its
neighbors. Different probabilities can be set for these edits.
(3) Keyboard corruptor: This function simulates a

typing error and randomly replaces a character with a neigh-
boring (same keyboard row or column) character according
to a keyboard layout matrix. Different probabilities can be
set for selecting a replacement in a row and or column.
(4) Optical character recognition (OCR) corrup-

tor: This function is based on a look-up file that contains
pairs of character sequences that have similar shapes, such
as 5↔S or m↔rn. Such pairs can model OCR errors.
(5) Phonetic corruptor: This function simulates pho-

netic variations (for example for names that sound similar).
It is based on a look-up file that contains pairs of phonetic
variations of sub-strings, such as ph↔f, or rie↔ry.
(6) Categorical value swap corruptor: The corrup-

tion function can be applied on specific categorical attributes
by using a look-up file that contains categorical values and
their variations (such as misspellings and nicknames). This
corruption function allows the creation of realistic modified
values collected from real data.

Once the different corruption functions have been defined, as
shown in Figure 4, they are attached to selected attributes
(see attr corr data), and probabilities need to be specified
which corruption function will be selected with a certain
likelihood. A corruption function can be applied on several
attributes, and several corruption functions can be applied
on one attribute. An overall probability distribution (argu-
ment attr corr prob) needs to be set to determine how likely
an attribute is selected for corruption. Other required pa-
rameters include the number of duplicated records to be
generated, the maximum number of duplicated records gen-
erated based on a single original record, the distribution of
how duplicated records are generated from an original record
(following a poisson, uniform, or zipf distribution), the max-
imum number of corruptions applied on a single attribute,
and the number of corruptions applied on one record.

6. EXAMPLE DATA AND DISCUSSION
Once all attributes, their settings, and the corruption func-

tions have been specified, the generation and corruption of
a data set can be started with a few simple function calls:

org_recs = test_gen.generate()

org_dup_recs = test_cor.corrupt_records(org_recs)

test_gen.write()

The write function saves the complete data set into a CSV
text file. Figure 5 shows a small example data set generated
based on the specifications given in Figures 3 and 4.
We have generated a large number of data sets of various

sizes and many different parameter settings to test our tool
and evaluate that the generated data follow the specifica-
tions given. Generating a million original records consisting
of 8 attributes each took around 6 min on a desktop with a 3
GHz CPU and 4 GBytes of main memory, and creating one

rec_id, last_name, gender, city, ssn
rec-0-org, wiegold, male, new york, 193-12-8750
rec-0-dup-0, wigold, , new york, 193-12-8750
rec-0-dup-1, wiekold, male, newyork, 193-12-8750
rec-0-dup-2, wiegld, male, nev yorke,
rec-1-org, sheriff, female, atlanta, 694-70-0582
rec-1-dup-0, sherriff, female, alanta, 694-70-0582

Figure 5: Example data with original records
(identifiers of the form rec-X -org) and their (cor-
rupted) duplicates (identifiers of the form rec-X -dup-

Y, where X is the original record they are based on).

million duplicates for these records took 38 min on the same
machine. To validate the Unicode compatibility of our tool
we have generated data sets using three different Japanese
character sets (Kanji, Katakana, and Hiragana), which were
manually inspected by a Japanese colleague for validity.

7. CONCLUSIONS AND FUTURE WORK
We have presented a flexible and extensible data gener-

ation and corruption tool that is capable of generating at-
tribute values both of categorical and continuous types; that
can model dependencies between up-to three attributes; and
that can corrupt the generated data based on functions that
model various real data entry processes. We believe our
tool will be valuable for researchers that require realistic
personal data to evaluate their algorithms with regard to
performance, efficiency, and effectiveness. Our tool is freely
available, and can be modified and extended easily.

There are two main avenues for extending our tool. The
first is to allow data generation with dependencies between
groups of records, such as records that represent a family or
household. The second extension is to incorporate temporal
aspects, similar to the generator developed by Talburt et
al. [7]. Our overall aims are to facilitate both temporal data
generation as well as dependencies within groups of records.
We also work on a Web based implementation of our tool to
allow easy generation and corruption of data sets online.

8. REFERENCES
[1] M. Arehart and K. J. Miller. A ground truth dataset

for matching culturally diverse romanized person
names. In LREC, 2008.

[2] K. Bache and M. Lichman. UCI machine learning
repository, 2013.

[3] S. M. Bertolazzi P, De Santis L. Automated record
matching in cooperative information systems. In
DQCIS Workshop held at ICDT, Siena, Italy, 2003.

[4] P. Christen. Data Matching. Data-Centric Systems and
Applications. Springer, 2012.

[5] P. Christen and A. Pudjijono. Accurate synthetic
generation of realistic personal information. In
PAKDD, Springer LNAI 5476, Bangkok, 2009.

[6] M. A. Hernandez and S. J. Stolfo. The merge/purge
problem for large databases. In ACM SIGMOD, 1995.

[7] J. Talburt, Y. Zhou, and S. Shivaiah. SOG: a synthetic
occupancy generator to support entity resolution
instruction and research. In ICIQ, Potsdam, 2009.

[8] E. M. Voorhees. The philosophy of information retrieval
evaluation. In Evaluation of cross-language information

retrieval systems, volume LNCS 2406. Springer, 2002.

	Introduction
	Related work
	Overall architecture
	Data generation
	Generating individual attributes
	Generating compound attributes

	Data corruption
	Example data and discussion
	Conclusions and future work
	References

