Implementation and Comparison of Solution Methods
for Decision Processes with Non-Markovian Rewards

1

Charles Gretton, David Price, and Sylvie Thebaux
Computer Sciences Laboratory
The Australian National University
Canberra, ACT, Australia

{charlesg,davidp,thiebaux

Abstract

This paper examines a number of solution meth-
ods for decision processes with non-Markovian
rewards (NMRDPs). They all exploit a temporal
logic specification of the reward function to au-
tomatically translate the NMRDP into an equiv-
alent Markov decision process (MDP) amenable
to well-known MDP solution methods. They dif-
fer however in the representation of the target
MDP and the class of MDP solution methods to
which they are suited. As a result, they adopt dif-
ferent temporal logics and different translations.
Unfortunately, no implementation of these meth-
ods nor experimental let alone comparative re-
sults have ever been reported. This paper is the
first step towards filling this gap. We describe
an integrated system for solving NMRDPs which
implements these methods and several variants
under a common interface; we use it to compare
the various approaches and identify certain prob-
lem features favouring one over the other.

INTRODUCTION

}@csl.anu.edu.au

Naturally, there is a tradeoff between the effort spent in
the translation, e.g. in producingsaall equivalent MDP
without many irrelevant history distinctions, and the effort
required to solve it. Appropriate resolution of this tradeoff
depends on the type of representations and solution meth-
ods envisioned for the MDP. For instans&ucturedrepre-
sentations and solution methods which have some ability to
ignore irrelevant information may cope with a crude trans-
lation, whilestate-basedflat) representations and methods
will require a more sophisticated translation producing an
MDP as small as feasible.

While the approachd®acchus et al., 1996; Bacchus et al.,
1997; Thebaux et al., 20(2are all based on translation
into an equivalent MDP, they target different MDP repre-
sentations and solution methods. SpecificadlBacchus

et al., 1995 targets state-based representations and clas-
sical solution methods such as value or policy iteration
[Howard, 1960. [Thiébaux et al., 20Q2also considers
state-based representation but targets heuristic search meth-
ods such as LAO{Hansen and Zilberstein, 20Pbr la-
belled RTDP[Bonet and Geffner, 20@3Finally, [Bacchus

et al., 1997 considers structured representations and solu-
tion methods such as structured policy iteration or SPUDD
[Boutilier et al., 1995; Hoey et al., 1909

These different targets lead the three approaches to resolve

A decision process in which rewards depend on the sethe translation/solution tradeoff differently, and in turn, to

quence of states passed through rather than merely ofyopt different temporal logics, as appropriate. For in-
the current state is called a decision process wmibim-

stance, botiBacchus et al., 1996; Bacchus et al., 1097

Markovian rewarddNMRDP). In decision-theoretic plan- yselinear temporal logicwith pastoperators (PLTL), as
ning, where many desirable behaviours are more natugjs yields a straightforward semantics of non-Markovian
rally expressed as properties of execution sequences rath@fivards, and lends itself to a simple characterisation of
than as properties of states, NMRDPs form a more naturad range of translations, from the crudest to the finest.
model than the commonly adopted fully Markovian deci- [Thiebaux et al., 20020n the other hand, relies on a more
sion process (MDP) moddHaddawy and Hanks, 1992; complex extension of LTL withiuture operators ($FLTL),
Bacchus et al., 1996 as it naturally leads to a style of translation suited to the

The more tractable solution methods developed for MDP&€€ds of heuristic search methods.

do not directly apply to NMRDPs. However, a number The three cited papers agree that the most important item
of solution methods for NMRDPs have been proposed irfor future work is the implementation and experimental
the literature[Bacchus et al., 1996; Bacchus et al., 1997;comparison of the respective approaches, with a view to
Thiébaux et al., 2002 These all start with a temporal logic identifying the features that favour one over the other. This
specification of the non-Markovian reward function, which paper is the first step in that direction. We start with a re-
they exploit to automatically translate the NMRDP into anview of NMRDPs and of the three approaches. We then
equivalent MDP which is solved using efficient MDP solu- describe NMRDPP (NMRDP Planner), an integrated sys-
tion methods. The states of this MDP result from augmentiem which implements, under a single interface, a family of
ing those of the original NMRDP with extra information NMRDP solution methods based on the cited approaches,
capturing enough history to make the reward Markovianand reports a range of statistics about their performance.



We use this system to compare their behaviours under thieistorical information. The dynamics of NMRDPs being
influence of various factors such as the structure and degredarkovian, the actions and their probabilistic effects in the
of uncertainty in the dynamics, the class of rewards and th#/DP are exactly those of the NMRDP.

syntax used to describe them, reachability, and relevance ?—formally, MDP D' = (§', s, A", Pr, R') is equivalent to

rewards to the optimal policy. NMRDP D = (S, sg, A, Pr, R) if there exists a mapping
7:5 +— S such that:
2 NMRDP SOLUTION METHODS 1. 7(s}) = s0.

2. Foralls’ € 8", A'(s") = A(7(s)).
3. For all s1,s5 €S, if there isa € A(sy) such that
We start with some notation and definitions. Given a finite ~ Pr(s1,a,s2) > 0, then for alls; € S’ such that

2.1 MDPs, NMRDPs, EQUIVALENCE

setS of states, we writes* for the set of finite sequences 7(s1)=s1, there exists auniquges’, 7(s5)=s2, such
of states oves, andS« for the set of possibly infinite state that for alla € A'(s}), Pr'(s}, a, s5) =Pr(s1, a, s2).
sequences. Wheré™ stands for a possibly infinite state 4. For any feasibfe state sequenc& for D and any
sequence b and: is a natural number, by*;’ we mean feasible state sequeng&® for D’ such thatl'y = s
the state of index in T, and by T'(i)’ we mean the prefix andvi 7(I';) = I';, we havevi R'(I"}) = R(I'(i)).

{To,..., i) € 5 of L. Items 1-3 ensure that there is a bijection between feasi-
We take a Markov decision process to be a 5-tupleple state sequences in the NMRDP and feasible e-state se
(S, s0, A, Pr, R), whereS is afinite set of fully observable quences in the equivalent MDP. Therefore, a stationary pol-
states;sg € S is the initial state A is a finite set of actions jcy for the MDP can be reinterpreted as a non-stationary
(A(s) denotes the subset of actions applicable ia S),  policy for the NMRDP. Furthermore, item 4 ensures that
{Pr(s,a,e) | s € S,a € A(s)} is a family of probability the two policies have identical values, and that conse-
distributions overS such thatr(s, a, s') is the probability  quently, solving an NMRDP optimally reduces to produc-
of being in states’ after performing actiom in states, and  ing an equivalent MDP and solving it optimallpacchus

R : S — Ris areward function such th&(s) is the im- et al., 199%.

mediate reward for being in state A stationary policy for . . . . .
an MDP is a functionr : S — A, such thatr(s) € A(s) When solving NMRDPs in this setting, the central issue

is the action to be executed in stafe The valueV () of IS 10 choose a language for compactly representing non-
the policy, which we seek to maximise, is the sum of theMarkovian reward functions and a translation algorithm
expected future rewards, discounted by how far into the fuWVhich isadaptedto the needs of the MDP representations

ture they occur: and solution methods we are targeting. In particular, this
n choice should enable an appropriate resolution of the trade-

V(r)= lim E {ZﬁlR(ri) | m,To = 50} off between the time spent in the translation and the time

nmee i—0 spent in solving the resulting MDP. The three approaches

where0 < 3 < 1 is the discounting factor controlling the We consider have different targets, for which different lan-
contribution of distant rewards. guages and translations are appropriate. We now present

- . , . . the main ideas behind these approaches. For details, the
A decision process with non-Markovian rewards is identi- a5 der is referred to the respective papers.

cal to an MDP except that the domain of the reward func-

tionis S*. The idea is that if the process has passed throug

state sequence(s) up to stage, then the reward?(I'(4)) B'Z PLTLSIMP AND PLTLMIN
is received at stage Like the reward function, a policy for
an NMRDP depends on history, and is a mapping fteim

to A with 7(T'(7)) € A(T;). As before, the value of is
the expectation of the discounted cumulative reward ove
an infinite horizon:

[Bacchus et al., 199@argets state-based MDP representa-
tions. The equivalent MDP is first entirely generated—this
involves the enumeration of all its states and transitions.
Ifrhen, it is solved using dynamic programming methods
n such as value or policy iteration. Since these methods are
V(r)= lim E {ZﬁiR(F(z’)) | 7, T = 30] very sensitive to the number of states, attention is paid to
nmee i—0 producing a minimal equivalent MDP (with the least num-
The solution methods considered here operate by translaer of states).
ing an NMRDP into an equivalent MDP with an extended The Janguage chosen to represent rewards is a linear tempo-
state spacEBacchus et al., 1996 The states in this MDP, | ogic of the past (PLTL). The syntax of PLTL is that of
which, for clarity, we will sometimes call expanded statespropositional logic, augmented with the operatergpre-
(e-statesfor short), augment the states of the NMRDP by iously) andS (since). Whereas a classical propositional
encoding additional information sufficient to make the re-|ogic formula denotes a set of states (a subsépa PLTL
ward history-independent. For instance, if we only want toformula denotes a set of finisequencesf states (a subset
reward the very first achievement of ggain an NMRDP,  of g+) A formula without temporal modality expresses a
the states of an equivalent MDP would carry at most ongyroperty that must be true of the current state, i.e., the last

extra bit of information recording whetherhas already state of the finite sequenceag specifies thats holds in
been true. In the following, we see an e-state as labelle

by a state of the NMRDP (via the functiorbelow) and by *All transitions along the sequence have non-zero probability.



the previous state (the state one before the last). We wilUnfortunately, this simple MDP is far from minimal. Al-
write ©F (k times ago), fork iterations of theo modality.  though it could be postprocessed for minimisation before
¢1 S @2, requiresp, to have been true at some point in the the MDP solution method is invoked, the above expansion
sequence, ang; to have held since right after then. From may still constitute a serious bottleneck. Theref¢Bac-

S, one can define the useful operatérg = T S f mean- chus et al., 1996considers a more complex two-phase
ing that f has been true at some point, dag = —O—f translation, which we calPLTLMIN, capable of produc-
meaning thaff has always been true. EgA - © &g de- ing an MDP also satisfying property (3). Here, a pre-
notes the set of finite sequences ending in a state whiere processing phase iterates over all statesSjrand com-
true for the first time in the sequence. We describe rewargutes, for each state a seti(s) of subformulae, where
functions with a set of pairg; : r; whereg, is a PLTL  the functiori is the solution of the fixpoint equatidfis) =
reward formula and; is a real, with the semantics that the {® U {Reqv’,s’)} | ¥’ € I(s'),s’ is a successor of}.

reward assigned to a sequencesihis the sum of the;s  Only subformulae if(s) will be candidates for inclusion
for which that sequence is a model®f Below, we letd i the sets labelling the respective e-states labelled with
denote the set of reward formulge in the description of 5. That is, the subsequent expansion phase will be as
the reward function. above, but takingl, C I(so) andy’ C I(s’) instead of

The translation into an MDP relies on the equivalence?y C Sub(®) andy’ C Sul(®). As the subformulae in
1S po = B2V (1 AO(h1 S ¢2)), with which we can de-  [(s) are exactly those that are relevant to the way actual
compose temporal modalities into a requirement about thexecution sequences starting from e-states labelled aith
last statel’; of a sequencé'(), and a requirement about are rewarded, this leads the expansion phase to produce a
the prefixI'(z — 1) of the sequence. More precisely, given minimal equivalent MDP.

states and a given formula, one can compute #O(||®|)

a new formula Re@, s) called the regression efthrough
s. Regression has the property thais true of a finite se-
quencel'(¢) ending withT'; = s iff Reg(¢, s) is true of the
prefix I'(i — 1). That is, Reggp, s) represents what mus
have been true previously fgrto be true now.

In the worst case, computing thisequires a space, and a

number of iterations throughi, exponential if|®||. Hence

the question arises of whether the gain during the expansion
t phase is worth the extra complexity of the preprocessing

phase. This is one of the questions we will try to answer.

The translation exploits the PLTL representation of rewards

as follows. Each e-state in the generated MDP is labelle@.3 PLTLSTRUCT

with a set? C Sul(®) of subformulae of the reward for-

mulae in® (and their negations). The subformulae it~ The approach iffBacchus et al., 1997 which we call
must be (1) true of the paths leading to the e-state, and (FLTLSTR, targets structured MDP representations: the tran-
sufficient to determine the current truth of all reward formu-sition model, policies, reward and value functions are
lae in ®, as this is needed to compute the current rewardrepresented in a compact form, e.g. as trees or alge-
Ideally the U's should also be (3) small enough to enablebraic decision diagrams (ADDs)lBoutilier et al., 1995;

just that, i.e. they should not contain subformulae whichHoey et al., 199 For instance, the probability of a given
draw history distinctions which are irrelevant to determin-proposition (state variable) being true after the execution
ing the reward at one point or another. Note however that iof an action is specified by a tree whose leaves are labelled
the worst-case, the number of distinctions needed, even iwith probabilities, whose nodes are labelled with the state
the minimal equivalent MDP, may be exponential fif|]. variables on whose previous values the given variable de-
This happens for instance with the formualé¢, which re-  pends, and whose arcs are labelled by the possible previous
quiresk additional bits of information memorising the truth values {I" or L) of these variables. The translation amounts
of ¢ over the last: steps. to augmenting the compact representation of the transition
) _ model with newtemporalvariables together with the com-
For the choice of tha's, [Bacchus et al., 199&onsiders 4.t representation of (1) their dynamics, e.g. as a tree over
two cases. In the simple case, which we @alfLSIM, an  the previous values of the relevant variables, and (2) of the
MDP obeying properties (1) and (2) is produced by sim-p,n_Markovian reward function in terms of the variables’
ply labelling each e-state with the setalf subformulae ¢ rrent values. Then, structured solution methods such as
in Sub(®) which are true of the sequence leading to that estructured policy iteration or the SPUDD algorithm are run
state. This MDP is generated forward, starting from the ini-on the resulting structured MDP. Neither the translation nor
tial e-state labelled witky and with the sefry C Sub(®) the solution methods explicitly enumerates states.

of all subformulae which are true of the sequetigg. The
successors of any e-state labelled by NMRDP staad
subformula sef are generated as follows: each of them is
labelled by a successef of s in the NMRDP and by the

set of subformulagy’ € Su®) | ¥ = Reqy’, s')}.

ThepLTLSTRtranslation can be seen as a symbolic version
of PLTLSIM. The setl’ of added temporal variables con-
tains the purely temporal subformulae PT8hpof the re-
ward formulae in®, to which theo modality is prepended
(unless already therelf’ = {©¢ | ¥ € PTSulf®), ¢ #
oy'Yu{oy | oy € PTSuli®)}. Thus, by repeatedly ap-
2The size||®|| of a set of reward formula® is measured as  Plying the equivalence; S ¢ = ¢2 V (1 A ©(¢1 S ¢2))
the sum of the lengths of the formulaedn to any subformula in PTS), we can express its cur-
3Given a sef” of formulae, we writeF’ for FU{~f | f € F} rent value, and hence that of reward formulae, as a function




of the current values of formulae ifi and state variables, that we get rewarded now>¢ means that holds in the
as required by the compact representation of the transitionext state, and); U o means thatp; will be true from
model. now on until¢p, becomes true, if ever. Frord, one can
defined¢ = ¢U L, meaning thaty will always be true.

a_heonecios by Teshres o ot v anf-8.0(c Dl (8 means el ollowing a ommand
N y o yc, we will be rewarded from the momeuatholds onwards.
from one state to the next. However, size is not as prob-

lematic as with state-based approaches, because structure U(¢ A §) means that we will be rewarded the first time
PP ’ ecomes true. As with PLTL, a reward function is repre-

SO'U“OF‘ methods do not enumerate states and are ab'? 2nted by a set of pairs consisting of a formula and a real.
dynamically ignore some of the variables that become ir-
relevant during policy construction. For instance, whenThe translation is based on a variant of progres§izac-
solving the MDP, they may be able to determine that somehus and Kabanza, 20Q0vhich is to future-oriented logics
temporal variables have become irrelevant because the sitwhat regression is to past-oriented ones: $Rsog) tells
ation they track, although possible in principle, is too risky us what must hold next fop to hold now, at the current
to be realised under a good policy. Thignamicanalysis of  states. Each e-state in the equivalent MDP is labelled by a
rewards contrasts with treaticanalysis ifBacchus et al., state of the NMRDP and by a set of $FLTL formulae. The
1994 which must encode enough history to determine theinitial e-state is labelled witl, and the se®, of all reward
reward at all reachable futures under any policy. formulae in the given reward function. Each successor of

an e-state labelled withand® is labelled by a successsr

One question that arises is that of the circumstances Urgs Cin the NMRDP and by the S€BProg e, ) | ¢ € B}

der which this analysis of irrelevance by structured solutlonOf the progressions of the formulae in throughs. Al-

me_th_ods, especially t_he dyf‘amic aspects, is really 81nfeCtivethough the MDP produced that way is not minimal, it sat-
This is another question this paper will try to address. isfies a weaker but still interesting notion of minimality,

called blind minimality. Intuitively, a blind minimal equiv-
24 FLTL alent MDP is the smallest equivalent MDP achievable by

. ., ) any on-line translation.
The approach ifThiébaux et al., 2042 which we call

FLTL, considers state-based representations of the equiWith FLTL, the structure of the reward formulae is pre-
alent MDP and targets heuristic forward search solutiorserved by the translation and exploited by progression.
methods such as LAO* or labelled RTDP. Starting from This contrasts wittPLTLSIM which completely loses this

a compact representation of the MDP and an admissibl&tructure by considering subformulae individually. One of
heuristic, these methods need only explicitly generate anthe purposes of the preprocessing phaseLTLMIN is to
explore a fraction of the state space to produce an optimdEcover this structure. One question that arises is whether
solution. To gain maximum benefit from these methodsthe simplicity of theFLTL translation combined with the
the translation into MDP must avoid generating states angfower of heuristic search compensates for the weakness
e-states that the method would not generate. Therefor@f blind minimality, or whether the benefits of true mini-
the FLTL translation operates entirely on-line: the solution mality as inPLTLMIN outweigh the cost of the preprocess-
method is given full control of which parts of the MDP ing phase. Furthermore, wi#hLTL, as WithPLTLSTR, the

are generated and explored. This contrasts withiLMIN, analysis of rewards is performed dynamically, as a function
which requires an off-line preprocessing phase iteratinf how the search proceeds. Another question we will try
through all states ir$. to answer is whether the respective dynamic analyses are

., . equally powerful.
[Thieébaux et al., 20dnotes that when using PLTL to spec-

ify rewards, there does not seem to be a way of designing an

on-line translation producing an MDP of acceptable §ize. 3 THE NMRDP PLANNER

Instead,[Thiébaux et al., 20G2adopts a variant of LTL

with future operators called $FLTL. The syntax is that of The first step towards a decent comparison of the differ-
negation normal form propositional logic augmented withgnt approaches is to have a framework that includes them
the constant $ (rewarded) and the operaforgnext) and )| The non-Markovian reward decision process plafiner
U (weak until). Asin PLTL, a $FLTL formula represents NMRDPP, provides an implementation of the approaches

a subset of5*— see[Thiébaux et al., 20G2for a formal i, 3 common framework, within a single system, and with
semantics’. But given the forward looking character of a common input language.

the language, it is best to see a formula as a recipe for dis-

tributing rewards, starting from the current state (i.e., thelhe input language enables the specification of actions, ini-

first state of the rest of the sequence). Informally, $ mean$al states, rewards, and control-knowledge. The format

— for the action specification is essentially the same as in
“pLTLSIM can be performed entirely on-line, but leads to athe SPUDD systeniHoey et al., 199p When the input

large MDP. _ is parsed, the action specification trees are converted into
This is more complex than the standard FLTL semantics. TthDDS by the CUDD package. The reward specification is

interpretation of $ is not fixed: $ is made true only when neede . .
to ensure that the formula holds (in the classical FLTL sense ofN€ or more formulae, each associated with a real. These

the term) in every sequence §f'. For reasons of readabilityand ——
space, the text above is deliberately evasive. Shttp://discus.anu.edu.au/ ~charlesg/nmrdpp



formulae are in either PLTL or $FLTL and are stored asgorithms rely heavily on the CUDD library for representing
trees by the system. Control knowledge is given in the samedecision diagrams. The non-structured algorithms make
language as that chosen for the reward. Control knowledgase of the MTL—Matrix Template Library for matrix oper-
formulae will have to be verified by any sequence of statestions. MTL takes advantage of modern processor features
feasible under the generated policies. Initial states are simsuch as MMX and SSE and provides efficient sparse matrix
ply specified as part of the control knowledge or as explicitoperations. We believe that our implementations of MDP
assignments to propositions. solution methods are comparable with the state of the art.
. For instance, we found that our implementation of SPUDD
\-/I—Qr?tgoem(;??r?efz‘gget\évgtrkl\lIL\J/IrIIZ({jSIrDIylsrg)gllu![\iI(,)\gerr?eF':EoEjaskﬁznadi-is comparable in performance (within a factor of 2) to the
9 o . o ' reference implementatiditioey et al., 199
general, be divided into the distinct phases of preprocess-

ing, expansion, and solving. The first two are optional. For

PLTLSIM, preprocessingomputes the s€sul{®) of sub-
formulae of the reward formulae. FeLTLMIN, it also in- 4 EXPERIMENTAL OBSERVATIONS

cludes computing the labelss) for each state. ForpLTL-

STR, it involves computing the séf of temporal variables e are faced with three substantially different approaches
as well as the ADDS for their dynamICS_and for the rewardSWhich are not easy to compare, as their performance will
FLTL does not require any preprocessifixpansionis the  depend on domain features as varied as the structure in the
optional generation of the entire equivalent MDP prior totransition model, reachability, the type, syntax, and length
solving. Whether or not off-line expansion is sensible de-of the temporal reward formula, the availability of good
pends on the MDP solution method used. If state-basegleuristics and control-knowledge, etc, and on the interac-
value or policy iteration is used, then the MDP needs to bgjons between these factors. In this section, we try to an-
expanded anyway. If, on the other hand, a heuristic searc§er the questions raised above and report an experimen-
algorithm or structured method is used, it is definitely ata| investigation into the influence of some of these fac-
bad idea. In our experiments, we often used expansiofors: dynamics, reward type, syntax, reachability, and pres-
solely for the purpose of measuring the size of the genence of rewards irrelevant to the optimal policy. In some
erated MDPSolvingthe MDP can be done using a number cases but not all, we were able to identify systematic pat-
of methods. Currently, NMRDPP provides implementa-terns. The results were obtained using a Pentium4 2.6GHz

tions of classical dynamic programming methods, namelysNU/Linux 2.4.20 machine with 500MB of ram.
state-based value and policy iteratidtioward, 1969, of

heuristic search methods: state-based LAB4nsen and
Zilberstein, 2001 using either value or policy iterationasa 41 PRELIMINARY REMARKS
subroutine, and of one structured method, namely SPUDD

[Hoey etal., 1998 Clearly,FLTL andPLTLSTR(A) have great potential for ex-
Altogether, the various types of preprocessing, the choic@loiting domain-specific heuristics and control-knowledge;
of whether to expand, and the MDP solution methods, give®’LTLMIN less so. To avoid obscuring the results, we there-
rise to quite a number of NMRDP approaches, including fore refrained from incorporating these features in the ex-
but not limited to those previously mentioned For instanceperiments. When running LAO*, the heuristic value of a
we obtain an interesting variant #iL.TLSTR, which we  state was the crudest possible (the sum of all reward values
call PLTLSTR(A), by considering additional preprocessing, in the problem). Performance results should be interpreted
whereby the state space is explored (without explicitly enuin this light — they do not necessarily reflect the practical
merating it) to produce a BDD representation of the e-stategbilities of the methods that can exploit these features.
reachable from the start state. This is done by starting Witl‘\lN

BDD ting the start e-stat d tedl e begin with some general observations. One ques-
a bUD representing e start e-stateé, and repeatedly afy,, raised above was whether the gain during the expan-
plying each action. Non-zero probabilities are converte

) ion phase is worth the expensive preprocessing performed
to ones and the result “or-ed” with the last result. Whenb P P brep gp

: . PLTLMIN, i.e. whethePLTLMIN typically outperforms
no action adds any reachable e-states to this BDD, we Ca | 5,y \we can definitively answer this question: up to

?he sure '(tj repregg_rtl_ts thle re?cr;ali)le el-sotlate tspacet._ IT;ws(gﬁthological exceptions, preprocessing pays. We found that
€n used as additional control knowiedge to restric Xpansion was the bottleneck, and that post-hoc minimisa-

search. It should be noted that without this phaseL- E,tczn of the MDP produced byLTLsIM did not help much.

StTR make%Ino da_ss(tjjmpt;ons al;qutllthetstarllrt.state, :}hus 'E lef, 1 sim is therefore of little or no practical interest, and
at a possible disadvantage. simiiar lechniques have begfs yacided not to report results on its performance, as it is

used in the sympolic implementatjon of LACﬁFeng and often an order of magnitude worse than tharofLMIN.
Hansen, 200R Given temporal variables are also included Unsurprisingly, we also found th&tTLSTR would typi-

in the BDD, PLTLSTR(A) is able to exploit reachability in o scale to larger state spaces, inevitably leading it to
the space of e-states asTLMIN does in the state-based outperform state-based methods. However, this effect is
case. not uniform: structured solution methods sometimes im-
NMRDPP is implemented in C++, and makes use of a numpose excessive memory requirements which makes them
ber of supporting libraries. In particular, the structured al-uncompetitive in certain cases, for example whergp,

for largen, features as a reward formula.




4.2 DOMAINS very poorly with that reward osPUDD-EXPON. This is
explained by the fact that only a small fractiong#ubpp-

Experiments were performed on four hand-coded domaing xpon states are reachable in the firststeps. Aftern

(propositions + dynamics) and on random domains. Eaclteps,FLTL immediately recognises that reward is of no

hand-coded domain has propositionsp;, and a dynam-  consequence, because the formula has progresséd to

ics which makes every state possible and eventually reachrLTLmiIN discovers this fact only after expensive prepro-

able from the initial state in which all propositions are fa|se.cessing, PLTLSTR, on the other hand, remains concerned

The first two such domainsPUDD-LINEAR and SPUDD- by the prospect of reward, just asTLSIM would.

EXPON were discussed ifHoey et al., 199P the two oth-

ers are our own. The intention ePUDD-LINEAR was to

take advantage of the best case behaviour of SPUDD. F(§1r'4 INFLUENCE OF REWARD TYPES

each propositiorp;, it has an actionz; which setsp; 10 The type of reward appears to have a stronger influence on
true and all propositiong;, 1 < j < i to false. SPUDD-  performance than dynamics. This is unsurprising, as the
EXPON, was used ifiHoey et al., 199pto demonstrate the  reward type significantly affects the size of the generated
worst case behaviour of SPUDD. For each proposiion - MDP: certain rewards only make the size of the minimal
it has an actiom; which setg; to true only when all propo-  equivalent MDP increase by a constant number of states or
sitionsp;, 1 < j < i are true (and setg, to false other- 5 constant factor, while others make it increase by a fac-
wise), and sets the latter propositions to false. The thirdor exponential in the length of the formula. Table 1 illus-
domain, calledoN/OFF, has one “turn-on” and one “turn-  rates this. The third column reports the size of the minimal

off” action per proposition. The “turn-op;” action only  equivalent MDP induced by the formulae on the left hand
probabilistically succeeds in settipgto true wherp; was  gjde8

false. The turn-off action is similar. The fourth domain, N o ) )
called COMPLETE, is a fully connected reflexive domain. A legitimate question is whether there is a direct correla-
For each propositiop; there is an actiom; which setsp;  tion between size increase and (in)appropriateness of the
to true with probabilityi /(n + 1) (and to false otherwise) different methods. For instance, we might expect the state-
andp;, j # i to true or false with probability 0.5. Note that based methods to do particularly well in conjunction with
a; can cause a transition to any of e states. reward types inducing a small MDP and otherwise badly
) . . - in comparison with structured methods. Interestingly, this
Random domains of sizealso involven. propositions. The  is not always the case. For instance, in Table 1 whose last
method for generating their dynamics is out of the scope oo columns report the fastest and slowest methods over
this paper, but let us just mention tha_t we are able to genefhe range of hand-coded domains where n < 12, the
ate random dynamics exhibiting a given degree of “struc+irst row contradicts that expectation. Moreover, although
ture” and a given degree of uncertainty. Lack of structurep 1 sTRis fastest in the last row, for larger valuesofnot

essentially measures the bushiness of the internal part gpresented in the table), it aborts through lack of memory,
the ADDs representing the actions, and uncertainty meagpjike the other methods.

sures the bushiness of their leaves. ) ) o
The most obvious observations arising out of these exper-

4.3 INFLUENCE OF DYNAMICS iments is thaPLTLSTRis nearly always the fastest—until
' it runs out of memory. Perhaps the most interesting re-

The interaction between dynamics and reward certainly afSults are those in the second row, which expose the inability
fects the performance of the different approaches, thougRf methods based on PLTL to deal with rewards specified
not so strikingly as other factors such as the reward typ&S |0ng sequences of events. In converting the reward for-
(see below). We found that under the same reward schem@ula to a set of subformulae, they lose information about
varying the degree of structure or uncertainty did not generth€ order of events, which then has to be recovered labo-
ally change the relative success of the different approache§0Usly by reasoning. $FLTL progression in contrast takes
For instance, Figures 1 and 2 show the average run timi1€ €vents one at a time, preserving the relevant structure
of the methods as a function of the degree of structuredt €ach step. Further experimentation led us to observe that
resp. degree of uncertainty, for random problems of sizéll PLTL based algorithms perform poorly where reward is
n = 6 and reward>" - © T (the state encountered at stage SPecified using formulae of the form™¢, Vi_, ©* ¢, and

n is rewarded, regardless of its properflesRun-time in-~ Af—; ©' ¢ (¢ has been trué steps ago, within the lagt
creases slightly with both degrees, but there is no signifisteps, or at all the lagt steps).

cant change in relative performance. These are typical of

the graphs we obtain for other rewards. 4.5 INFLUENCE OF SYNTAX

Clearly, counterexamples to this observation exist. Thes
are most notable in cases of extreme dynamics, for instan
with the sPubD-ExXPON domain. Although for small val-

ues ofn, such asn = 6, PLTLSTR approaches are faster
than the others in handling the reward—~ © T for vir- 8The figures are not necessarily valid for non-completely con-
tually any type of dynamics we encountered, they perforrmected NMRDPs. Unfortunately, even for completely connected

domains, there does not appear to be a much cheaper way to de-
O"$ in $FLTL termine the MDP size than to generate it and count states.

fJnsurprisingly, we find that the syntax used to express re-
Sfards, which affects the length of the formula, has a major
influence on the run time. A typical example of this effect
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Table 1: Influence of reward type on MDP size and method performance

type formula size fastest slowest

first time allp;s (N=ipi) A(O & Aty ps) | O)IST PLTLSTR(A) | PLTLMIN
p;S in sequence from start state(A%_; O' p;)) AO"= O T om)||S|| FLTL PLTLSTR
two consecutive;s VI Opi A pit1) On")||S|| | PLTLSTR FLTL

all p;sn times ago O" Nie1 pi O2™)||S]| | PLTLSTR PLTLMIN

is captured in Figure 3. This graph demonstrates how rethe MDP produced byLTLMIN is linear inn, the num-
expressingrvOut= o™ (A, p;) asprvin= AL, ©™ p;,  ber of rewards and propositions. These results are obtained
thereby creating times more temporal subformulae, alters with all hand-coded domains excepfUDD-EXPON. Fig-

the running time of all PLTL methodsLTL is affectedtoo  ure 5 shows the run-times as a functionroffor com-

as $FLTL progression requires two iterations through thePLETE FLTL dominates and is only overtaken bpyTL-
formula. The graph represents the averages of the runningTR(A) for large values of:, when the MDP becomes too
times over all the methods, for tleoMPLETEdomain. large for explicit exploration to be practical. To obtain

Our most serious concern in relation to the PLTL ap-w:rémsrg;nc?]!iggt?é\:]al)??;‘yfgrmlgw”wI/'\\';labloatzd)r?_
i=1 \Pi Nj=1,4#; Pj) -

proaches is their handling of reward specifications contain- N . J ;
ing multiple reward elements. Most notably we found that” - - - © Af=1 i : n % 7} is necessary, which, by virtue of
PLTLMIN does not necessarily produce the minimal equiv-tS €xPonential length, is not an adequate solution.

alent MDP in this situation. To demonstrate, we consider

the set of reward formulages, ¢o, ..., ¢,}, each asso- 4.6 INFLUENCE OF REACHABILITY

ciated with the same real value Given this, PLTL ap- ) - _ )
proaches will distinguish unnecessarily between past beAll approaches claim to have some ability to ignore vari-
haviours which lead to identical future rewards. This mayables which are irrelevant because the condition they track
occur when the reward at an e-state is determined by thi§ unreachable:pLTLMIN detects them through prepro-
truth value of¢, V ¢,. This formula does not necessarily Cessing,PLTLSTR exploits the ability of structured solu-

require e-states that distinguish between the cases in whidiPn methods to ignore them, amdTL ignores them when
{61 = T.do = L} and{¢, = L,¢» = T} hold; how-  Progression never exposes them. However, given that the

ever, given the above specificatior, TLMIN shall make —mechanisms for avoiding irrelevance are so different, we
this distinction. For example, taking; = ©p;, Figure 4  €xpect corresponding differences in their effects. On ex-
shows thaELTL leads to an MDP whose size is at most 3 perimental inVEStigation, we found that the differences in

times that of the NMRDP. In contrast, the relative size ofPerformance are best illustrated by lookingard formu-
lae, which assert that if a trigger conditiens reached then



a reward will be received upon achievement of the goal 5 CONCLUSION AND FUTURE WORK
in, resp. within,k steps. In PLTL, this is writteg A OFc,
resp.g A VE_, ©' ¢, and in $FLTL,0(c — OF(g — $)),  NMRDPP proved a useful tool in the experimental analysis
resp.0(c — AF_,O%(g — 9)). of approaches for decision processes with Non-Markovian
) rewards. Both the system and the analysis are the first of
Where thegoal ¢ is unreachable, PLTL approaches per-iheir kind. We were able to identify a number of general
form well. As it is always falseg does not lead to be- {rands in the behaviours of the methods and to provide ad-
havioural distinctions. On the other hand, while constructy e concerning which are best suited to certain circum-
ing the MDPFFLTL considers the successive progressions okances. We foundLTLSTR and FLTL preferable to state-
Okg without being able to detect that it is unreachable Untilbased PLTL approaches in most cases. If one insists on us-
it actually fails to happen. This is exactly what the blind- jng the latter, we strongly recommend preprocessing. In all
ness of blind minimality amounts to. Figure 6 illustrates cases, attention should be paid to the syntax of the reward
the difference in performance as a function of the numbeformulae and in particular to minimising its leng#LTL is
n of propositions involved in thePUDD-LINEAR domain,  the technique of choice when the reward requires tracking
when the reward is of the forpn©™ ¢, with g unreachable. 5 |ong sequence of events or when the desired behaviour

FLTL shines when theigger ¢ is unreachable: the formula 1S cOmposed of many elements with identical rewards. For
will always progress to itself, and the goal, however com-guard formulae, we advise the userfiLSTRif the prob-
plicated, is never tracked in the generated MDP. In this sitability of reaching the goal is low or achieving it is very
uation PLTL approaches still considefc and its subfor-  1Sky, and conversely, ofLTL if the probability of reaching
mulae, only to discover, after expensive preprocessing fothe triggering condition is low or if reaching it is very risky.

PLTLMIN, after reachability analysis farLTLSTR(A), and For obvious reasons, this first report has focused on artifi-
never forpLTLSTR, that these are irrelevant. This is illus- Cial domains. It remains to be seen what form these results

trated in Figure 7, again withPUDD-LINEAR and a reward ~ t@ke in the context of domains of more practical interest.
of the formg A Oe. with ¢ unreachable. Another topic for future work is to exploit our findings to
’ design improved NMRDP solution methods.
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