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Abstract. We introduce a novel stochastic local search algorithm for
the vertex cover problem. Compared to current exhaustive search tech-
niques, our algorithm achieves excellent performance on a suite of prob-
lems drawn from the field of biology. We also evaluate our performance on
the commonly used DIMACS benchmarks for the related clique problem,
finding that our approach is competitive with the current best stochastic
local search algorithm for finding cliques. On three very large problem
instances, our algorithm establishes new records in solution quality.

1 Introduction

Finding a minimum vertex cover of a graph is a well-known NP-hard problem [1].
Given an undirected graph G = (V, E), a vertex cover is defined as a subset of
the vertices C ⊆ V , such that every edge of G has an endpoint in C, i.e. for all
(u, v) ∈ E : u ∈ C or v ∈ C. The task then is to find a vertex cover of minimum
size, or, for the corresponding NP-complete decision problem k-vertex cover, to
decide whether a vertex cover of size k exists.

Applications of the vertex cover problem arise in network security, scheduling
and VLSI design [2]. For example, finding a minimum vertex cover in a network
corresponds to locating an optimal set of nodes on which to strategically place
controllers such that they can monitor the data going through every link in
the network. Algorithms for minimum vertex cover can also be used to solve
the closely related problem of finding a maximum clique, which has a range of
applications in biology, such as identifying related protein sequences [3].

Over the past decade, numerous algorithms have been proposed for solv-
ing the vertex cover problem, including evolutionary algorithms [4], ant colony
system approaches [5] and complete search [6]. A recent approach of the latter
kind that has proven useful in biological applications is the work of Abu-Khzam
et al. [3].

In this work, we introduce a stochastic local search algorithm for vertex
cover, dubbed COVER (Cover Edges Randomly), and show that it achieves ex-
cellent performance on a large variety of benchmarks. For the protein sequencing



problems used by Abu-Khzam et al. [3], COVER is several orders of magnitude
faster at finding the optimal solution than their approach. On a suite of “hard”
benchmarks with hidden optimal solutions [7], COVER performs very well and
establishes a new record on the largest instance. Furthermore, we compare the
performance of COVER against state-of-the-art solvers for the related indepen-
dent set and clique problems, showing that we achieve competitive results on a
commonly used benchmark set. We also explore the importance of knowing the
target solution size k for our algorithm.

The remainder of this article is organized as follows. We first give an overview
of related work, including algorithms for the clique and independent set prob-
lems. We then describe the general idea of stochastic local search, and the specific
details of our algorithm. In Sec. 5, we describe the empirical evaluation of our
algorithm conducted on a wide range of benchmarks, after which we conclude.

2 Background & Related work

Various complete algorithms for k-vertex cover have been derived from the the-
ory of fixed-parameter tractability (FPT) [6, 8, 9, 3]. The characterizing feature
of FPT algorithms is that their run-time is bounded by f(k) · p(n), where the
dependence f(k) on the parameter k may be arbitrary, but the dependence p(n)
on the graph size n is polynomial. FPT algorithms generally work by first reduc-
ing the problem at hand in what is called a kernelization phase (transforming
the problem to an equivalent problem with smaller parameter k), and then per-
forming a bounded tree search on the remaining problem kernel. Recently, FPT
algorithms have been implemented in a parallel fashion [9, 3].

Besides FPT methods, there are a number of heuristic approaches to the ver-
tex cover problem. Evans describes an evolutionary approach, and also reviews
previous evolutionary algorithms for the problem [4]. Ant colony systems have
been employed by Shyu et al. [10] and Gilmour and Dras [5]. Looking beyond
work on vertex cover, a wide range of heuristic algorithms have been proposed
for related problems, which we review in the following.

2.1 Maximum Clique and Independent Set

A clique of a graph G = (V, E) is a subset of the vertices K ⊆ V such that all
vertices in K are pairwise connected. An independent set of a graph G = (V, E)
is a subset of the vertices S ⊆ V such that no two vertices in S are connected.
A maximum clique (maximum independent set) is a clique (independent set) of
maximum cardinality for a given graph.

Cliques and independent sets are closely related to vertex covers. In particu-
lar, a vertex set S is an independent set of G iff V \S is a vertex cover of G, and
a vertex set K is a clique of G iff K is an independent set of the complementary
graph G, in which two vertices are connected iff they are unconnected in G.
Hence, the problems of computing maximum cliques or maximum independent



sets can be reduced to the computation of minimum vertex covers. In particu-
lar, all these problems are NP-hard, and the associated decision problems are
NP-complete.

Many of the algorithms that have been proposed for computing maximum
cliques or maximum independent sets in the past have been evaluated on the set
of benchmark problems from the Second DIMACS Implementation Challenge in
1992–1993 [11]. The instances in this benchmark set are taken from a variety of
application domains and also include examples that are specifically engineered
to be “hard”. They can be considered the standard benchmark for algorithms
that compute cliques or independent sets.

For the maximum independent set, a recently proposed heuristic approach
is the Widest Acyclic Orientation algorithm by Barbosa and Campos, which is
competitive with the algorithms used in the original DIMACS challenge [12].
Even better results are obtained with the recent QSH algorithm by Busygin,
Batenko and Pardalos [13], which outperforms the maximum clique algorithms
used during the DIMACS challenge. However, QSH fares badly on two classes
of the DIMACS benchmarks.

For maximum clique, the recently published DLS-MC algorithm by Pul-
lan and Hoos seems to deliver the best results, clearly dominating previously
published algorithms on the DIMACS benchmark set [14]. DLS-MC stands for
Dynamic Local Search – Maximum Clique and works by iteratively growing a
candidate solution (initially one vertex) and conducting a plateau search where
no further improvement is possible. When neither improvement nor new plateau
steps are possible, search restarts from a single vertex. The DLS-MC algorithm
has since evolved into the Phased Local Search algorithm [15], which eliminates
the need for tuning a parameter while producing similar results.

3 Stochastic Local Search

Stochastic Local Search (SLS) methods are a popular means of solving noto-
riously hard combinatorial problems. They can be very effective while usually
being conceptually simple [16]. For example, SLS algorithms are state of the art
for solving Boolean Satisfiability problems [17]. In the following, we give a short
description of SLS using the terminology of the textbook by Hoos and Stützle
[16].

An SLS algorithm operates by searching in a space of candidate solutions for
a problem π, where a candidate solution may not satisfy all of the constraints
required by a solution.

Starting from an initial candidate solution, an SLS algorithm iteratively per-
forms a small step to a neighbouring candidate solution by perturbing its current
candidate solution. These steps, as well as the initialization of the search, may
be randomized. The perturbation steps are only based on local information and
on some memory state m of the algorithm (for example a taboo list). Pseudo
code for a general SLS algorithm for a decision problem is shown in Alg. 1.



Algorithm 1 SLS(π)

1: initialize (s, m)
2: while not terminate(π, s, m) do

3: (s,m) = step(π, s, m)
4: end while

5: if s ∈ S∗(π) then

6: return s

7: else

8: return failure
9: end if

In line 1 of Alg. 1, a candidate solution s and an initial memory state m

of the algorithm are computed. In line 2, a termination criterion is used to
determine whether the search should be terminated. In line 3, the step function
replaces the current candidate solution s by a new candidate solution from the
neighbourhood of s, while replacing the memory state m with a corresponding
new memory state. If after terminating the search the candidate solution s is in
the set S∗(π) of solutions to π, then s is returned; otherwise, the algorithm fails.

In the following section, we describe the COVER algorithm as a specific
instance of an SLS algorithm by elucidating the exact choices we made for the
nature of candidate solutions as well as the initialization, termination and step
functions.

4 The COVER algorithm

COVER is an SLS algorithm for k-vertex cover, i. e. it takes as input a graph
G = (V, E) and a parameter k, and searches for a vertex cover of size k of
G. Its candidate solutions are subsets of the vertices V of size k (which are not
necessarily vertex covers). The step to a neighbouring candidate solution consists
of exchanging two vertices: a vertex u that is in the current candidate solution
C is taken out of C, and a vertex v which is not currently in C is put into C.

The initial candidate solution is constructed greedily. In detail, COVER
builds C by iteratively adding vertices that have a maximum number of in-
cident edges which are not covered by C, i. e. they have no endpoint in C, until
the cardinality of C is k. When several vertices satisfy the criterion for inclusion
in C, COVER selects one of them randomly, with uniform probabilities. Favour-
ing vertices of high degree is a common heuristic for vertex cover algorithms. In
fact, we find that some benchmark problems are even solved by this initialization
step alone, e. g. the p-hat class of the DIMACS benchmark set.

The termination criterion COVER uses is straightforward: at each step, it
tests whether its current candidate solution is a vertex cover of G. The algorithm
terminates when either a vertex cover is found, or when a maximum number of
steps, denoted by MAX ITERATIONS, has been reached.

The most influential part of an SLS algorithm is the definition of its step
function. COVER uses several heuristic criteria to choose which two vertices to



exchange in C, but also utilizes a substantial element of randomness, thus strik-
ing a balance between guided search and the diversity that is necessary to escape
local optima. This balance is achieved with a simple division of responsibilities:
the vertex to be taken out of C is chosen mainly according to heuristics, while
the vertex to be put into C is chosen almost randomly.

When choosing possible candidates for inclusion in C, COVER selects uni-
formly at random an edge e that is not covered (following the strategy popular-
ized by Selman and Kautz for SAT [18]). The vertex added to C is then chosen
from one of the endpoints of e, ensuring that e will be covered in the successive
candidate solution. When choosing which one of the two endpoints of e to in-
clude and which vertex to take out of the current candidate solution, COVER
uses a heuristic based on an edge weighting scheme: with each edge of G, we
associate a positive real number. Intuitively, these weights indicate for each edge
how “difficult” it is to cover it – i. e. how difficult it is to find a candidate solution
that contains one of the endpoints of that edge.

In the beginning, all edge weights are initialized to a small constant (0.05).
In each of the following iterations, COVER adds 1 to the weights of all edges
that are not covered. We then derive vertex weights from the weights of edges
incident to the vertex. We say that a vertex v potentially covers an incident edge
(v, u) if u is not in the current candidate solution C. Let the weight of a vertex v,
weight(v), be the weighted sum of all edges that vertex v potentially covers. An
exchange of two vertices a and b, where a is taken out of C and b is put into C

then results in a gain defined as weight(b)−weight(a)+δ, where δ is the weight
of the edge between a and b if they are connected, and zero otherwise. COVER
tries to maximize this gain, thereby covering the more “difficult” edges of higher
weight with greater priority. Using weights to direct the search of stochastic
local search algorithms is popular practice, and a similar approach has led to
very good results for the Boolean Satisfiability problem [19].

COVER also employs a taboo list of size 2, keeping track of the vertices last
inserted into C and last removed from C. This prevents it from immediately
reversing a decision made in the last iteration. Moreover, COVER remembers
for each vertex the iteration count at which it was last removed from C. When
inserting a vertex into C, COVER favours vertices that have not been in the
cover recently. In particular, this “time stamp” criterion is used to break ties
between all insertion candidates that result in maximum gain and are not taboo.
When removing vertices from the candidate solution, COVER chooses randomly
with uniform probability between all removal candidates.

Pseudo code for the algorithm is given in Alg. 2.

5 Empirical Performance Results

We evaluate the performance of COVER on an extensive set of benchmarks
from three different sources. In Sec. 5.1, we use graphs representing biological
real-world problems, which were kindly provided to us by Abu-Khzam et al. [3].
In Sec. 5.2, we report results on the BHOSLIB benchmark suite [7], a set of



Algorithm 2 COVER(G, k, MAX ITERATIONS)

1: initialize C greedily with |C| = k

2: initialize weights
3: iteration number = 1
4: while exists uncovered edge and iteration number < MAX ITERATIONS do

5: choose uncovered edge e = (u1, u2) randomly
6: choose vertices u ∈ {u1, u2} and v ∈ C according to max gain criterion
7: C = C\{v}
8: C = C ∪ {u}
9: taboo list = {v, u}

10: u.time stamp = iteration number

11: update weights
12: increase iteration number by 1
13: end while

graphs with “hidden optimal solutions” that are specifically designed to be hard
to solve. In Sec. 5.3, we evaluate our performance on the (complement) graphs of
the Second DIMACS Implementation Challenge for the maximum clique prob-
lem [11]. For each benchmark set, we compare against the best results we could
find in literature. Unfortunately, we have to compare against a different system
for each benchmark set, as we could not obtain the respective programs to run
them on the other benchmark sets.

Our experiments were run on a machine with a 2.13 GHz CPU with 2 GB
RAM. For comparing different algorithms on the DIMACS benchmark suite,
three machine benchmarks are available from the DIMACS web site. When run
on our machine, we obtained run-times of 0.51 seconds for r300.5, 3.01 seconds
for r400. 5, and 11.31 seconds for r500. 5.

Due to the random elements of COVER, we ran the algorithm 100 times, with
different random seeds, on each instance of each experiment described in this
section. In all cases, the MAX ITERATIONS parameter was set to 100,000,000.
For each instance, we report the following information:

– solution quality: This is denoted as a triple a-b-c, where a is the number
of runs (out of 100) in which the algorithm found a vertex cover with the
minimal (or lowest known) cardinality k∗; b is the number of runs in which
a vertex cover of size k∗ was not found, but a vertex cover of size k∗ + 1 was
found; and c is the number of runs where only vertex covers of cardinality
k∗ + 2 or worse could be found.

– median run-time and 1st quartile run-time: We ordered the outcomes of the
100 runs by the cardinality of the solution found (the lower, the better) and,
in case of vertex covers of equal cardinality, by search time. Median run-time

is the run-time for the median element in this sequence (i. e., the 50th-best
result), and 1st quartile run-time is the run-time for the element at the 1st
quartile (i. e., the 25th-best result). Thus, median run-time is indicative of a
“typical run” of the algorithm, and 1st quartile run-time is indicative of the
typical performance one might obtain by running the algorithm repeatedly,



with four restarts. If the median (or 1st quartile) run did not achieve an
optimal solution, the run-time result is reported in parentheses.

5.1 Biological Data

The graphs used in this section originate from phylogeny and correspond to
protein sequencing data [3]. The task here is to find maximum sets of closely
correlated protein sequences, which can be directly cast as a (weighted) maxi-
mum clique problem. Our input graphs are obtained from the biological problems
as follows: first a weighted graph is constructed with vertices corresponding to
protein sequences, and weighted edges between vertices corresponding to the ex-
tent of correlation between two sequences. Then, for a chosen threshold all edges
with weights below the threshold are removed. The complement of this graph is
the input for a vertex cover algorithm. The problems we use here were obtained
from Abu-Khzam et al., who use them in their paper on parallel FPT algorithms
for vertex cover [3].

Our run-time results, as well as the results obtained by the algorithm of Abu-
Khzam et al. which we will denote by P-FPT (parallel FPT ) in the following, are
shown in Tab. 1. COVER found optimal solutions in all runs on all graphs except
for the globin-15 instance, where 98 of the 100 runs found optimal solutions, with
the other two finding solutions of size k∗ + 1 and k∗ + 3, respectively.

COVER P-FPT
Graph Quality Runtime

Instance |V | |E| k∗ Hist. 1st Qu. Median Runtime

globin3 972 3898 165 100–0–0 0.01 0.01 23
globin7 972 38557 350 100–0–0 0.01 0.01 47
globin9 972 62525 378 100–0–0 0.01 0.01 227
globin15 972 149473 427 98–1–1 0.01 0.01 14

sh2-3 839 5860 246 100–0–0 0.01 0.01 22
sh2-4 839 13799 337 100–0–0 0.01 0.01 2593
sh2-5 839 26612 399 100–0–0 0.01 0.01 7
sh2-10 839 129697 547 100–0–0 0.01 0.01 332
sh3-10 2466 1508850 2044 100–0–0 0.47 0.80 8400

Table 1. Results on biological problems. |V | and |E| denote the number of vertices
and edges of the input graph, k∗ the minimum vertex cover size, as determined by
Abu-Khzam et al. The performance metrics for COVER (solution quality, 1st quartile
run-time, median run-time) are explained in detail at the start of this section. The last
column denotes the run-time of the P-FPT algorithm. All run-times are in seconds.

The difference in run-time between the two approaches is compelling. A prob-
lem that took P-FPT more than two hours to solve is solved by COVER in less
than one second. Of course, our local search algorithm may fail to find an optimal
solution, while P-FPT searches exhaustively, guaranteeing optimality. However,
as the results show, COVER reliably finds optimal vertex covers.

The approach used by Abu-Khzam et al. has reportedly delivered valuable
results in collaboration projects with biologists: they report that, based on the
cliques they derived from microarray data, “neurobiologists have identified what



appear to be both network structures and gene roles in intra-cellular transport
that were previously unrecognized”. The vast difference in run-time between the
two approaches prompts the question of what could be gained by using a local
search algorithm like COVER in practice.

It is noteworthy that for many application domains of vertex cover, a near-
optimal solution may be sufficient. In the protein sequencing domain, for ex-
ample, choosing a certain correlation threshold has a somewhat arbitrary influ-
ence on the size of the greatest clique, which has more impact on the resulting
solutions than the fact that the algorithm might be slightly suboptimal. Our
algorithm is likely to provide solutions that are very close to the optimal, even
for problems where the optimal solution is difficult to find. Hence, for solving
large real-world problems, an incomplete algorithm like ours might prove to be
more fruitful than a complete, but prohibitively slow algorithm.

5.2 The BHOSLIB problems

The BHOSLIB problems (“Benchmarks with Hidden Optimal Solutions”) [7] re-
sult from translating binary Boolean Satisfiability problems that were generated
randomly according to the model RB [20]. The satisfiability versions of these
benchmarks are guaranteed to be satisfiable, and the model parameters were set
to such values that the instances are in the phase transition area of model RB.
They have been proven to be hard both theoretically and in practice [20]. The
full BHOSLIB set of instances we use here is available on the Internet [7]. Some
of these instances were also used in the 2004 SAT competition [21].

The problem instances are grouped by size into 8 groups, with 5 graphs per
group, where all graphs of a group have the same number of vertices and edges.
In addition to the 40 instances that form the actual benchmark suite, there is a
single “challenge problem”, a very large graph with 4,000 vertices and 572,774
edges. The minimum vertex cover for this instance has size 3,900.

The first two instances from each of the groups 3–8 (the frb40–frb59 graphs)
were used in the 2004 SAT competition. From the 6th group (frb53 ) onwards,
none of the 55 solvers in the 2004 SAT competition was able to solve either of the
two instances within a time limit of 10 minutes. For the very large instance, the
best solution found up to now was a vertex cover of size 3,904, using a run-time
of 3,743 seconds on a Pentium IV 3.4GHz/512MB machine [7]. This solution was
obtained by translating the problem to a propositional logic formula extended
with cardinality atoms, and using a dedicated solver [22].

The results obtained by COVER on these benchmarks are displayed in Tab. 2.
The increasing difficulty of the instances is apparent both in the increasing run-
times, as the graph sizes grow, and in the fact that COVER does not find optimal
solutions consistently, i.e. in all runs. However, COVER does find optimal so-
lutions for each graph at least once, and the sizes of the vertex covers it finds
never exceed the minimum by more than 1.

For comparison, Gilmour and Dras recently developed a series of ant colony
system algorithms for the vertex cover problem, evaluated on the BHOSLIB
benchmarks [5]. They do not report run-times or solution results for individual



COVER CKACS
Graph Quality Runtime Quality

Instance |V | |E| k∗ Hist. 1st Qu. Median Hist. Avg.

frb30-15-1 450 17827 420 100–0–0 0.06 0.08 0–1–9 424.0
frb30-15-2 450 17874 420 100–0–0 0.07 0.10 0–0–10 424.5
frb30-15-3 450 17809 420 100–0–0 0.21 0.40 0–0–10 424.6
frb30-15-4 450 17831 420 100–0–0 0.05 0.08 0–0–10 424.0
frb30-15-5 450 17794 420 100–0–0 0.12 0.17 0–0–10 423.6
frb35-17-1 595 27856 560 100–0–0 0.45 0.90 0–0–10 565.5
frb35-17-2 595 27847 560 100–0–0 0.40 0.84 0–0–10 566.5
frb35-17-3 595 27931 560 100–0–0 0.15 0.27 0–0–10 564.4
frb35-17-4 595 27842 560 100–0–0 0.62 1.12 0–0–10 565.5
frb35-17-5 595 28143 560 100–0–0 0.34 0.49 0–0–10 564.1
frb40-19-1 760 41314 720 100–0–0 0.33 0.62 0–0–10 725.6
frb40-19-2 760 41263 720 100–0–0 4.52 10.21 0–0–10 726.8
frb40-19-3 760 41095 720 100–0–0 1.37 3.17 0–0–10 727.6
frb40-19-4 760 41605 720 100–0–0 3.37 8.81 0–0–10 726.1
frb40-19-5 760 41619 720 96–4–0 21.80 63.47 0–0–10 725.3
frb45-21-1 945 59186 900 100–0–0 3.54 8.48 0–0–10 908.2
frb45-21-2 945 58624 900 100–0–0 11.67 28.46 0–0–10 908.5
frb45-21-3 945 58245 900 99–1–0 28.91 70.13 0–0–10 908.3
frb45-21-4 945 58549 900 100–0–0 4.90 12.28 0–0–10 908.4
frb45-21-5 945 58579 900 99–1–0 22.14 66.53 0–0–10 909.1
frb50-23-1 1150 80072 1100 89–11–0 58.32 171.92 0–0–10 1110.4
frb50-23-2 1150 80851 1100 30–70–0 543.56 (1.72) 0–0–10 1109.7
frb50-23-3 1150 81068 1100 24–76–0 (0.70) (2.61) 0–0–10 1108.3
frb50-23-4 1150 80258 1100 100–0–0 8.45 16.94 0–0–10 1109.6
frb50-23-5 1150 80035 1100 98–2–0 24.43 88.94 0–0–10 1110.3
frb53-24-1 1272 94227 1219 9–91–0 (5.17) (11.31) 0–0–10 1229.9
frb53-24-2 1272 94289 1219 34–66–0 403.98 (4.24) 0–0–10 1229.3
frb53-24-3 1272 94127 1219 91–9–0 65.21 157.80 0–0–10 1231.6
frb53-24-4 1272 94308 1219 24–76–0 (1.26) (10.74) 0–0–10 1230.5
frb53-24-5 1272 94226 1219 84–16–0 109.36 253.05 0–0–10 1231.8
frb56-25-1 1400 109676 1344 15–85–0 (8.48) (20.73) 0–0–10 1356.8
frb56-25-2 1400 109401 1344 12–88–0 (10.06) (30.33) 0–0–10 1355.7
frb56-25-3 1400 109379 1344 76–24–0 130.11 435.30 0–0–10 1355.6
frb56-25-4 1400 110038 1344 84–16–0 85.60 291.11 0–0–10 1354.8
frb56-25-5 1400 109601 1344 98–2–0 30.45 89.58 0–0–10 1354.6
frb59-26-1 1534 126555 1475 11–89–0 (14.18) (30.76) 0–0–10 1486.8
frb59-26-2 1534 126163 1475 6–94–0 (18.11) (40.86) 0–0–10 1486.4
frb59-26-3 1534 126082 1475 12–88–0 (23.08) (65.04) 0–0–10 1487.8
frb59-26-4 1534 127011 1475 1–99–0 (31.47) (73.92) 0–0–10 1487.3
frb59-26-5 1534 125982 1475 89–11–0 90.18 292.60 0–0–10 1487.3

Table 2. Results on the BHOSLIB benchmark suite.

graphs, but only the average vertex cover size found over all BHOSLIB graphs.
(We obtained the detailed results shown in Tab. 2 from personal communica-
tions.)

The best result they achieve, using the CKACS algorithm, is an average
vertex cover size of 975.875, while 967.25 is the optimal value. This means that
the vertex covers found by CKACS, on average, have 8.625 more vertices than
an optimal solution. In comparison, COVER achieves an average vertex cover
size of 967.50 on the BHOSLIB suite, i. e. the vertex covers it finds are only off
by 0.25 on average.

On the challenge problem, COVER does not find an optimal solution. Indeed,
the designer of the BHOSLIB benchmark set conjectures that this problem will
not be solved on a PC in less than a day within the next two decades [7].
However, the COVER algorithm finds a solution of size 3,903 within 71 seconds,
surpassing the best solution known so far in terms of both quality and run-time.



5.3 The DIMACS benchmark suite

The DIMACS benchmark set is taken from the Second DIMACS Implementation
Challenge (1992-1993) [11], a competition targeting the maximum clique, graph
colouring, and satisfiability problems. The maximum clique benchmarks from
this competition have since been used in many publications as a reference point
for new algorithms [4, 12–15]. The benchmark set comprises 80 problems from
a variety of applications. For example, the C-fat family is motivated by fault
diagnosis, the johnson and hamming graphs by coding theory, the keller group
is based on Keller’s conjecture on tilings using hypercubes, and the MANN

graphs derive from the Steiner Triple Problem [11]. In addition, there are graphs
generated randomly according to various models. For example, the brock family is
generated by explicitly incorporating low-degree vertices into the cover, in order
to defeat algorithms that search greedily with respect to vertex degrees [23]. The
sizes of the graphs range from less than 30 vertices and ∼200 edges to more than
3000 vertices and ∼5,000,000 edges.

The results for COVER are shown in Tab. 3 and 4. For comparison, the
tables also contain the results obtained by Pullan and Hoos with the DLS-MC
algorithm [14]. DLS-MC was also run 100 times with the same limit on iterations
as COVER. The times reported are the ones published by Pullan and Hoos [14],
and refer to a 2. 2GHz Pentium IV machine with 512 MB RAM, which executed
the DIMACS machine benchmarks r300. 5 (r400. 5, r500. 5) in 0.72 (4.47, 17.44)
seconds. The run-times are thus roughly comparable, our machine being 30–35%
faster according to this measure. The “avg.” column shows the mean run-time
for COVER across all runs where optimal solutions were found, for graphs where
both algorithms found optimal solutions. This allows a direct comparison with
the corresponding column for DLS-MC, taken from the article by Pullan and
Hoos and determined by the same method. Note that this only compares the
run-time for the cases where an optimal solution was found, and thus ignores runs
where the found vertex cover was sub-optimal. Unfortunately, a direct compari-
son of our median run-time criterion (which we consider more indicative of actual
performance because it is also influenced by sub-optimal runs) is not possible
with the published results on DLS-MC.

In 75 of the 80 benchmarks, COVER finds a vertex cover of the putative
minimum size for that instance. Note that it is only for some graphs of the
brock family that COVER never finds optimal results. For the brock graphs, the
cardinality of the vertex covers found by COVER can become as large as k∗ + 5
in the worst case. This is not surprising, as COVER favours vertices of high
degree, which generally is a helpful heuristic for finding minimum vertex covers.
The brock graphs, however, were explicitly designed to counteract this approach.

Of the 75 instances where COVER finds an optimal solution, in 69 cases it
does so consistently, i. e. in all 100 runs. For the remaining instances, there are
occasional sub-optimal runs, but COVER always finds vertex covers of cardi-
nality k∗ + 2 or less. For MANN a81, the putatively hardest problem in this
benchmark set, COVER finds an optimal solution in 4 runs, is off by 1 in 3 runs,
and off by 2 in the remaining 93 runs.



COVER DLS-MC
Graph Quality Runtime Quality Runtime

Instance |V | |E| k∗ Hist. 1st Qu. Median Avg. Hist. Avg.

brock200 1 200 5066 179 100–0–0 0.01 0.01 0.01 100–0–0 0.02
brock200 2 200 10024 188 100–0–0 0.15 0.23 0.43 100–0–0 0.02
brock200 3 200 7852 185 100–0–0 2.32 5.54 7.62 100–0–0 0.04
brock200 4 200 6811 183 100–0–0 2.04 6.52 7.90 100–0–0 0.05
brock400 1 400 20077 373 0–0–100 (0.04) (0.06) n/a 100–0–0 n/a
brock400 2 400 20014 371 0–1–99 (0.04) (0.05) n/a 100–0–0 n/a
brock400 3 400 20119 369 60–30–10 71.36 247.87 135.26 100–0–0 0.18
brock400 4 400 20035 367 76–18–6 44.16 137.68 112.98 100–0–0 0.07
brock800 1 800 112095 777 0–0–100 (0.77) (1.06) n/a 100–0–0 n/a
brock800 2 800 111434 776 0–0–100 (0.60) (0.98) n/a 100–0–0 n/a
brock800 3 800 112267 775 0–0–100 (1.43) (2.31) n/a 100–0–0 n/a
brock800 4 800 111957 774 0–0–100 (0.99) (1.35) n/a 100–0–0 n/a

C125.9 125 787 91 100–0–0 0.01 0.01 0.01 100–0–0 0.01
C250.9 250 3141 206 100–0–0 0.01 0.01 0.01 100–0–0 0.01
C500.9 500 12418 443 100–0–0 0.08 0.24 0.31 100–0–0 0.13
C1000.9 1000 49421 932 100–0–0 1.32 3.27 5.82 100–0–0 4.44
C2000.5 2000 999164 1984 100–0–0 0.82 1.84 3.78 100–0–0 0.97
C2000.9 2000 199468 1922 84–16–0 124.03 323.11 369.33 93–7–0 193.22
C4000.5 4000 3997732 3982 100–0–0 423.08 621.38 689.74 100–0–0 181.23

c-fat200-1 200 18366 188 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat200-2 200 16665 176 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat200-5 200 11427 142 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat500-1 500 120291 486 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat500-2 500 115611 474 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat500-5 500 101559 436 100–0–0 0.01 0.01 0.01 100–0–0 0.01
c-fat500-10 500 78123 374 100–0–0 0.01 0.01 0.01 100–0–0 0.01
DSJC500.5 500 62126 487 100–0–0 0.01 0.01 0.01 100–0–0 0.01
DSJC1000.5 1000 249674 985 100–0–0 0.28 0.95 2.17 100–0–0 0.80

gen200 p0.9 44 200 1990 156 100–0–0 0.01 0.01 0.01 100–0–0 0.01
gen200 p0.9 55 200 1990 145 100–0–0 0.01 0.01 0.01 100–0–0 0.01
gen400 p0.9 55 400 7980 345 100–0–0 0.04 0.06 0.08 100–0–0 0.03
gen400 p0.9 65 400 7980 335 100–0–0 0.01 0.01 0.01 100–0–0 0.01
gen400 p0.9 75 400 7980 325 100–0–0 0.01 0.01 0.01 100–0–0 0.01
hamming6-2 64 192 32 100–0–0 0.01 0.01 0.01 100–0–0 0.01
hamming6-4 64 1312 60 100–0–0 0.01 0.01 0.01 100–0–0 0.01
hamming8-2 256 1024 128 0–0–100 (0.01) (0.01) n/a 100–0–0 n/a
hamming8-4 256 11776 240 100–0–0 0.01 0.01 0.01 100–0–0 0.01
hamming10-2 1024 5120 512 100–0–0 0.01 0.01 0.01 100–0–0 0.01
hamming10-4 1024 89600 984 100–0–0 0.01 0.01 0.11 100–0–0 0.01
johnson8-2-4 28 168 24 100–0–0 0.01 0.01 0.01 100–0–0 0.01
johnson8-4-4 70 560 56 100–0–0 0.01 0.01 0.01 100–0–0 0.01
johnson16-2-4 120 1680 112 100–0–0 0.01 0.01 0.01 100–0–0 0.01
johnson32-2-4 496 14880 480 100–0–0 0.01 0.01 0.01 100–0–0 0.01

keller4 171 5100 160 100–0–0 0.01 0.01 0.01 100–0–0 0.01
keller5 776 74710 749 100–0–0 0.01 0.03 0.07 100–0–0 0.02
keller6 3361 1026582 3302 100–0–0 12.35 15.18 15.63 100–0–0 170.48

MANN a9 45 72 29 100–0–0 0.01 0.01 0.01 100–0–0 0.01
MANN a27 378 702 252 100–0–0 0.01 0.01 0.01 100–0–0 0.05
MANN a45 1035 1980 690 41–59–0 246.92 (0.28) n/a 0–100–0 n/a
MANN a81 3321 6480 2221 4–3–93 (3.36) (30.89) n/a 0–0–100 n/a
p hat300-1 300 33917 292 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat300-2 300 22922 275 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat300-3 300 11460 264 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat500-1 500 93181 491 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat500-2 500 61804 464 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat500-3 500 30950 450 100–0–0 0.01 0.02 0.02 100–0–0 0.01
p hat700-1 700 183651 689 100–0–0 0.01 0.01 0.04 100–0–0 0.02
p hat700-2 700 122922 656 100–0–0 0.01 0.02 0.01 100–0–0 0.01
p hat700-3 700 61640 638 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat1000-1 1000 377247 990 100–0–0 0.01 0.01 0.01 100–0–0 0.01
p hat1000-2 1000 254701 954 100–0–0 0.01 0.04 0.04 100–0–0 0.01

Table 3. Results on the DIMACS benchmark suite (continued in Tab. 4).



COVER DLS-MC
Graph Quality Runtime Quality Runtime

Instance |V | |E| k∗ Hist. 1st Qu. Median Avg. Hist. Avg.

p hat1000-3 1000 127754 932 100–0–0 0.06 0.10 0.11 100–0–0 0.01
p hat1500-1 1500 839327 1488 100–0–0 13.80 18.25 21.27 100–0–0 2.71
p hat1500-2 1500 555290 1435 100–0–0 0.09 0.12 0.12 100–0–0 0.01
p hat1500-3 1500 277006 1406 100–0–0 0.07 0.10 0.11 100–0–0 0.01
san200 0.7 1 200 5970 170 100–0–0 0.01 0.01 0.01 100–0–0 0.01
san200 0.7 2 200 5970 182 100–0–0 0.01 0.01 0.01 100–0–0 0.07
san200 0.9 1 200 1990 130 100–0–0 0.01 0.01 0.01 100–0–0 0.01
san200 0.9 2 200 1990 140 100–0–0 0.01 0.01 0.01 100–0–0 0.01
san200 0.9 3 200 1990 156 100–0–0 0.01 0.01 0.01 100–0–0 0.01
san400 0.5 1 400 39900 387 100–0–0 0.05 0.14 0.12 100–0–0 0.16
san400 0.7 1 400 23940 360 100–0–0 0.05 0.06 0.06 100–0–0 0.11
san400 0.7 2 400 23940 370 100–0–0 0.06 0.07 0.08 100–0–0 0.21
san400 0.7 3 400 23940 378 100–0–0 0.08 0.12 0.13 100–0–0 0.42
san400 0.9 1 400 7980 300 100–0–0 0.01 0.01 0.01 100–0–0 0.01

san1000 1000 249000 985 100–0–0 0.98 3.88 3.91 100–0–0 8.36
sanr200 0.7 200 6032 182 100–0–0 0.01 0.01 0.01 100–0–0 0.01
sanr200 0.9 200 2037 158 100–0–0 0.01 0.01 0.01 100–0–0 0.01
sanr400 0.5 400 39816 387 100–0–0 0.01 0.02 0.06 100–0–0 0.04
sanr400 0.7 400 23931 379 100–0–0 0.01 0.01 0.03 100–0–0 0.02

Table 4. Results on the DIMACS benchmark suite (continued from Tab. 3).

Comparing against the results of the DLS-MC algorithm, we find that the
two algorithms are largely competitive. In fact, many of the benchmarks seem to
be too easy for a state-of-the-art solver nowadays. On the graph families c-fat,
DSJC, gen, hamming, johnson, p hat, san and sanr, both DLS-MC and COVER
consistently find optimal solutions within extremely short run-times. However,
on MANN a45 and MANN a81, COVER significantly outperforms the DLS-
MC algorithm. On these graphs, DLS-MC does not find an optimal solution.
On the hard MANN a81 instance, DLS-MC indeed only finds solutions that are
of distance 2 or more from the optimum, while COVER finds optimal solutions
for both graphs. In fact, to our knowledge COVER is the first algorithm to find
covers of this quality for the two MANN graphs.

On the other hand, on the brock family DLS-MC shows far better results than
COVER. This can be explained by the fact that DLS-MC uses a parameter called
penalty-delay, which Pullan and Hoos hand-tuned for each graph to achieve the
best possible performance. While for almost all other graphs this parameter was
set to a value between 1 and 5, it was set to 15 and 45 for the larger brock

graphs, encouraging DLS-MC to quite drastically change its usual behaviour in
these cases [14]. We conclude that, despite the fact that COVER is designed for
vertex cover problems and DLS-MC is designed for clique problems, COVER is
competitive with DLS-MC on clique benchmarks. COVER furthermore has the
advantage of requiring no parameters, while achieving excellent results but for
one special class of artificial graphs.

5.4 Search without Parameter

To further understand the run-time complexity of COVER, we conduct a set
of experiments aimed at determining the importance of knowing k, the target
cover size. Most state-of-the-art solvers, including the ones we compared against



Graph Run-time(s) k∗ k∗ + 1 k∗ + 2 k∗ + 3 > k∗ + 3
Globin7 0.54 48.15% 48.15% 3.70%
Sh2-5 0.70 37.14% 37.14% 25.71%

johnson32-2-4 0.92 28.26% 28.26% 26.09% 11.96% 5.43%
brock200 1 1.52 21.71% 17.11% 17.11% 16.45% 27.63%
p hat700-1 2.16 43.06% 24.54% 11.57% 10.65% 10.19%

keller5 5.12 40.43% 7.23% 5.08% 5.08% 42.19%
frb30-15-1 7.15 41.68% 24.20% 7.27% 3.64% 23.22%

hamming10-4 10.73 47.62% 25.63% 2.42% 2.42% 21.90%
san400 0.5 1 15.30 34.77% 22.35% 15.82% 19.28% 7.78%
DSJC1000.5 88.10 97.63% 1.16% 0.30% 0.30% 0.62%
brock200 3 166.01 99.18% 0.19% 0.16% 0.16% 0.32%
san1000 645.26 28.25% 20.13% 18.73% 18.72% 14.16%

frb50-23-4 1344.88 85.85% 9.78% 2.42% 1.42% 0.53%
frb59-26-5 17611.90 84.57% 13.84% 0.89% 0.35% 0.35%

Table 5. Run-time distribution for various parameters.

in this paper, are, like COVER, solving the k-vertex cover problem (or k-clique,
respectively). In practice, however, we do not usually know the optimal value
for k. Instead, we want to find a minimum (or close to minimum) vertex cover
of unknown size.

The question thus arises whether COVER can be used efficiently for finding
a minimum vertex cover by iteratively searching for various decreasing values
of k. Specifically, we are interested in determining how much run-time is spent
searching for several values of k as opposed to just searching with a known
optimal value k∗. We expect that it is much easier to find solutions that are
suboptimal than ones that are optimal, and that indeed only the last few runs
where k is close to k∗ substantially influence run-time.

To test this hypothesis, we extend COVER to an iterative version COVER-I,
which runs without a parameter k, as follows. First, COVER-I greedily computes
a vertex cover for the input graph. This is done much in the same way as COVER
computes an initial candidate solution. Instead of stopping when the size of the
candidate solution reaches a prespecified parameter, however, COVER-I keeps
adding vertices until the candidate solution is indeed a vertex cover. The size k

of this vertex cover is thus an upper bound for the optimal value k∗. COVER-I
then iteratively calls COVER as a subroutine, decreasing k each time COVER
succeeds in finding a solution within the usual limit of 100,000,000 iterations.
When COVER fails to find a solution, COVER-I stops and returns the last
solution found.

For our experiment, we select a representative set of graphs containing in-
stances from all three benchmark suites in varying sizes. The results are displayed
in Tab. 5. The run-time column shows total run-time for COVER-I for the given
graphs, summed up for 25 different random seeds, to give an impression of the
relative difficulty of these instances. The column k∗ shows the percentage of to-
tal run-time spent on the final iteration (producing the optimal solution), with
columns k∗ + 1, k∗ + 2 etc. referring to the previous iterations.

The results largely confirm our expectations. For small graphs, where the
search times for the optimal value k∗ are already short, run-time is sometimes
spread out fairly evenly across iterations; but for the larger graphs, the amount
of time spent in the ultimate iteration dominates the total run-time of COVER-I.



6 Conclusion & Outlook

We have presented a stochastic local search algorithm for the vertex cover prob-
lem, COVER, and evaluated its performance on a wide variety of benchmarks.
COVER is surprisingly effective while being conceptually simple and not re-
quiring any instance-dependent parameters. For biological real-world problems,
COVER finds optimal solutions in just a fraction of the time needed by a com-
plete search, which leads us to believe that COVER is a valuable approach
for practical problems. On the hard BHOSLIB benchmark set, COVER vastly
improves on existing results and sets a new record for the 20-year challenge
problem.

Compared to the state-of-the-art solver DLS-MC for the maximum clique
problem, COVER shows competitive results on the DIMACS suite. We empha-
size the fact that unlike DLS-MC and many algorithms proposed in the literature
previously, COVER has not been tuned in any way to the benchmark sets we
evaluated it on. The excellent performance of COVER is further underlined by
the fact that it sets a new record in solution quality on two large benchmark in-
stances of the DIMACS set. However, COVER did not perform well on the brock

family of graphs from the DIMACS test set. An obvious direction of future work
is therefore to develop further techniques to more reliably escape local minima
during search.
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