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Abstract

This paper presents a framework to recognize temporal
compositions of atomic actions in videos. Specifically, we
propose to express temporal compositions of actions as se-
mantic regular expressions and derive an inference frame-
work using probabilistic automata to recognize complex ac-
tions as satisfying these expressions on the input video fea-
tures. Our approach is different from existing works that
either predict long-range complex activities as unordered
sets of atomic actions, or retrieve videos using natural lan-
guage sentences. Instead, the proposed approach allows
recognizing complex fine-grained activities using only pre-
trained action classifiers, without requiring any additional
data, annotations or neural network training. To evaluate
the potential of our approach, we provide experiments on
synthetic datasets and challenging real action recognition
datasets, such as MultiTHUMOS and Charades. We con-
clude that the proposed approach can extend state-of-the-
art primitive action classifiers to vastly more complex ac-
tivities without large performance degradation.

1. Introduction
Real-world human activities are often complex combi-

nations of various simple actions. In this paper, we define
compositional action recognition as the task of recognizing
complex activities expressed as temporally-ordered compo-
sitions of atomic actions in videos. To illustrate our task, let
us consider the video sequence depicted in Figure 1. Our
goal is to have this video clip retrieved from a large collec-
tion of videos. A natural query in this regard can be: “find
videos in which someone is holding a jacket, dressing, and
brushing hair, while talking on the phone?”. As is clear,
this query combines multiple atomic actions such as “hold-
ing a jacket”, “dressing”, etc.; however, we are interested
only in videos that adhere to the temporal order provided in

∗Corresponding author. Email: rodrigo.santacruz@csiro.au

the query. Such a task is indispensable in a variety of real-
world applications, including video surveillance [2], patient
monitoring [17], and shopping behavior analysis [19].

The current state-of-the-art action recognition models
are usually not equipped to tackle this compositional recog-
nition task. Specifically, these models are often trained to
either discriminate between atomic actions in a multi-class
recognition setting – such as “holding a jacket”, “talking on
the phone”, etc. [1, 32], or generate a set of action labels – as
in a multi-label classification setup – for a given clip, e.g.,
{“cooking a meal”, “preparing a coffee”} [9, 10, 34]. On
the one hand, extending the multi-class framework to com-
plex recognition may need labels for all possible composi-
tions – the annotation efforts for which could be enormous.
On the other hand, the multi-label formulation is designed
to be invariant to the order of atomic actions and thus is
sub-optimal for characterizing complex activities.

Recent methods attempt to circumvent these limitations
by leveraging textual data, allowing zero-shot action recog-
nition from structured queries expressed as natural language
sentences. For instance, these are models able to perform
zero-shot action classification [13, 23], action localization
[3, 6, 20], and actor-action segmentation [4] from natural
language sentences. However, such descriptions are inher-
ently ambiguous and not suitable for precisely describing
complex activities as temporal compositions of atomic ac-
tions. As an example, all natural language descriptions
listed for the video shown in Figure 1 are true, but none
of them describe the sequence of events precisely.

Building on the insight that complex activities are fun-
damentally compositional action patterns, we introduce a
probabilistic inference framework to unambiguously de-
scribe and efficiently recognize such activities in videos.
To this end, we propose to describe complex activities as
regular expressions of primitive actions using regular lan-
guage operators. Then, using probabilistic automata [26],
we develop an inference model that can recognize these
regular expressions in videos. Returning to the example
in Figure 1, given the primitive actions “talking on the



Figure 1. A complex activity can be described by natural language queries, which are often incomplete and have vague and/or ambiguous
temporal relations between the constituent actions. For instance, option (a) does not mention all the actions involved, and it is not clear
from options (b) and (c) whether the actions happen simultaneously or sequentially. In contrast, a regular expression of primitive actions
can precisely describe the activity of interest. For instance, given the primitive actions “talking on the phone” (tp), “holding a jacket” (hj),
“dressing” (d), and “brushing hair” (bh), the regular expressionf tp; hj g+ � f tp; dg+ � f tp; bhg+ precisely describes the activity
depicted in the frames, where the sets of primitive actions(f�g ), the regular language operator `concatenation' (� ) and the operator
`one-or-more repetition' (+ ) de�ne concurrent, sequential and recurrent actions, respectively.

phone” (tp), “holding a jacket” (hj), “dressing” (d), and
“brushing hair” (bh), the regular expressionf tp; hj g+ �
f tp; dg+ � f tp; bhg+ precisely describes the activity in
the video, where the sets of primitives(f�g ), the regular
language operators `concatenation' (� ), and `one-or-more
repetition' operator (+ ) de�ne concurrent, sequential, and
recurrent actions respectively.

Our framework offers some unique bene�ts. It can rec-
ognize rare events, such as an “Olympic goal” for example,
by composing “corner kick”, “ball traveling”, and “goal”.
Further, it does not require any additional data or parame-
ter learning beyond what is used for the primitive actions.
Thus, it can scale an existing pretrained action recognition
setup towards complex and dynamic scenarios.
Below we summarize our main contributions:

1. We propose to recognize complex activities as tem-
poral compositions of primitive action patterns. We
formulate a framework for this task that resembles a
regular expression engine in which we can perform in-
ference for any compositional activity that can be de-
scribed as a regular expression of primitives.

2. Using probabilistic automata, we derive a model to
solve the inference problem leveraging pretrained
primitive action classi�ers, without requiring addi-
tional data, annotations or parameter learning.

3. Apart from experiments on a synthetic dataset, we
evaluate the proposed framework on the previously de-
scribed task of compositional action recognition us-
ing trimmed and untrimmed videos from challenging
benchmarks such as MultiTHUMOS [35] and Cha-
rades [30].

2. Related Work

The action recognition community has mostly focused
on developing models to discriminate between short and
simple actions [7, 15]. While getting very accurate in this
context, these models require training data for every ac-
tion of interest which is often infeasible. Zero-shot learn-
ing approaches [5, 13, 16, 21] were developed to mitigate

this problem, but these models still interpret action recogni-
tion as the assignment of simple action labels. In contrast,
we follow a compositional view of action recognition where
complex actions are inferred from simple primitive actions.

Recently, the community has shifted focus to the recog-
nition of the long-tailed distribution of complex activities.
However, existing methods [9, 10, 34] tackle this problem in
a multi-label classi�cation setup where the goal is to predict
the atomic actions necessary to accomplish a complex ac-
tivity under weak and implicitly-de�ned temporal relation-
ships. In contrast, our proposed framework allows query-
ing complex activities with speci�c and explicitly provided
temporal order on the atomic actions.

Another approach to recognize complex activities with
partial temporal structure is to leverage vision-language
models [3, 4, 6, 20]. We argue, however, that natural lan-
guage sentences may lead to ambiguous descriptions of
complex activities as shown in Figure 1, which makes it
dif�cult to ground the videos and their queries. Instead, we
resort to regular languages that are designed to unambigu-
ously describe concepts and also allows ef�cient inference.

Serving as inspirations for our approach, the works of
�Ikizler and Forsyth [11] and Vo and Bobick [33] recog-
nize human-centered activities from compositions of primi-
tive actions. However, these approaches can only query for
sequential or alternative primitive actions of�xed length.
In contrast, we propose a more expressive and complete
language for querying complex activities allowing sequen-
tial, concurrent, alternative, and recursive actions of varying
lengths. Furthermore, our work focuses on zero-shot recog-
nition of complex activities, unlike these approaches which
require training data for the queried activities.

Note that our work is different from ones that leverage
manually-annotated training data to perform structured pre-
dictions involving primitive actions. For instance, Richard
and Gall [28] and Piergiovanni and Ryoo [25] consistently
label video frames in a sequence, while Ji et al.'s model [14]
outputs space-time scene graphs capturing action-object in-
teractions. Differently, we tackle zero-shot activity classi-
�cation over a highly complex label space (i.e., the space



of all regular expressions of primitive actions) by using a
probabilistic inference framework that uses only pretrained
primitive action classi�ers and does not need training data
for action composites, or classi�er �netuning.

3. Approach

In this section, we �rst formalize the problem of recog-
nizing complex activities described by regular expressions
of primitive actions. Then, we derive a deterministic and
probabilistic inference procedure for this problem.

3.1. Problem Formulation

Initially, let us assume the existence of a pre-de�ned set
of known actions, called primitives. For example, “driv-
ing” (d), “getting into a car” (gc), “talking on the cell-
phone” (tc), and “talking to someone” (ts). These primi-
tives can also happen simultaneously in time, which we ex-
press as subsets of these primitive actions,e.g., f ad; atc g
means someone driving and talking on the cellphone at
the same time. Moreover, consider three basic composi-
tion rules inspired by standard regular expression operators:
concatenation(� ), alternation(j), and Kleene star(?) de-
noting sequences, unions and recurrent action patterns, re-
spectively. Note also that more complex operators can be
de�ned in terms of these ones,e.g., one-or-more repetition
of action (+ ) is de�ned asa+ , a � a?. Then, from
any complex activity described as a composition of sub-
sets of primitive actions and these operators, our goal is
to recognize whether a given video depicts the described
activity. For instance, whether a given YouTube video de-
picts the complex activity “someone driving and talking on
the phone or talking to someone, repeatedly, just after get-
ting into a car”, which can be described unambiguously as
“agc � (f ad; atc g j f ad; ats g)+ ”.

Formally, let us de�ne a set ofprimitive actionsA =
f ai gM

i =1 . We can express a complex activity by forming
action patterns, an arbitrary regular expressionr combin-
ing subsets of primitivesw 2 P (A), whereP (A) is the
power-set ofA , with the aforementionedcomposition rules
O = f� ; j; ?g. Note that background actions and non-
action video segments are represented by the null primi-
tive ; 2 P (A). Our goal then is to model a function
f r : V ! [0; 1] that assigns high values to a videov 2 V if
it depicts the action pattern described by the regular expres-
sionr and low values otherwise.

This work focuses on solving the aforementioned prob-
lem by developing a robust inference procedure leveraging
state-of-the-art pretrained primitive action classi�ers. Such
an approach does not require extra data collection, param-
eter learning or classi�er �netuning. Indeed, learning ap-
proaches are beyond the scope of this paper and a com-
pelling direction for future work.

3.2. Deterministic Model

Regular expressions are used to concisely specify pat-
terns of characters for matching and searching in large
texts [18, 24, 29]. Inspired by this idea, we now describe a
deterministic model based on deterministic �nite automata
(DFA) [22, 27] to the problem of recognizing action pat-
terns in videos.

Let us start by de�ning a DFAM r for an action pattern
r as a 5-tuple(Q; � ; �; q0; F ), consisting of a �nite set of
statesQ, a �nite set of input symbols called the alphabet� ,
a transition function� : Q� � ! Q , an initial stateq0 2 Q ,
and a set of accept statesF � Q . In our problem, the al-
phabet� is the power-set of action primitivesP(A) and the
transition function� is a lookup table mapping from a state
qi 2 Q and a subset of primitivesw 2 � to another state
qj 2 Q or halting the automaton operation if no transition
is de�ned. Note that all these structures are ef�ciently con-
structed and optimized from a given action patternr using
traditional algorithms such as non-deterministic �nite au-
tomaton (NFA) construction [12], the NFA to DFA subset
construction [27], and Hopcroft's DFA minimization [8].

Additionally, let us denote the subset of prim-
itive actions happening in a given framex as
w(x) = f a 2 A j p(ajx) � � g, where p(ajx) is the
probability of a primitive actiona 2 A happening in frame
x and � 2 [0; 1] is a threshold hyper-parameter. In this
formulation, p(ajx) can be built from any probabilistic
action classi�er, while� should be set by cross-validation.
Then, we say that the deterministic model accepts an
input videov = hx1; : : : ; xn i if and only if there exists a
sequence of stateshq0; : : : ; qn i for qi 2 Q such that (i) the
sequence starts in the initial stateq0, (ii) subsequent states
qi satisfyqi = � (qi � 1; w (x i )) for i = 1 ; : : : ; n, and (iii)
the sequence �nishes in a �nal stateqn 2 F .

This procedure de�nes a binary function that assigns a
value of one to videos that reach the �nal state of the com-
piled DFAM r and zero otherwise. This is a very strict clas-
si�cation rule since a positive match using imperfect classi-
�ers is very improbable. In order to relax such a classi�ca-
tion rule, we propose implementing the score function

f r (v) =
dist(q0; q̂)

dist(q0; q̂) + min qf 2F dist ( q̂; qf )
; (1)

whereq̂ is the state in which the compiled DFAM r halted
when simulating the sequence of frames de�ned by the
video v, and the functiondist(qx ; qy ) computes the mini-
mum number of transitions to be taken to reach the stateqy

from stateqx . That is, for a given regular expression, the
deterministic model scores a video according to the fraction
of transitions taken before halting in the shortest path to a
�nal state in the compiled DFA.

In short, the deterministic model implements the func-
tion f r by computing Equation 1 after simulating the DFA



M r compiled for the regular expressionr on the sequence
of subsets of primitive actionsw(x) generated by threshold-
ing the primitive action classi�ersp(ajx) on every framex
of the input videov.

3.3. Probabilistic Model

In order to take into account the uncertainty of the prim-
itive action classi�ers' predictions, we now derive a prob-
abilistic inference model for our problem. Speci�cally, we
propose to use Probabilistic Automata (PA) [26] instead of
DFAs as the backbone of our framework.

Mathematically, let us de�ne a PAUr for a regular ex-
pressionr as a 5-tuple(Q; � ; T; � ; F ). Q, � , andF are
the set of states, the alphabet, and the �nal states, respec-
tively. They are de�ned as in the deterministic case, but an
explicit reject state is added toQ in order to model the halt-
ing of an automaton when an unexpected symbol appears
in any given state.T = f8 w 2 � : Tw 2 RjQj�jQj g is the
set of row stochastic transition matricesTw associated with
the subset of primitivesw 2 � in which the entry[Tw ]i;j
is the probability that the automaton transits from the state
qi to the stateqj after seeing the subset of primitivesw.
Likewise, � 2 RjQj is a stochastic vector and[� ]i is the
probability that the automaton starts at stateqi .

Note that all these structures are estimated from the tran-
sition function� and initial stateq0 of the compiled DFA
M r for the same regular expressionr as follows,

[Tw ]i;j =
[[ � (i; w ) = j ]] + �

X

k2Q

[[ � (i; w ) = k]] + � jQj
;

[� ]i =
[[q0 = i ]] + �

X

k2Q

[[q0 = k]] + � jQj
;

(2)

where the indicator function [[c]] evaluates to one when the
conditionc is true and zero otherwise. The smoothing factor
� is a model hyper-parameter that regularizes our model by
providing non-zero probability for every distribution in our
model. As mentioned before, a hypothetical dataset of ac-
tion patterns and videos pairs could be leveraged by a learn-
ing algorithm to �t these distributions, but the current work
focuses on the practical scenario where such a training set
is dif�cult to obtain.

However, PAs do not model uncertainty in the input se-
quence which is a requirement of our problem, since we do
not know what actions are depicted in a given video frame.
Therefore, we propose to extend the PA framework by intro-
ducing a distribution over the alphabet given a video frame.
In order to make use of off-the-shelf action classi�ers like
modern deep leaning models, we assume independence be-
tween the primitive actions and estimate the probability of

a subset of primitives given a frame as

p(wjx) =

 
Y

a2A

p(ajx)[[a2 w ]] (1 � p(ajx)) [[a=2 w ]]
! 


; (3)

wherep(ajx) is the prediction of a primitive action classi�er
as before and
 is a hyper-parameter that compensates for
violations to the independence assumption. After such a
correction, we need to re-normalize thep(wjx) probabilities
in order to form a distribution.

Making use of this distribution, we derive the induced
(row stochastic) transition matrixI (x) 2 RjQj�jQj after ob-
serving a video framex by marginalizing over the alphabet
� as follows,

I (x) =
X

w2 �

Tw p(w j x); (4)

where the entry[I (x)] i;j denotes the probability of transit-
ing from stateqi to stateqj after seeing a framex. It is also
important to note that naively computing this induced tran-
sition matrix is problematic due to the possibly large alpha-
bet � . For instance, a modestly sized set of100 primitive
actions would generate an alphabet of2100 subsets of prim-
itives. In order to circumvent such a limitation, we factorize
Equation 4 as

I (x) =
X

w2 � 0

Tw p(wjx) + �T
�

1 �
X

w2 � 0

p(wjx)
�

; (5)

where we �rst de�ne a typically small subset of our alphabet
� 0 � � composed of subsets of primitives that have at least
one transition in the compiled DFAM r . Then, we make use
of the fact that the remaining subsets of primitives� n � 0

will be associated with exactly the same transition matrix,
denoted by�T and also computed according to Equation 2,
and the sum of their probability in a given frame is equal to
1 �

P
w2 � 0 p(w j x i ). Therefore, Equation 5 computes the

induced transition matrix ef�ciently, without enumerating
all subsets of primitives in the alphabet.

Finally, we can compute the normalized matching prob-
ability between a videov = hx1; : : : xn i and the regular
expressionr as the probability of reaching a �nal state in
the compiled PAUr as

PUr (v) =

0

@� |
j v jY

i =1

I (x i )

1

A

1
j v j

f ; (6)

wheref is an indicator vector such thatf i = 1 if and only
if qi 2 F and 0 otherwise. The normalization by1=jvj
calibrates the probabilities to allow comparisons between
videos of different length.

Intuitively, the proposed probabilistic inference model
implements the functionf r by �rst converting the compiled



DFA M r , for the regular expressionr , to a PAUr accord-
ing to Equation 2. Then, as described in Equation 6, this
model keeps a distribution over the statesQ starting from
the initial state distribution� and updating it according to
the induced transition matrixI (x), de�ned in Equation 5,
as we observe the input video framesx. Finally, as also de-
scribed in Equation 6, the matching probability is computed
as the sum of the probability in the �nal states once all of
the input video frames are observed.

4. Experiments

We now evaluate the proposed inference models for rich
compositional activity recognition. We �rst perform a de-
tailed analysis of the proposed approaches on controlled ex-
periments using synthetic data. Then, we test the utility of
our methods on challenging action recognition tasks.

4.1. Synthetic Analysis

It is unrealistic to collect video data for the immense
number of possible regular expressions that our models
may encounter. As such, we resort to the use of syn-
thetically generated data inspired by the well known Mov-
ing MNIST dataset [31]. More speci�cally, we develop a
parametrized data generation procedure to produce mov-
ing MNIST videos depicting different patterns of appearing
MNIST digits. Such a procedure can generate videos that
match regular expressions of the form

w+
1 � � � � �

� �
w1

s
+ � � � � � w1

n
+

� �
�
�
� � � �

�
�
�
�

�
wd

s
+

� � � � � wd
n

+
� �

; (7)

where the symbolsw 2 P (A) are subsets of the primitives
A which are the ten digit classes. The data generation pro-
cedure has the following parameters: the number of prim-
itives that simultaneously appear in a framejwj, the total
number of different sequential symbolsn, the number of
alternative sequences of symbolsd, the start positions of
each alternative sequence in the pattern, and the total num-
ber of generated frames. Since complex patterns can match
different sequences of symbols due to the the alternation
operator(j), we perform random walks from the start state
until reaching a �nal state in the compiled DFA in order to
generate video samples for a given regular expression. Fig-
ure 2 presents an example of regular expressions and video
clips generated by this data generation procedure.

Using the synthetically generated data, we �rst train the
primitive classi�ers on frames depicting a different number
of digits obtained from the MNIST training split. The prim-
itive classi�ers consist of a shallow CNN trained to min-
imize the binary cross entropy loss for all digits in a vast
number of frames. In order to evaluate the robustness of the
proposed models, we also generate worse versions of these
classi�ers by adding noise to their predictions. Figure 2
shows the performance of the learned primitive classi�ers

Figure 2. Left: Video samples synthetically generated for
the regular expression “f a5 ; a6 ; a7g+ � f a5 ; a7 ; a9g+ ��
f a4 ; a5 ; a6g+ j f a0 ; a1 ; a6g+ �

” which hasjwj = 3 digits per
frame, n = 3 different sequential symbols,d = 2 alternative
sequences starting froms = 2 , depicted in a total of8 frames.
The two �rst rows are clips that match the given regular expres-
sion, while the last row depicts a negative video clip.Right: The
performance of the primitive classi�ers on the test set with a dif-
ferent number of digits per frame and under different noise levels.
U(x) denotes uniform additive noise between[� x; x ] and the clas-
si�ers' predictions are re-normalized using a softmax function.

on different levels of noise and different numbers of digits
per frame. Note that more digits per frame implies more oc-
clusion between digits since the frame size is kept constant,
which also decreases the classi�er's performance.

Finally, using this synthetic data and the trained primi-
tive classi�ers, we test our models for the inference of dif-
ferent regular expressions by setting all the data generation
parameters to default values with the exception of the one
being evaluated. We use the values described in Figure 2 as
default values, but we generate video clips of 32 frames. In
Figure 3, we plot standard classi�cation/retrieval metrics,
e.g., Area Under the ROC Curve (AUC) and Mean Aver-
age Precision (MAP), against different data generation pa-
rameters. More speci�cally, at each con�guration, using
the MNIST test split, we generate 100 expressions with 20
positive samples, totaling about 2000 video clips. In or-
der to robustly report our results, we repeat the experiment
ten times reporting the mean and standard deviation of the
evaluation metrics. We also cross-validate the model hyper-
parameters,� for the deterministic model and� and
 for
the probabilistic model, in a validation set formed by ex-
pressions of similar type as the ones to be tested, but with
video clips generated from a held-out set of digit images
extracted from the training split of the MNIST dataset.

As can be seen, the probabilistic model performs con-
sistently better than the deterministic model in all experi-
ments, providing precise and robust predictions. Further-
more, the probabilistic model is more robust to high lev-
els of noise in the primitive classi�ers' predictions. While
the deterministic model works as poorly as random guess-
ing with high noise levels,e.g. U(0:8), the probabilistic
model still produces good results. The probabilistic model
also works consistently across different kinds of regular ex-
pressions. Indeed, its performance is almost invariant to



Figure 3. Plots of the performance, in terms of AUC and MAP, of the proposed methods on the generated synthetic dataset using primitive
classi�ers with different levels of noise as shown in Figure 2. The generated data consists of video clips depicting regular expressions
parametrized according to Equation 7. We evaluate the proposed approaches according to the following data parameters: the number of
digits that simultaneously appear in a framejwj, the total number of different sequential symbolsn, the variance in number of frames in the
videos, the number of alternative sequences of symbolsd, and the start positions of each alternative sequence in the pattern respectively.

most of the regular expressions parameters evaluated. In
the case of the number of digits per framejwj for which
relevant performance degradation is observed, the perfor-
mance degradation correlates with the decrease in perfor-
mance presented by the primitive classi�ers as the number
of digits per frames is increased (see Figure 2). The prob-
abilistic model, however, is able to mitigate this degrada-
tion. For example, comparing the performance at two and
�ve digits per frame, we observe that a drop of about 16%
in AUC on the primitive classi�ers performance causes a re-
duction smaller than 3% in AUC for the probabilistic model.

4.2. Action Recognition

We now evaluate our models on action recognition prob-
lems. We �rst describe the experimental setup, metrics and
datasets used in our experiments. Then we analyze how
effectively our model can recognize activities described by
regular expressions in trimmed and untrimmed videos.
Experimental Setup. In order to evaluate the proposed in-
ference models in the action recognition context, we col-
lect test datasets of regular expressions and video clips
by mining the ground-truth annotation of multilabel action
recognition datasets such as Charades [30] and MultiTHU-
MOS [35]. More speci�cally, we search for regular expres-
sions of the type de�ned in Equation 7 where the symbolsw
are subsets of the primitive actions annotated in the datasets.
Charades has 157 actions, while MultiTHUMOS has 65 ac-
tions. Given the regular expression parameters, we �rst
form instances of regular expressions using the primitive
actions present in the datasets, keeping the ones that have at
least one positive video clip. Then, using these instances of

regular expressions, we search for all positive video clips in
the dataset in order to form a new dataset of regular expres-
sions and video clips which will be used in our experiments.

As primitive action classi�ers, we use the I3D model
proposed by Carreira and Zisserman [1] pretrained on the
Kinetics dataset and �netuned on the training split of the
Charades and MultiTHUMOS datasets to independently
recognize the primitive actions. In this work, we only use
the I3D-RGB stream, but optical �ow and other informa-
tion can be easily added since our formulation depends only
on the �nal predictions of the primitive classi�ers. Using
the frame-level evaluation protocol (i.e. Charades localiza-
tion setting), these classi�ers reach16.12% and 24.93% in
MAP on classifying frames into primitive actions on the test
split of Charades and MultiTHUMOS datasets respectively.

Once the primitives classi�ers are de�ned, we setup the
deterministic and probabilistic inference models with them,
cross-validate these inference model hyper-parameters us-
ing expressions and video clips mined from the training
split, and evaluate these inference models in a different set
of expressions mined from the test split of the aforemen-
tioned action recognition datasets. It is important to empha-
size that the expressions mined for testing arecompletely
different from the ones used for cross-validation. There-
fore, the proposed inference models have not seen any test
frame or the same action pattern before, which provides an
unbiased evaluation protocol. In order to provide robust es-
timators of performance, in the experiments of the current
section, we repeat the data collection of 50 regular expres-
sions and the test procedure steps ten times, reporting the
mean and standard deviation of the evaluation metrics AUC



Expressions mined from MultiTHUMOS Expressions mined from Charades

Figure 4. Comparison with standard action classi�cation. Plots of the performance, in terms of AUC and MAP, of the proposed methods
using the I3D model [1] as the primitive action classi�er. We evaluate the models on collections of regular expressions of different
complexity mined from the test videos of MultiTHUMOS and Charades datasets. These regular expressions follows the format de�ned in
Equation 7 where all the variables are set to 1 with the exception of the one being evaluated. For instance, for the plot with variable number
of sequential symbols(n) the expressions vary from(w+

1 ) to (w+
1 � � � � � w+

4 ). Differently from the other experiments, the symbols
here denote any subset that contains the primitives.

and MAP. Note that these metrics are computed over the
recognition of thewhole complex activityas a singleton la-
bel. They arenot computed per primitive.
Comparison To Standard Action Recognition. Tra-
ditional action classi�cation aims to recognize a sin-
gle action in a video, making no distinction if the ac-
tion is performed alone or in conjunction with other ac-
tions. Abusing the proposed regular expression nota-
tion, for now consider the symbolsw in Equation 7
as the collection of all subsets of the primitive actions
that contains the actions inw. For instance, the sym-
bol f a2; a3g represents (only here) the set of symbols�

f a2; a3g; f a2; a3; a4g; : : :
�

a2; a3; a4; : : : ; ajAj
		

. Then,
we can say that the traditional action classi�cation problem
is the simplest instance of our formulation where the input
regular expressions are of the typef ag+ , meaning one or
more frames depicting the actiona alone or in conjunction
with other actions. Therefore, starting from this simpli�ed
setup, we analyze how our models behave as we increase the
dif�culty of the problem by dealing with more complex reg-
ular expressions. More speci�cally, we start from this sim-
plest form, where all the regular expression parameters are
set to one, and evolve to more complex expressions by vary-
ing some of the parameters separately. Figure 4 presents the
results on expressions mined from the Charades and Multi-
THUMOS datasets where we vary the number of concur-
rent (columns 1 and 4), sequential (columns 2 and 5), and
alternated actions (columns 3 and 6) by varying the num-
ber of primitives per symboljwj, the number of sequential
symbolsn, and the number of alternative sequencesd in the
mined regular expression and video clip data, respectively.

Note that there is a signi�cant difference in performance
when compared to the results in Section 4.1. Such a differ-
ence is due to the quality of the primitive classi�ers avail-
able for a challenging problem like action classi�cation. For
instance, the digits classi�ers for the MNIST dataset are at
least three times more accurate than the primitive action
classi�ers for Charades or MultiTHUMOS. However, dif-
ferent from the deterministic model, the probabilistic model
is able to extend the primitive action classi�ers, the I3D
model, for complex expressions without degenerating the
performance signi�cantly. For instance, considering all se-
tups, the probabilistic model presents a reduction in perfor-
mance of at most 15% in both datasets and metrics used.
It is a very useful result which means that the probabilistic
inference procedure can easily scale up the developments in
action recognition to this challenging compositional activity
recognition problem.
Trimmed Compositional Activity Classi�cation. In this
experiment, we evaluate the ability of the proposed algo-
rithms to recognize very speci�c activities in trimmed video
clips which depict only the entire activities from the begin-
ning to the end. Different from the previous experiment, but
like the other experiments, the input regular expressions are
formed by symbols that are only subsets of primitives. For
instance, the symbolf a2; a3g means that the primitive ac-
tionsa2; a3 2 A happen exclusively in a frame. In addition,
we mined test regular expressions with different combina-
tions of parameters ranging jointly from 1 to 6. Table 1
presents the results.

We would like to emphasize the dif�culty of the problem
where the chance performance is only about 2% MAP in



Figure 5. Examples of regular expressions and video clips matched with high probability by the proposed probabilistic inference model.
The primitive actions used to form these regular expressions are holding a glass (hg), pouring water into the glass (pg), drinks from the
glass (dg), running (r), cricket bowling (cb), and pole vault planting (pp).

both datasets. The deterministic model works only slightly
better than chance, which is also a consequence of the im-
perfect quality of the primitive classi�ers due to the dif�-
culty of action recognition as discussed before. On the other
hand, the probabilistic model provides gains above 20% in
AUC and 10% in MAP compared to the deterministic ap-
proach in both datasets. This shows the capability of the
probabilistic formulation to surpass the primitive classi�ers'
imprecision even when the activity of interest is very spe-
ci�c, producing a very complex regular expression.

Table 1. Results for activity classi�cation in trimmed videos.
Expressions mined from MultiTHUMOS Expressions mined from Charades

Method AUC MAP AUC MAP
Chance 50.00 (� 0.0) 2.00 (� 0:00) 50.00 (� 0.0) 2.00 (� 0:00)
Deterministic 52.46 (� 0.77) 3.66 (� 0:48) 51.85 (� 0.83) 4.40 (� 1:15)
Probabilistic 73.84 (� 2.63) 13.76 (� 1:93) 74.73 (� 2.35) 15.19 (� 1:09)

Untrimmed Compositional Activity Classi�cation. In
this task, we evaluate the capability of the proposed mod-
els for recognizing speci�c activities in untrimmed videos
which may depict the entire activity of interest at any part
of the video. Here, videos can contain more than one ac-
tivity, and typically large time periods are not related to any
activity of interest. In this context, we modify the mined
regular expressions to allow matches starting at any posi-
tion in the input video. It is easily accomplished by do-
ing the following transformation:re ! :?re:? where(:) is
the “wildcard” in standard regular expression engines and
in our formulation consists of every subset of primitive ac-
tions. In addition, we do not trim the video clips, instead we
compute matches between the mined regular expressions
and the whole video aiming to �nd at least one occurrence
of the pattern in the entire video. We present the results
on Table 2 where we compute matches between regular ex-
pressions and the videos that have at least one positive video
clip for the set of mined regular expressions.

In the same fashion as the previous experiments, the
probabilistic model performs signi�cantly better than the

deterministic model. More speci�cally, the performance of
the probabilistic model is at least 10% better than the de-
terministic model in this experiment on both metrics and
datasets. Therefore, the proposed probabilistic model is
able to analyze entire videos and generate their global clas-
si�cation as accurately as it does with trimmed video clips.

Table 2. Results for activity classi�cation in untrimmed videos.
Expressions mined from MultiTHUMOS Expressions mined from Charades

Method AUC MAP AUC MAP
Chance 50.00(� 0.0) 4.21(� 0.20) 50.00(� 0.0) 2.58(� 0.01)
Deterministic 65.69(� 1.34) 12.59(� 1.32) 55.76(� 1.21) 6.77(� 1.20)
Probabilistic 75.96(� 1.49) 26.03(� 1.45) 75.43(� 1.35) 17.90(� 1.25)

Qualitative Evaluation. In Figure 5, we display exam-
ples of regular expressions and matched video clips using
the proposed probabilistic model. In the �rst row, we see
examples of concurrent and sequential actions where the
woman depicted is holding a glass (hg) and pouring wa-
ter into the glass (pg) simultaneously, and then she drinks
from the glass (dg) while holding the glass. In the last two
rows, we see an example of alternated actions where the de-
sired action pattern starts with running (r) and �nishes with
someone either bowling (cb) or pole vault planting (pp).

5. Conclusion

In this paper, we addressed the problem of recognizing
complex compositional activities in videos. To this end,
we proposed to describe activities unambiguously as reg-
ular expressions of simple primitive actions and developed
deterministic and probabilistic frameworks to recognize in-
stances of these regular expressions in videos. Through a
variety of controlled experiments using synthetic data, we
showed that our probabilistic framework excels in this task
even when using noisy primitive classi�ers. In the action
recognition context, the proposed model was able to ex-
tend state-of-the-art action classi�ers to vastly more com-
plex activities without additional data annotation effort or
large performance degradation.


