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Abstract—Computer-Aided Diagnosis (CAD) has witnessed a
rapid growth over the past decade, providing a variety of
automated tools for the analysis of medical images. In surgical
pathology, such tools enhance the diagnosing capabilities of
pathologists by allowing them to review and diagnose a larger
number of cases daily. Geared towards developing such tools,
the main goal of this paper is to identify useful computer
vision based feature descriptors for recognizing cancerous tis-
sues in histopathologic images. To this end, we use images
of Hematoxylin & Eosin-stained microscopic sections of breast
and prostate carcinomas, and myometrial leiomyosarcomas, and
provide an exhaustive evaluation of several state of the art
feature representations for this task. Among the various image
descriptors that we chose to compare, including representations
based on convolutional neural networks, Fisher vectors, and
sparse codes, we found that working with covariance based
descriptors shows superior performance on all three types of
cancer considered. While covariance descriptors are known to
be effective for texture recognition, it is the first time that
they are demonstrated to be useful for the proposed task and
evaluated against deep learning models. Capitalizing on Region
Covariance Descriptors (RCDs), we derive a powerful image
descriptor for cancerous tissue recognition termed, Covariance
Kernel Descriptor (CKD), which consistently outperformed all
the considered image representations. Our experiments show that
using CKD lead to 92.83%, 91.51%, and 98.10% classification
accuracy for the recognition of breast carcinomas, prostate
carcinomas, and myometrial leiomyosarcomas, respectively.

I. INTRODUCTION

An essential step towards the successful treatment of can-
cer is its early and accurate diagnosis. This requires close
examination of tissue slides from suspected regions under a
microscope – a task which is often very time consuming,
thus limiting the number of cancer cases that experts can
handle daily. Given that hospitals and clinics are facing a
continuously increasing number of such cases, while the
number of expert pathologists for the task is limited, it is clear
that automated tools, with the ability to confidently identify
prospective cancerous regions, can assist the pathologists and
immensely speed up the diagnosis.

The goal of this paper is the development of a CAD
scheme for expediting the analysis of Hematoxylin & Eosin
(H&E)-stained tissue samples. H&E staining is a commonly
used technique in pathology where Hematoxylin will stain the
nuclei in blue or dark purple color, while Eosin imparts a pink
or lighter purple color to the cytoplasm, as depicted in Figure 1

Fig. 1: Hematoxylin & Eosin-stained samples for three types of tissue;
Breast (1st and 2nd row), Prostate (3rd and 4th rows) and Myometrium (5th

and 6th row).

for the considered types of tissue. An automated identification
of the regions that are highly likely to be cancerous, can assist
experts in finding them among the surrounding benign tissues
efficiently, resulting in faster diagnosis.

To achieve this goal, in this paper, we study discriminative
image representations that can confidently classify a benign
image patch from a cancerous one. In pursuit of such a repre-
sentation, we evaluate several state-of-the-art feature descrip-
tors that have demonstrated significant promise for mainstream
computer vision applications, including object recognition,
texture recognition, and shape discrimination (Section IV). We
compare classical feature descriptors such as Histograms of
Oriented Gradients (HOG) and Gabor wavelets, as well as
more recent representations based on Convolutional Neural
Networks (CNN), Fisher Vectors (FVs), sparse codes and
Region Covariance Descriptors (RCDs). Of these, RCD, which
fuse raw image features (such as image intensity and gradients)
into a compact positive definite matrix, is perhaps the simplest
to generate (Section IV-B). We also derive an extension of
the RCD, dubbed Covariance-Kernel Descriptor (CKD), by
combining it with a positive definite kernel matrix generated
from color histograms. Moreover, our evaluation shows that
RCD and CKD, when combined with a suitable non-linear
geometry, can in fact offer superior classification performance
for the proposed task against other descriptors. To the best of
our knowledge, the application of RCD and CKD for cancer
tissue recognition has not been investigated in the past.

A major advantage of the proposed approach is the fact that



segmentation of the nuclei is not required as a pre-processing
step since global image descriptors are used. This allows
our scheme to operate without being constrained by grading
systems (e.g., Gleason grading system for prostate cancer),
making it easily extensible to other types of cancer by a proper
training procedure.

To evaluate our algorithms, we construct datasets for three
types of cancer, namely (i) breast, (ii) prostate, and (iii)
myometrium. To this end, microscopic images from H&E-
stained sections from malignant and benign regions are used
for each of these tissue types. Our data collection process is
described in Section III. Extensive comparisons of the various
feature representations using different evaluation metrics are
presented in Section V. To set the stage for our discussions, in
the next section, we briefly review some of the prior computer
vision based approaches to cancerous tissue recognition.

II. RELATED WORK

Several techniques have been presented over the past decade
for the accurate detection of cancerous segments in various
types of medical images. Classification of cancerous regions
on histopathological images can be performed at the level
of the tissue architecture, as well as at the nuclear level. In
general, the intensity of each pixel and its spatial dependence
is used as an image descriptor. These features could be further
categorized ([8], [15]) based on: 1) intensity (i.e., density,
hue, mean, median, and variance), 2) morphology (i.e., area,
center of mass, concavity, minor axis, and major axis), and
3) texture (i.e. co-occurrence features, fractal dimension, run-
length feature, and Gabor wavelets).

Run length is defined as the number of consecutive pixels
with the same intensity value in a given direction. Features are
extracted from the gray-level run-length matrix, which is then
used to count the total occurrences. Sun et al. [19] propose
such a system for prostate cancer detection using a run-length
matrix. Feature co-occurrences is another commonly used
strategy for generating descriptors for cancer detection, first
introduced in [9]. Systems have been developed to classify
liver cancer [10], as well as prostate cancer (e.g. [7], [16]),
relying on co-occurrence features.

Other frequently used features are based on signal process-
ing, such as filtering and transformations to the frequency do-
main. For example, Sobel filters, in the x, y, and two diagonal
axes, are used in [7]. In Nguyen et al. [16], the Kirsch filter,
as well as gradients in the x and y directions are suggested.
Doyle et al. [7] suggests Gabor wavelets for discriminating
cancer tissues. Cruz-Roa et al. [3] presented a methodology
capitalizing on Deep Learning, while comparisons were also
established with Bag of Visual Words representations and Haar
features. Liu et al. [13] had also performed a comparative
study on both morphological and texture features in order to
explore the optimal features for nuclei classification including
Daubechies and Gabor Wavelets.

Once the suitable features are selected, standard machine
learning based classification schemes can be used for cancer
diagnosis. For example, Alexandratou et al. [1] conducted a
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Fig. 2: A low dimensional embedding using tSNE for the myometrium
dataset using (a) Normalized Color Histograms (b) Covariance Descriptors
(c) Covariance Kernel Descriptors (d) CNN features.

large scale comparison between sixteen classification algo-
rithms for prostate cancer diagnosis. Furthermore, an ensemble
of two SVMs was presented in Nguyen et al. [16] for detecting
prostate cancer using cytological and textural features.

Given that general-purpose computer vision feature rep-
resentations have demonstrated significant promise for very
challenging real-world vision tasks, we believe it is essential to
understand their performance on medical images, which offer
a more controlled and high-impact setting. To this effect, our
goal is to evaluate the best available image representations in
a systematic way on a diverse collection of data in the context
of medical imaging and draw valuable conclusions about the
information content that they manage to capture.

III. DATA COLLECTION

In this study, data from three types of cancer are used to
assess the performance of the proposed algorithms, namely
carcinomas of the prostate, the breast, and the myometrium.
The tissue samples collected are (H&E)-stained, followed by
high-resolution (10K × 9K pixels) scans of tissue sections
taken at x50 magnification on a digital slide scanner. A medi-
cal expert (surgical pathologist) was responsible for providing
annotations corresponding to the malignant and benign image
regions. The annotated regions are then divided into smaller
disjoint patches of 150× 150 pixels.

Next, binary class labels are assigned to each of the image
patches. That is, those patches for which more than 80%
of the pixels correspond to carcinomas, are treated as the
positive class, while patches in the negative class are devoid
of any cancerous regions. For the case of prostate cancer,
31 images of carcinomas and 8 images from benign regions
are annotated, taken from 10 patients. We then construct a
balanced dataset for training and testing purposes, containing
3500 image patches with 1750 patches depicting cancerous
regions, while the other 1750 corresponding to benign regions.
For the case of carcinomas of the breast, we used 21 annotated
images of carcinomas and 19 images of benign tissue, taken
from 21 patients. Similarly we construct a dataset of 3500
randomly selected image patches of which, 1750 depicted
cancerous cases while the other half corresponded to benign
cases. Finally, 39 myometrial leiomyomas were combined with
41 images of leiomyosarcomas to construct the third dataset
from 39 patients. We randomly selected 1539 cancerous image
patches and combined them with 1782 benign patches to total
a dataset of 3321 samples.

IV. IMAGE REPRESENTATIONS

Towards an accurate classification between benign and
malignant tissues, several types of feature representations



are evaluated in this section. We first consider the naïve
representation using the raw pixel intensities of gray-scale
image patches. In that way, for an n × n image patch, a
vectorial representation of size n2 is derived by concatenating
the columns of the patch. It appears that such a representation
fails to capture invariances (such as to pixel color and spatial
locations) that are useful for classification between benign
and malignant tissue types. This is substantiated by training a
classifier on such vectorized images (as reported in Table I).
Having learned from this shortcoming, in the sequel, we
investigate more powerful feature representations.

A. Normalized Color Histograms

In an effort to further explore the information uncovered
by the H&E staining, Normalized Color Histograms (NCH)
were computed. We computed color histograms consisting
of 256 bins each for the R, G, and B color channels; this
histogram is normalized to sum to one and concatenated to
form a 768-dimensional feature descriptor for the respective
patch. To intuitively understand this representation, we plot in
Figure 2(a), a low-dimensional embedding of these features
using the t-Distributed Stochastic Neighbor Embedding (t-
SNE) [6] method, which depicts a coherent cluster formation
as also supported by our experimental evaluation (Table I).

B. Region Covariance Descriptors

RCDs have been proposed for many applications in com-
puter vision. In contrast to the typical high-dimensional feature
descriptors that often assume a flat Euclidean geometry, RCDs
are generally low-dimensional and are assumed to belong
to a highly non-linear geometry. In their basic form, RCDs
are generated as described in Equation (1), where fi ∈ Rd,
are d-dimensional features extracted from each pixel i ∈
{1, 2, · · · , N} of an image patch, and µ is the mean feature
given by µ = 1

N

∑N
i=1 fi.

C =
1

(N − 1)

N∑
i=1

(fi − µ)(fi − µ)T . (1)

RCDs are covariance matrices computed over a set of
features extracted from every pixel in the image patch. In
this paper we consider a 5-dimensional RCD consisting of the
normalized intensities of the three channels R, G, and B of
a color image combined with first-order gradient information
along the x and y axis, as denoted by Gx

i and GY
i respectively.

That is, our fi has the following form:

fi = [Ri Gi Bi Gx
i Gy

i ]
T . (2)

Covariance matrices are symmetric positive definite (SPD)
matrices. Given that SPD matrices form an open subspace
of the Euclidean space, it is natural to assume a Euclidean
geometry to these matrices. However, it is often found that [17]
assuming a non-linear geometry is often beneficial practically.
That is, instead of using a Euclidean distance to measure the
similarity between two SPD matrices, a non-linear measure
is used which governs the geometry of the space of these

matrices. Two commonly used such measures are (i) the Log-
Euclidean Riemannian metric, and the recently introduced (ii)
Jensen-Bregman Logdet Divergence. Of these two, (i) defines
a Riemannian geometry to the space of SPD matrices, while
(ii) defines an information geometry based similarity measure.

First, the Log-Euclidean Riemannian Metric (LERM) is
described in Equation 3 for a pair of covariance matrices
C(i) and C(j). In Riemannian geometry, the set of symmetric
matrices form a tangent space for the Riemannian manifold
of SPD matrices, and the space of symmetric matrices is
isomorphic to the Euclidean space. Thus, taking the matrix
logarithm, as in (3), embeds the SPD matrices into a flat
tangent space of symmetric matrices on which the usual
Euclidean distance can be used for similarity computations.

DLERM (C(i),C(j)) :=
∥∥∥Log(C(i))− Log(C(j))

∥∥∥
F
, (3)

where Log(·) is the matrix logarithm and ‖·‖F is the Frobenius
norm.

Second, the Jensen-Bregman LogDet Divergence (JBLD),
first proposed by Cherian et al. [2], is also considered for simi-
larity computations, as presented in Equation (4). In contrast to
LERM, JBLD retains the rich non-linear geometry of the space
of SPD matrices, and at the same time is computationally
cheaper as the matrix logarithms are replaced by matrix
determinants which can be computed efficiently via Cholesky
factorization. Computing a 2-dimensional embedding for the
myometrium dataset, can visually support the meaningful
cluster formation when capitalizing on RCDs, as depicted in
Figure 2(b).

DJBLD(C(i),C(j)) :=
[
log
∣∣∣C(i)+C(j)

2

∣∣∣− 1

2
log
∣∣C(i)C(j)

∣∣ ]1/2,
(4)

where |A| is the determinant of SPD matrix A.

C. Covariance-Kernel Descriptors

Capitalizing on the information captured by the RCDs
and the NCHs, we combine the two representations towards
deriving a stronger descriptor. Recall that the RCDs compute
the feature correlations between each pixel in the patch against
other pixels; thus capturing texture and shape in the patch im-
plicitly. However, RCDs make an implicit dependency between
the attributes of a pixel and the pixel location in the patch.
While this dependency is important for cancerous tissue recog-
nition, sometimes spatial invariance of the color histograms is
more important as suggested by the NCH descriptor above.
Thus, both RCDs and NCHs capture complementary cues for
recognition, and thus we expect their combination to provide
a synergy to the overall accuracy.

Motivated by the above intuition, we propose a novel
fusion of RCDs and NCHs to generate a Covariance-Kernel
Descriptor (CKD) as follows. We generate a compact block
diagonal symmetric positive definite matrix descriptor that
contains in its first block the RCD denoted by C as com-
puted in Equation (1), while the second block captures the
correlations between the histograms computed on the three



color channels of the image patch (as in the NCH). However,
rather than concatenating the three histograms, as presented
in Section IV-A, we combine them to formulate a matrix
H ∈ R3×b, where each row corresponds to the b-bin histogram
on a channel. The resulting CKD matrix is as follows:

CKD =

[
C 0
0 HHT

]
, (5)

where 0 is a 3× 3 matrix of all zeros.
Given that the 3x3 histogram correlation matrix HHT is

positive definite (and thus a valid Mercer kernel), we could
further improve its representational power by computing the
correlations via a kernel function. That is, suppose hc ∈ Rb

denotes a histogram vector (where c ∈ {R,G,B}), then we
could replace the Gram matrix HHT in (5) by a kernel
matrix K defined by K(hc1, hc2) = φ(hc1)

Tφ(hc2) for
c1, c2 ∈ {R,G,B} and a kernel function φ. However, we
found that for our task, the linear kernel performed the best
and thus we use this setup in our evaluation. Note that the
resulting fused descriptor is still an SPD matrix and thus we
use the similarity measures defined for the RCD for CKD
as well. A 2-dimensional embedding for the dataset of the
myometrium depicts the cluster separability when capitalizing
on CKDs, as depicted in Figure 2(c).

D. Bag of Visual Words

Bag Of visual Words (BOW) representation relies on the
creation of a codebook which compactly characterizes a col-
lection of local point features [4]. In this paper, we used BOW
on Scale Invariant Feature Transform (SIFT) descriptors. For
each type of tissue, we randomly select 1000 image patches
and compute a collection of 128 dimesional SIFT descriptors
for each patch. For generating the codebook for each type
of cancer, we cluster the extracted SIFT descriptors using K-
Means in 300 clusters. The resulting centroids after clustering
are used as the codewords. To encode a patch in terms of
the generated codebook, we first extract its SIFT descriptors
from the patch, followed by generating a 300 dimensional
histogram depicting the frequency by which these descriptors
are assigned to the most similar codewords. This histogram is
normalized to sum to one, thus depicting a discrete probability
distribution, and is used as an encoding of the image patch.

E. Sparse Codes

Sparse coding has revolutionized the domain of machine
learning and computer vision by enabling the construction
of informative representations of data as linear (in most
cases) combinations of a few representative "learned" atoms
(e.g. [14]). For the purposes of our study, we start by learning
a such matrix of atoms, dubbed a dictionary matrix, for each
type of tissue using the SPAMS library1. In this study, the size
of the patches (150 × 150) is prohibitive to allow learning a
dictionary. To circumvent this issue, we divided each patch
into 100 smaller patches of size 15 × 15. Working with this
225-dimensional vectorized representations for the smaller

1http://spams-devel.gforge.inria.fr/

patches, we learn a dictionary of 1500 atoms. Note that we
normalized the data to have zero mean and unit norm before
training the dictionary. Given a test patch of size 150 × 150,
we repeat the process and generate 1500-dimensional sparse
codes for each 15 × 15 patch by solving a Lasso objective.
This precedes aggregating the sparse codes via average pool-
ing, thus generating 1500-dimensional descriptors for the full
image patch.

F. Gabor Features

Gabor based features have been previously shown to be
useful for cancerous tissue recognition (e.g., [13]). In this
study, we generated a bank of Gabor filters at different
orientations and scales. Particularly, we present results based
on a Gabor space constructed by convolutions in 4 orientations
(0◦, 45◦ and 90◦, 135◦) and 4 scales with a kernel size
of 7 × 7 pixels. These parameters were selected via cross-
validation on a subset of our dataset. After gray-scale images
are convolved with the selected filters, they are downsampled
by a factor of 4 and vectorized. Finally, the resulting vectors
for all filters are concatenated together to form a 23,104-
dimensional descriptor.

G. Histogram of Oriented Gradients (HOG)

HOG descriptors [5] are classic computer vision descriptors
that can capture shapes in images and have demonstrated
to be immensely useful for object recognition and person
detection tasks. A HOG descriptor is generated by dividing
an image patch into a set of non-overlapping cells, followed
by computing a histogram of intensity gradients in each cell.
In our case, through a trial and error process we selected
to work with a cell size of 6 × 6 pixels, while 31 bins are
used to produce the histogram for each cell. The VL-FEAT
toolbox 2 was utilized to compute the HOG descriptors for
our experiments based on the aforementioned characteristics,
producing a 19,375-dimensional descriptor.

H. Fisher Vectors

Fisher vectors (FVs) provide a significant enhancement over
the BOW model in a probabilistic/information geometric [18].
Instead of using a hard clustering algorithm (such as K-Means)
on the SIFT descriptors, FV uses probabilistic clustering using
Gaussian Mixture Models (GMM). Further, the main insight
in the development of these descriptors is the observation that
the gradient of the log-likeligood of the GMM with respect
to the parameters of the component Gaussian distributions
provides the direction in which the model parameters need
to be adjusted to better approximate the data. This gradient is
also related to the Fisher information matrix when the space of
GMMs is regarded as a Riemannian manifold (and hence the
name). In our experiments, we used 300 Gaussians to represent
our feature descriptors which resulted in a 76800-dimensional
representation. Once again the VL-FEAT2 toolbox was used
for our computations.

2 http://www.vlfeat.org/



I. Deep Learning

The main pursuit of deep Convolutional Neural Networks
(CNNs) is learning optimal transformations of the data that
enhance the separability between classes. For a concise outline
of the domain on Deep Learning and CNNs we refer the reader
to [12]. However, CNNs consist of millions of parameters and
thus demand large corpus of data to train them effectively,
which can be daunting for tasks such as ours. Since we
have data limited to a few thousand samples, we fine tune
a pre-trained CNN model. In that way, we allow the fully
connected layers of the network to continue learning while the
convolutional layers are restricted from learning at the same
pace by significantly lessening their learning rates.

Inspired by the high accuracy demonstrated on the Imagenet
object classification benchmarks, for this study, we used the
popular Alexnet topology [11] within the Caffe framework3.
In addition to the demonstrated accuracy, this topology is also
significantly less demanding on GPU memory, thus avoiding
the need for sophisticated hardware. A 2-dimensional em-
bedding for the myometrium dataset, visually supports the
informativeness of representations generated by the CNN, as
depicted in Figure 2(d).

V. EXPERIMENTS

To assess the discriminatory power of the selected represen-
tations, we conduct a series of experiments within a supervised
classification framework. In particular, we present comparisons
using 5-Nearest Neighbors (5-NN) classifiers, Support Vector
Machines (SVMs), as well as a linear classifier at the last layer
of the deployed CNN. For all the learned models, we evaluate
the classification performance using two different metrics,
namely (i) classification accuracy (ACC), and (ii) the Area
Under the Curve (AUC) computed from Receiver Operating
Characteristic (ROC) curves. To produce more generalizable
conclusions we used a 10-fold cross-validation for all our
experiments.

For our SVM based experiments, we used the popular
libSVM library4. For RCDs and CKDs, we use Radial Basis
Function (RBF) Mercer kernels based on the LERM and the
JBLD measures. For the rest of the tested descriptors, a col-
lection of different kernels and parameter configurations were
tested. In particular, the tested kernels were linear, polynomial,
RBF and Sigmoid. For almost all feature representations,
linear kernels achieved the highest performance and were used
to report our results. The only exception is the kernel utilized
for the Gabor features which is a polynomial kernel of 3rd

degree.
Finally, for the CNN we slightly alter the topology of the

network to reflect the number of classes of the problem in
hand, which is 2. In its original implementation, the number
of classes was 1000. Since training a network from scratch is
prohibitive given the limited amount of data, we capitalize on
a pre-trained network and finetune it. This was achieved by

3http://caffe.berkeleyvision.org/
4https://www.csie.ntu.edu.tw/ cjlin/libsvm/

significantly decreasing the learning rates of the convolutional
layers of our network and allowing mostly the inner product
layers to continue learning based on our dataset. We also
experimented with different learning rates with no significant
impact on the performance. We initialize the weights of our
network with weights learned on the 1M image database of the
ILSVRC challenge and we perform additional 5K iterations,
which were shown to be sufficient for the problem in hand.

TABLE I: Experimental Results.
Myometrium Breast Prostate

Features | Classifier ACC AUC ACC AUC ACC AUC
Intensities | 5-NN 46.33% – 49.69% – 69.54% –
Intensities | SVM 50.51% 0.53 57.91% 0.60 73.71% 0.82

HOG | 5-NN 55.72% – 60.14% – 48.23% –
HOG | SVM 62.89% 0.68 51.86% 0.53 69.51% 0.76
Gabor | 5-NN 46.60% – 52.09% – 48.66% –
Gabor | SVM 84.37% 0.89 65.60% 0.71 83.54% 0.92
Fisher | 5-NN 59.31% – 63.49% – 75.57% –
Fisher | SVM 74.91% 0.83 79.66% 0.88 84.37% 0.93

Sparse Codes | 5-NN 55.10% – 67.51% – 51.37% –
Sparse Codes | SVM 76.54% 0.85 72.31% 0.78 69.66% 0.77

BOW | 5-NN 56.63% – 66.03% – 67.06% –
BOW | SVM 74.85% 0.81 76.46% 0.84 83.09% 0.92

RCD-JBLD | 5-NN 92.53% – 67.06% – 79.09% –
RCD-JBLD | SVM 95.24% 0.98 74.26% 0.81 87.29% 0.92

RCD-LE | 5-NN 91.81% – 67.09% – 79.66% –
RCD-LE | SVM 91.93% 0.97 87.66% 0.94 89.77% 0.96
CNN(AlexNet) 93.77% 0.99 89.23% 0.96 86.91% 0.95
NCH | 5-NN 95.03% – 84.60% – 82.00% –
NCH | SVM 93.91% 0.99 91.63% 0.97 90.26% 0.96

CKD-JBLD | 5-NN 95.30% – 79.31% – 80.06% –
CKD-JBLD | SVM 97.86% 1 85.51% 0.94 86.63% 0.93

CKD-LE | 5-NN 94.88% – 79.51% – 80.66% –
CKD-LE | SVM 98.10% 1 92.83% 0.98 91.51% 0.97

VI. DISCUSSION OF RESULTS AND FUTURE WORK

In order to facilitate this discussion, we aggregate the results
in Table I for all the described feature representations in
terms of ACC and AUC, as computed for the extracted ROC
curves. Figure 3 presents the resulting ROC curves for all the
conducted classification experiments.

Based on our results we can infer that the tested descriptors
that use color information perform better against those that
are extracted based only on gray-scale intensities. This latter
category of descriptors includes, gray-scale intensities, HOG,
FVs, Gabor wavelets, sparse codes and BOW. Among those,
FVs appear to achieve the highest accuracy as well as AUC,
reaching accuracy of 74.91%, 79.66% and 84.37% for the
myometrium, breast, and prostate dataset, respectively. This,
though, comes with a computational overhead, derived from
the large dimensionality of the descriptor. The NCH was
the only feature representation that was built solely on color
information. Nevertheless, this was shown to be sufficient to
outperform all the aforementioned edge-based descriptors and
was only exceeded by descriptors using both edge and color
information. NCH achieved accuracy values reaching 93.91%,
91.63% and 90.26% for the myometrium, breast, and prostate
dataset, respectively, accompanied by very high AUC. The
achieved performances, combined with the low dimensionality
and ease of computation makes this descriptor a very attractive
solution for cancer recognition tasks on H&E stained images.

In the final step of this experimentation, descriptors bal-
ancing both color and gradient information were considered.
In particular, RCDs and CNN reported accuracies that were
on par with the performance of the NCHs. RCDs exceeded



(a) (b) (c)
Fig. 3: ROC curves for (a) Myometrium, (b) Breast and (c) Prostate (Best if viewed in color).

the performance on myometrium by 1.33% but in the case
of breast and prostate cancer they achieved a lower accuracy
of 87.66% and 89.77% respectively. For the myometrium
and prostate datasets, CNN representations achieved a lower
accuracy (93.77% and 86.91% respectively) both compared to
RCDs and NCHs. For the breast carcinoma, although CNNs
exceeded the performance of RCDs (89.23%), they did not
perform better than NCHs.

Finally, CKD, a descriptor introduced in this work, is seen
to outperform all the considered descriptors, reaching ACC
of 98.1%, 92.83% and 91.51% for the myometrium, breast
and prostate dataset, respectively. The enhanced pixel intensity
invariance infused by the color histogram Gram matrix, along
with the gradient information and spatial correlation of pixel
values integrated by the RCDs allowed this descriptor to reach
an AUC value of almost 1 for the myometrium dataset.

Collectively, we have presented a methodical feature evalu-
ation for a large collection of general-purpose computer vision
feature representations on three types of cancer. Furthermore,
we introduce two descriptors, RCDs and CKDs in the context
of cancerous tissue recognition. CKDs were able to outperform
all the tested representations including the deployed CNN
scheme. The presented methodology will be expanded to
additional types of tissue, including the colon, pancreas, lung,
and others as more annotated data becomes available.
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