
Implementation and Comparison of Solution Methods
for Decision Processes with Non-Markovian Rewards

Charles Gretton, David Price, and Sylvie Thíebaux
Computer Sciences Laboratory

The Australian National University
Canberra, ACT, Australia

{charlesg,davidp,thiebaux }@csl.anu.edu.au

Abstract

This paper examines a number of solution meth-
ods for decision processes with non-Markovian
rewards (NMRDPs). They all exploit a temporal
logic specification of the reward function to au-
tomatically translate the NMRDP into an equiv-
alent Markov decision process (MDP) amenable
to well-known MDP solution methods. They dif-
fer however in the representation of the target
MDP and the class of MDP solution methods to
which they are suited. As a result, they adopt dif-
ferent temporal logics and different translations.
Unfortunately, no implementation of these meth-
ods nor experimental let alone comparative re-
sults have ever been reported. This paper is the
first step towards filling this gap. We describe
an integrated system for solving NMRDPs which
implements these methods and several variants
under a common interface; we use it to compare
the various approaches and identify certain prob-
lem features favouring one over the other.

1 INTRODUCTION

A decision process in which rewards depend on the se-
quence of states passed through rather than merely on
the current state is called a decision process withnon-
Markovian rewards(NMRDP). In decision-theoretic plan-
ning, where many desirable behaviours are more natu-
rally expressed as properties of execution sequences rather
than as properties of states, NMRDPs form a more natural
model than the commonly adopted fully Markovian deci-
sion process (MDP) model[Haddawy and Hanks, 1992;
Bacchus et al., 1996].

The more tractable solution methods developed for MDPs
do not directly apply to NMRDPs. However, a number
of solution methods for NMRDPs have been proposed in
the literature[Bacchus et al., 1996; Bacchus et al., 1997;
Thiébaux et al., 2002]. These all start with a temporal logic
specification of the non-Markovian reward function, which
they exploit to automatically translate the NMRDP into an
equivalent MDP which is solved using efficient MDP solu-
tion methods. The states of this MDP result from augment-
ing those of the original NMRDP with extra information
capturing enough history to make the reward Markovian.

Naturally, there is a tradeoff between the effort spent in
the translation, e.g. in producing asmall equivalent MDP
without many irrelevant history distinctions, and the effort
required to solve it. Appropriate resolution of this tradeoff
depends on the type of representations and solution meth-
ods envisioned for the MDP. For instance,structuredrepre-
sentations and solution methods which have some ability to
ignore irrelevant information may cope with a crude trans-
lation, whilestate-based(flat) representations and methods
will require a more sophisticated translation producing an
MDP as small as feasible.

While the approaches[Bacchus et al., 1996; Bacchus et al.,
1997; Thíebaux et al., 2002] are all based on translation
into an equivalent MDP, they target different MDP repre-
sentations and solution methods. Specifically,[Bacchus
et al., 1996] targets state-based representations and clas-
sical solution methods such as value or policy iteration
[Howard, 1960]. [Thiébaux et al., 2002] also considers
state-based representation but targets heuristic search meth-
ods such as LAO*[Hansen and Zilberstein, 2001] or la-
belled RTDP[Bonet and Geffner, 2003]. Finally, [Bacchus
et al., 1997] considers structured representations and solu-
tion methods such as structured policy iteration or SPUDD
[Boutilier et al., 1995; Hoey et al., 1999].

These different targets lead the three approaches to resolve
the translation/solution tradeoff differently, and in turn, to
adopt different temporal logics, as appropriate. For in-
stance, both[Bacchus et al., 1996; Bacchus et al., 1997]
use linear temporal logicwith past operators (PLTL), as
this yields a straightforward semantics of non-Markovian
rewards, and lends itself to a simple characterisation of
a range of translations, from the crudest to the finest.
[Thiébaux et al., 2002], on the other hand, relies on a more
complex extension of LTL withfutureoperators ($FLTL),
as it naturally leads to a style of translation suited to the
needs of heuristic search methods.

The three cited papers agree that the most important item
for future work is the implementation and experimental
comparison of the respective approaches, with a view to
identifying the features that favour one over the other. This
paper is the first step in that direction. We start with a re-
view of NMRDPs and of the three approaches. We then
describe NMRDPP (NMRDP Planner), an integrated sys-
tem which implements, under a single interface, a family of
NMRDP solution methods based on the cited approaches,
and reports a range of statistics about their performance.

We use this system to compare their behaviours under the
influence of various factors such as the structure and degree
of uncertainty in the dynamics, the class of rewards and the
syntax used to describe them, reachability, and relevance of
rewards to the optimal policy.

2 NMRDP SOLUTION METHODS

2.1 MDPs, NMRDPs, EQUIVALENCE

We start with some notation and definitions. Given a finite
setS of states, we writeS∗ for the set of finite sequences
of states overS, andSω for the set of possibly infinite state
sequences. Where ‘Γ’ stands for a possibly infinite state
sequence inSω andi is a natural number, by ‘Γi’ we mean
the state of indexi in Γ, and by ‘Γ(i)’ we mean the prefix
〈Γ0, . . . ,Γi〉 ∈ S∗ of Γ.

We take a Markov decision process to be a 5-tuple
〈S, s0, A,Pr, R〉, whereS is a finite set of fully observable
states,s0 ∈ S is the initial state,A is a finite set of actions
(A(s) denotes the subset of actions applicable ins ∈ S),
{Pr(s, a, •) | s ∈ S, a ∈ A(s)} is a family of probability
distributions overS such thatPr(s, a, s′) is the probability
of being in states′ after performing actiona in states, and
R : S 7→ IR is a reward function such thatR(s) is the im-
mediate reward for being in states. A stationary policy for
an MDP is a functionπ : S 7→ A, such thatπ(s) ∈ A(s)
is the action to be executed in stateS. The valueV (π) of
the policy, which we seek to maximise, is the sum of the
expected future rewards, discounted by how far into the fu-
ture they occur:

V (π) = lim
n→∞

E
[n∑

i=0

βiR(Γi) | π,Γ0 = s0

]
where0 ≤ β ≤ 1 is the discounting factor controlling the
contribution of distant rewards.

A decision process with non-Markovian rewards is identi-
cal to an MDP except that the domain of the reward func-
tion isS∗. The idea is that if the process has passed through
state sequenceΓ(i) up to stagei, then the rewardR(Γ(i))
is received at stagei. Like the reward function, a policy for
an NMRDP depends on history, and is a mapping fromS∗

to A with π(Γ(i)) ∈ A(Γi). As before, the value ofπ is
the expectation of the discounted cumulative reward over
an infinite horizon:

V (π) = lim
n→∞

E
[n∑

i=0

βiR(Γ(i)) | π,Γ0 = s0

]
The solution methods considered here operate by translat-
ing an NMRDP into an equivalent MDP with an extended
state space[Bacchus et al., 1996]. The states in this MDP,
which, for clarity, we will sometimes call expanded states
(e-states, for short), augment the states of the NMRDP by
encoding additional information sufficient to make the re-
ward history-independent. For instance, if we only want to
reward the very first achievement of goalg in an NMRDP,
the states of an equivalent MDP would carry at most one
extra bit of information recording whetherg has already
been true. In the following, we see an e-state as labelled
by a state of the NMRDP (via the functionτ below) and by

historical information. The dynamics of NMRDPs being
Markovian, the actions and their probabilistic effects in the
MDP are exactly those of the NMRDP.

Formally, MDPD′ = 〈S′, s′0, A′,Pr′, R′〉 is equivalent to
NMRDPD = 〈S, s0, A,Pr, R〉 if there exists a mapping
τ : S′ 7→ S such that:

1. τ(s′0) = s0.
2. For alls′ ∈ S′,A′(s′) = A(τ(s′)).
3. For all s1, s2 ∈ S, if there is a ∈ A(s1) such that

Pr(s1, a, s2) > 0, then for all s′1 ∈ S′ such that
τ(s′1)=s1, there exists a uniques′2∈S′, τ(s′2)=s2, such
that for alla ∈ A′(s′1), Pr′(s′1, a, s

′
2)=Pr(s1, a, s2).

4. For any feasible1 state sequenceΓ for D and any
feasible state sequenceΓ′ for D′ such thatΓ0 = s0
and∀i τ(Γ′i) = Γi, we have:∀i R′(Γ′i) = R(Γ(i)).

Items 1–3 ensure that there is a bijection between feasi-
ble state sequences in the NMRDP and feasible e-state se-
quences in the equivalent MDP. Therefore, a stationary pol-
icy for the MDP can be reinterpreted as a non-stationary
policy for the NMRDP. Furthermore, item 4 ensures that
the two policies have identical values, and that conse-
quently, solving an NMRDP optimally reduces to produc-
ing an equivalent MDP and solving it optimally[Bacchus
et al., 1996].

When solving NMRDPs in this setting, the central issue
is to choose a language for compactly representing non-
Markovian reward functions and a translation algorithm
which isadaptedto the needs of the MDP representations
and solution methods we are targeting. In particular, this
choice should enable an appropriate resolution of the trade-
off between the time spent in the translation and the time
spent in solving the resulting MDP. The three approaches
we consider have different targets, for which different lan-
guages and translations are appropriate. We now present
the main ideas behind these approaches. For details, the
reader is referred to the respective papers.

2.2 PLTLSIMP AND PLTLMIN

[Bacchus et al., 1996] targets state-based MDP representa-
tions. The equivalent MDP is first entirely generated—this
involves the enumeration of all its states and transitions.
Then, it is solved using dynamic programming methods
such as value or policy iteration. Since these methods are
very sensitive to the number of states, attention is paid to
producing a minimal equivalent MDP (with the least num-
ber of states).

The language chosen to represent rewards is a linear tempo-
ral logic of the past (PLTL). The syntax of PLTL is that of
propositional logic, augmented with the operators� (pre-
viously) andS (since). Whereas a classical propositional
logic formula denotes a set of states (a subset ofS), a PLTL
formula denotes a set of finitesequencesof states (a subset
of S∗). A formula without temporal modality expresses a
property that must be true of the current state, i.e., the last
state of the finite sequence.�φ specifies thatφ holds in

1All transitions along the sequence have non-zero probability.

the previous state (the state one before the last). We will
write �k (k times ago), fork iterations of the� modality.
φ1 S φ2, requiresφ2 to have been true at some point in the
sequence, andφ1 to have held since right after then. From
S, one can define the useful operators♦- f ≡ > S f mean-
ing thatf has been true at some point, and�f ≡ ¬♦- ¬f
meaning thatf has always been true. E.g,g ∧ ¬� ♦- g de-
notes the set of finite sequences ending in a state whereg is
true for the first time in the sequence. We describe reward
functions with a set of pairsφi : ri whereφi is a PLTL
reward formula andri is a real, with the semantics that the
reward assigned to a sequence inS∗ is the sum of theris
for which that sequence is a model ofφi. Below, we letΦ
denote the set of reward formulaeφi in the description of
the reward function.

The translation into an MDP relies on the equivalence
φ1 S φ2 = φ2 ∨ (φ1 ∧�(φ1 Sφ2)), with which we can de-
compose temporal modalities into a requirement about the
last stateΓi of a sequenceΓ(i), and a requirement about
the prefixΓ(i − 1) of the sequence. More precisely, given
states and a given formulaφ, one can compute in2 O(||Φ||)
a new formula Reg(φ, s) called the regression ofφ through
s. Regression has the property thatφ is true of a finite se-
quenceΓ(i) ending withΓi = s iff Reg(φ, s) is true of the
prefix Γ(i − 1). That is, Reg(φ, s) represents what must
have been true previously forφ to be true now.

The translation exploits the PLTL representation of rewards
as follows. Each e-state in the generated MDP is labelled
with a setΨ ⊆ Sub(Φ) of subformulae of the reward for-
mulae inΦ (and their negations).3 The subformulae inΨ
must be (1) true of the paths leading to the e-state, and (2)
sufficient to determine the current truth of all reward formu-
lae inΦ, as this is needed to compute the current reward.
Ideally theΨs should also be (3) small enough to enable
just that, i.e. they should not contain subformulae which
draw history distinctions which are irrelevant to determin-
ing the reward at one point or another. Note however that in
the worst-case, the number of distinctions needed, even in
the minimal equivalent MDP, may be exponential in||Φ||.
This happens for instance with the formula�kφ, which re-
quiresk additional bits of information memorising the truth
of φ over the lastk steps.

For the choice of theΨs, [Bacchus et al., 1996] considers
two cases. In the simple case, which we callPLTLSIM, an
MDP obeying properties (1) and (2) is produced by sim-
ply labelling each e-state with the set ofall subformulae
in Sub(Φ) which are true of the sequence leading to that e-
state. This MDP is generated forward, starting from the ini-
tial e-state labelled withs0 and with the setΨ0 ⊆ Sub(Φ)
of all subformulae which are true of the sequence〈s0〉. The
successors of any e-state labelled by NMRDP states and
subformula setΨ are generated as follows: each of them is
labelled by a successors′ of s in the NMRDP and by the
set of subformulae{ψ′ ∈ Sub(Φ) | Ψ |= Reg(ψ′, s′)}.

2The size||Φ|| of a set of reward formulaeΦ is measured as
the sum of the lengths of the formulae inΦ.

3Given a setF of formulae, we writeF for F ∪{¬f | f ∈ F}

Unfortunately, this simple MDP is far from minimal. Al-
though it could be postprocessed for minimisation before
the MDP solution method is invoked, the above expansion
may still constitute a serious bottleneck. Therefore,[Bac-
chus et al., 1996] considers a more complex two-phase
translation, which we callPLTLMIN , capable of produc-
ing an MDP also satisfying property (3). Here, a pre-
processing phase iterates over all states inS, and com-
putes, for each states, a setl(s) of subformulae, where
the functionl is the solution of the fixpoint equationl(s) =
{Φ ∪ {Reg(ψ′, s′)} | ψ′ ∈ l(s′), s′ is a successor ofs}.
Only subformulae inl(s) will be candidates for inclusion
in the sets labelling the respective e-states labelled with
s. That is, the subsequent expansion phase will be as
above, but takingΨ0 ⊆ l(s0) andψ′ ⊆ l(s′) instead of
Ψ0 ⊆ Sub(Φ) andψ′ ⊆ Sub(Φ). As the subformulae in
l(s) are exactly those that are relevant to the way actual
execution sequences starting from e-states labelled withs
are rewarded, this leads the expansion phase to produce a
minimal equivalent MDP.

In the worst case, computing thisl requires a space, and a
number of iterations throughS, exponential in||Φ||. Hence
the question arises of whether the gain during the expansion
phase is worth the extra complexity of the preprocessing
phase. This is one of the questions we will try to answer.

2.3 PLTLSTRUCT

The approach in[Bacchus et al., 1997], which we call
PLTLSTR, targets structured MDP representations: the tran-
sition model, policies, reward and value functions are
represented in a compact form, e.g. as trees or alge-
braic decision diagrams (ADDs).[Boutilier et al., 1995;
Hoey et al., 1999]. For instance, the probability of a given
proposition (state variable) being true after the execution
of an action is specified by a tree whose leaves are labelled
with probabilities, whose nodes are labelled with the state
variables on whose previous values the given variable de-
pends, and whose arcs are labelled by the possible previous
values (> or⊥) of these variables. The translation amounts
to augmenting the compact representation of the transition
model with newtemporalvariables together with the com-
pact representation of (1) their dynamics, e.g. as a tree over
the previous values of the relevant variables, and (2) of the
non-Markovian reward function in terms of the variables’
current values. Then, structured solution methods such as
structured policy iteration or the SPUDD algorithm are run
on the resulting structured MDP. Neither the translation nor
the solution methods explicitly enumerates states.

ThePLTLSTR translation can be seen as a symbolic version
of PLTLSIM. The setT of added temporal variables con-
tains the purely temporal subformulae PTSub(Φ) of the re-
ward formulae inΦ, to which the� modality is prepended
(unless already there):T = {�ψ | ψ ∈ PTSub(Φ), ψ 6=
�ψ′} ∪ {�ψ | �ψ ∈ PTSub(Φ)}. Thus, by repeatedly ap-
plying the equivalenceφ1 S φ2 = φ2 ∨ (φ1 ∧�(φ1 S φ2))
to any subformula in PTSub(Φ), we can express its cur-
rent value, and hence that of reward formulae, as a function

of the current values of formulae inT and state variables,
as required by the compact representation of the transition
model.

As with PLTLSIM, the underlying MDP is far from
minimal—the encoded history features do not even vary
from one state to the next. However, size is not as prob-
lematic as with state-based approaches, because structured
solution methods do not enumerate states and are able to
dynamically ignore some of the variables that become ir-
relevant during policy construction. For instance, when
solving the MDP, they may be able to determine that some
temporal variables have become irrelevant because the situ-
ation they track, although possible in principle, is too risky
to be realised under a good policy. Thisdynamicanalysis of
rewards contrasts with thestaticanalysis in[Bacchus et al.,
1996] which must encode enough history to determine the
reward at all reachable futures under any policy.

One question that arises is that of the circumstances un-
der which this analysis of irrelevance by structured solution
methods, especially the dynamic aspects, is really effective.
This is another question this paper will try to address.

2.4 FLTL

The approach in[Thiébaux et al., 2002], which we call
FLTL, considers state-based representations of the equiv-
alent MDP and targets heuristic forward search solution
methods such as LAO* or labelled RTDP. Starting from
a compact representation of the MDP and an admissible
heuristic, these methods need only explicitly generate and
explore a fraction of the state space to produce an optimal
solution. To gain maximum benefit from these methods,
the translation into MDP must avoid generating states and
e-states that the method would not generate. Therefore,
the FLTL translation operates entirely on-line: the solution
method is given full control of which parts of the MDP
are generated and explored. This contrasts withPLTLMIN ,
which requires an off-line preprocessing phase iterating
through all states inS.

[Thiébaux et al., 2002] notes that when using PLTL to spec-
ify rewards, there does not seem to be a way of designing an
on-line translation producing an MDP of acceptable size.4

Instead,[Thiébaux et al., 2002] adopts a variant of LTL
with future operators called $FLTL. The syntax is that of
negation normal form propositional logic augmented with
the constant $ (rewarded) and the operators© (next) and
U (weak until). As in PLTL, a $FLTL formula represents
a subset ofS∗– see[Thiébaux et al., 2002] for a formal
semantics5. But given the forward looking character of
the language, it is best to see a formula as a recipe for dis-
tributing rewards, starting from the current state (i.e., the
first state of the rest of the sequence). Informally, $ means

4PLTLSIM can be performed entirely on-line, but leads to a
large MDP.

5This is more complex than the standard FLTL semantics. The
interpretation of $ is not fixed: $ is made true only when needed
to ensure that the formula holds (in the classical FLTL sense of
the term) in every sequence ofSω. For reasons of readability and
space, the text above is deliberately evasive.

that we get rewarded now.©φ means thatφ holds in the
next state, andφ1 Uφ2 means thatφ1 will be true from
now on untilφ2 becomes true, if ever. FromU , one can
define�φ ≡ φU⊥, meaning thatφ will always be true.
E.g,�(c→ �(φ→ �$) means that following a command
c, we will be rewarded from the momentφ holds onwards.
¬φU (φ ∧ $) means that we will be rewarded the first time
φ becomes true. As with PLTL, a reward function is repre-
sented by a set of pairs consisting of a formula and a real.

The translation is based on a variant of progression[Bac-
chus and Kabanza, 2000], which is to future-oriented logics
what regression is to past-oriented ones: $Prog(φ, s) tells
us what must hold next forφ to hold now, at the current
states. Each e-state in the equivalent MDP is labelled by a
state of the NMRDP and by a set of $FLTL formulae. The
initial e-state is labelled withs0 and the setΦ0 of all reward
formulae in the given reward function. Each successor of
an e-state labelled withs andΦ is labelled by a successors′

of s in the NMRDP and by the set{$Prog(φ, s) | φ ∈ Φ}
of the progressions of the formulae inΦ throughs. Al-
though the MDP produced that way is not minimal, it sat-
isfies a weaker but still interesting notion of minimality,
called blind minimality. Intuitively, a blind minimal equiv-
alent MDP is the smallest equivalent MDP achievable by
any on-line translation.

With FLTL, the structure of the reward formulae is pre-
served by the translation and exploited by progression.
This contrasts withPLTLSIM which completely loses this
structure by considering subformulae individually. One of
the purposes of the preprocessing phase inPLTLMIN is to
recover this structure. One question that arises is whether
the simplicity of theFLTL translation combined with the
power of heuristic search compensates for the weakness
of blind minimality, or whether the benefits of true mini-
mality as inPLTLMIN outweigh the cost of the preprocess-
ing phase. Furthermore, withFLTL, as withPLTLSTR, the
analysis of rewards is performed dynamically, as a function
of how the search proceeds. Another question we will try
to answer is whether the respective dynamic analyses are
equally powerful.

3 THE NMRDP PLANNER

The first step towards a decent comparison of the differ-
ent approaches is to have a framework that includes them
all. The non-Markovian reward decision process planner6,
NMRDPP, provides an implementation of the approaches
in a common framework, within a single system, and with
a common input language.

The input language enables the specification of actions, ini-
tial states, rewards, and control-knowledge. The format
for the action specification is essentially the same as in
the SPUDD system[Hoey et al., 1999]. When the input
is parsed, the action specification trees are converted into
ADDs by the CUDD package. The reward specification is
one or more formulae, each associated with a real. These

6http://discus.anu.edu.au/ ∼charlesg/nmrdpp

formulae are in either PLTL or $FLTL and are stored as
trees by the system. Control knowledge is given in the same
language as that chosen for the reward. Control knowledge
formulae will have to be verified by any sequence of states
feasible under the generated policies. Initial states are sim-
ply specified as part of the control knowledge or as explicit
assignments to propositions.

The common framework underlying NMRDPP takes ad-
vantage of the fact that NMRDP solution methods can, in
general, be divided into the distinct phases of preprocess-
ing, expansion, and solving. The first two are optional. For
PLTLSIM, preprocessingcomputes the setSub(Φ) of sub-
formulae of the reward formulae. ForPLTLMIN , it also in-
cludes computing the labelsl(s) for each states. ForPLTL-
STR, it involves computing the setT of temporal variables
as well as the ADDs for their dynamics and for the rewards.
FLTL does not require any preprocessing.Expansionis the
optional generation of the entire equivalent MDP prior to
solving. Whether or not off-line expansion is sensible de-
pends on the MDP solution method used. If state-based
value or policy iteration is used, then the MDP needs to be
expanded anyway. If, on the other hand, a heuristic search
algorithm or structured method is used, it is definitely a
bad idea. In our experiments, we often used expansion
solely for the purpose of measuring the size of the gen-
erated MDP.Solvingthe MDP can be done using a number
of methods. Currently, NMRDPP provides implementa-
tions of classical dynamic programming methods, namely
state-based value and policy iteration[Howard, 1960], of
heuristic search methods: state-based LAO*[Hansen and
Zilberstein, 2001] using either value or policy iteration as a
subroutine, and of one structured method, namely SPUDD
[Hoey et al., 1999].

Altogether, the various types of preprocessing, the choice
of whether to expand, and the MDP solution methods, give
rise to quite a number of NMRDP approaches, including,
but not limited to those previously mentioned For instance,
we obtain an interesting variant ofPLTLSTR, which we
call PLTLSTR(A), by considering additional preprocessing,
whereby the state space is explored (without explicitly enu-
merating it) to produce a BDD representation of the e-states
reachable from the start state. This is done by starting with
a BDD representing the start e-state, and repeatedly ap-
plying each action. Non-zero probabilities are converted
to ones and the result “or-ed” with the last result. When
no action adds any reachable e-states to this BDD, we can
be sure it represents the reachable e-state space. This is
then used as additional control knowledge to restrict the
search. It should be noted that without this phasePLTL-
STR makes no assumptions about the start state, thus is left
at a possible disadvantage. Similar techniques have been
used in the symbolic implementation of LAO*[Feng and
Hansen, 2002]. Given temporal variables are also included
in the BDD, PLTLSTR(A) is able to exploit reachability in
the space of e-states asPLTLMIN does in the state-based
case.

NMRDPP is implemented in C++, and makes use of a num-
ber of supporting libraries. In particular, the structured al-

gorithms rely heavily on the CUDD library for representing
decision diagrams. The non-structured algorithms make
use of the MTL—Matrix Template Library for matrix oper-
ations. MTL takes advantage of modern processor features
such as MMX and SSE and provides efficient sparse matrix
operations. We believe that our implementations of MDP
solution methods are comparable with the state of the art.
For instance, we found that our implementation of SPUDD
is comparable in performance (within a factor of 2) to the
reference implementation[Hoey et al., 1999].

4 EXPERIMENTAL OBSERVATIONS

We are faced with three substantially different approaches
which are not easy to compare, as their performance will
depend on domain features as varied as the structure in the
transition model, reachability, the type, syntax, and length
of the temporal reward formula, the availability of good
heuristics and control-knowledge, etc, and on the interac-
tions between these factors. In this section, we try to an-
swer the questions raised above and report an experimen-
tal investigation into the influence of some of these fac-
tors: dynamics, reward type, syntax, reachability, and pres-
ence of rewards irrelevant to the optimal policy. In some
cases but not all, we were able to identify systematic pat-
terns. The results were obtained using a Pentium4 2.6GHz
GNU/Linux 2.4.20 machine with 500MB of ram.

4.1 PRELIMINARY REMARKS

Clearly,FLTL andPLTLSTR(A) have great potential for ex-
ploiting domain-specific heuristics and control-knowledge;
PLTLMIN less so. To avoid obscuring the results, we there-
fore refrained from incorporating these features in the ex-
periments. When running LAO*, the heuristic value of a
state was the crudest possible (the sum of all reward values
in the problem). Performance results should be interpreted
in this light – they do not necessarily reflect the practical
abilities of the methods that can exploit these features.

We begin with some general observations. One ques-
tion raised above was whether the gain during the expan-
sion phase is worth the expensive preprocessing performed
by PLTLMIN , i.e. whetherPLTLMIN typically outperforms
PLTLSIM. We can definitively answer this question: up to
pathological exceptions, preprocessing pays. We found that
expansion was the bottleneck, and that post-hoc minimisa-
tion of the MDP produced byPLTLSIM did not help much.
PLTLSIM is therefore of little or no practical interest, and
we decided not to report results on its performance, as it is
often an order of magnitude worse than that ofPLTLMIN .
Unsurprisingly, we also found thatPLTLSTR would typi-
cally scale to larger state spaces, inevitably leading it to
outperform state-based methods. However, this effect is
not uniform: structured solution methods sometimes im-
pose excessive memory requirements which makes them
uncompetitive in certain cases, for example where�nφ,
for largen, features as a reward formula.

4.2 DOMAINS

Experiments were performed on four hand-coded domains
(propositions + dynamics) and on random domains. Each
hand-coded domain hasn propositionspi, and a dynam-
ics which makes every state possible and eventually reach-
able from the initial state in which all propositions are false.
The first two such domains,SPUDD-LINEAR andSPUDD-
EXPON were discussed in[Hoey et al., 1999]; the two oth-
ers are our own. The intention ofSPUDD-LINEAR was to
take advantage of the best case behaviour of SPUDD. For
each propositionpi, it has an actionai which setspi to
true and all propositionspj , 1 ≤ j < i to false. SPUDD-
EXPON, was used in[Hoey et al., 1999] to demonstrate the
worst case behaviour of SPUDD. For each propositionpi,
it has an actionai which setspi to true only when all propo-
sitionspj , 1 ≤ j < i are true (and setspi to false other-
wise), and sets the latter propositions to false. The third
domain, calledON/OFF, has one “turn-on” and one “turn-
off” action per proposition. The “turn-on-pi” action only
probabilistically succeeds in settingpi to true whenpi was
false. The turn-off action is similar. The fourth domain,
called COMPLETE, is a fully connected reflexive domain.
For each propositionpi there is an actionai which setspi

to true with probabilityi/(n + 1) (and to false otherwise)
andpj , j 6= i to true or false with probability 0.5. Note that
ai can cause a transition to any of the2n states.

Random domains of sizen also involven propositions. The
method for generating their dynamics is out of the scope of
this paper, but let us just mention that we are able to gener-
ate random dynamics exhibiting a given degree of “struc-
ture” and a given degree of uncertainty. Lack of structure
essentially measures the bushiness of the internal part of
the ADDs representing the actions, and uncertainty mea-
sures the bushiness of their leaves.

4.3 INFLUENCE OF DYNAMICS

The interaction between dynamics and reward certainly af-
fects the performance of the different approaches, though
not so strikingly as other factors such as the reward type
(see below). We found that under the same reward scheme,
varying the degree of structure or uncertainty did not gener-
ally change the relative success of the different approaches.
For instance, Figures 1 and 2 show the average run time
of the methods as a function of the degree of structure,
resp. degree of uncertainty, for random problems of size
n = 6 and reward�n¬�> (the state encountered at stage
n is rewarded, regardless of its properties7). Run-time in-
creases slightly with both degrees, but there is no signifi-
cant change in relative performance. These are typical of
the graphs we obtain for other rewards.

Clearly, counterexamples to this observation exist. These
are most notable in cases of extreme dynamics, for instance
with the SPUDD-EXPON domain. Although for small val-
ues ofn, such asn = 6, PLTLSTR approaches are faster
than the others in handling the reward�n¬ � > for vir-
tually any type of dynamics we encountered, they perform

7©n$ in $FLTL

very poorly with that reward onSPUDD-EXPON. This is
explained by the fact that only a small fraction ofSPUDD-
EXPON states are reachable in the firstn steps. Aftern
steps,FLTL immediately recognises that reward is of no
consequence, because the formula has progressed to>.
PLTLMIN discovers this fact only after expensive prepro-
cessing.PLTLSTR, on the other hand, remains concerned
by the prospect of reward, just asPLTLSIM would.

4.4 INFLUENCE OF REWARD TYPES

The type of reward appears to have a stronger influence on
performance than dynamics. This is unsurprising, as the
reward type significantly affects the size of the generated
MDP: certain rewards only make the size of the minimal
equivalent MDP increase by a constant number of states or
a constant factor, while others make it increase by a fac-
tor exponential in the length of the formula. Table 1 illus-
trates this. The third column reports the size of the minimal
equivalent MDP induced by the formulae on the left hand
side.8

A legitimate question is whether there is a direct correla-
tion between size increase and (in)appropriateness of the
different methods. For instance, we might expect the state-
based methods to do particularly well in conjunction with
reward types inducing a small MDP and otherwise badly
in comparison with structured methods. Interestingly, this
is not always the case. For instance, in Table 1 whose last
two columns report the fastest and slowest methods over
the range of hand-coded domains where1 ≤ n ≤ 12, the
first row contradicts that expectation. Moreover, although
PLTLSTR is fastest in the last row, for larger values ofn (not
represented in the table), it aborts through lack of memory,
unlike the other methods.

The most obvious observations arising out of these exper-
iments is thatPLTLSTR is nearly always the fastest—until
it runs out of memory. Perhaps the most interesting re-
sults are those in the second row, which expose the inability
of methods based on PLTL to deal with rewards specified
as long sequences of events. In converting the reward for-
mula to a set of subformulae, they lose information about
the order of events, which then has to be recovered labo-
riously by reasoning. $FLTL progression in contrast takes
the events one at a time, preserving the relevant structure
at each step. Further experimentation led us to observe that
all PLTL based algorithms perform poorly where reward is
specified using formulae of the form�kφ, ∨k

i=1 �i φ, and
∧k

i=1 �i φ (φ has been truek steps ago, within the lastk
steps, or at all the lastk steps).

4.5 INFLUENCE OF SYNTAX

Unsurprisingly, we find that the syntax used to express re-
wards, which affects the length of the formula, has a major
influence on the run time. A typical example of this effect

8The figures are not necessarily valid for non-completely con-
nected NMRDPs. Unfortunately, even for completely connected
domains, there does not appear to be a much cheaper way to de-
termine the MDP size than to generate it and count states.

Structure (0:Structured, ... 1:Unstructured)
0.1 0.3 0.5 0.7 0.9 1.1

A
ve

ra
ge

 C
P

U
 ti

m
e

(s
ec

)

5

10

15
20
25
30

Figure 1: Changing Degree of Structure

FLTL

PLTLSTRUCT

PLTLMIN

PLTLSTRUCT(A)

Uncertainty (0:Certain, ... 1:Uncertain)
0 0.2 0.4 0.6 0.8 1 1.2

A
ve

ra
ge

 C
P

U
 ti

m
e

(s
ec

)

5

10

15
20
25

35

Figure 2: Changing Degree of Uncertainty

FLTL

PLTLSTRUCT

PLTLMIN

PLTLSTRUCT(A)

n
2 2.5 3 3.5 4 4.5 5 5.5

A
ve

ra
ge

 C
P

U
 ti

m
e

(s
ec

)

200

400
600

1000

Figure 3: Changing the syntax

All APPROACHES prvIn

All APPROACHES prvOut

n
0 2 4 6 8 10 12 14

S
ta

te
 c

ou
nt

/(
2^

n)

1

3

5

7

9

11

Figure 4: Effect of Multiple Rewards on MDP Size

PLTLMIN

FLTL

n
0 2 4 6 8 10 12 14

T
ot

al
 C

P
U

 ti
m

e
(s

ec
) 500

1000
1500

Figure 5: Effect of Multiple Rewards on Run Time

FLTL

PLTLSTRUCT

PLTLMIN

PLTLSTRUCT(A)

n
2 4 6 8 10 12 14

T
ot

al
 C

P
U

 ti
m

e
(s

ec
)

50

100
150

250
350

Figure 6: Guard with Unachievable Goal

FLTL

PLTLSTRUCT

PLTLMIN

PLTLSTRUCT(A)

n
1 3 5 7 9 11

T
ot

al
 C

P
U

 ti
m

e
(s

ec
)

50

100
150

250
350

Figure 7: Guard with Unachievable Condition

FLTL

PLTLSTRUCT

PLTLMIN

PLTLSTRUCT(A)

r
0 50 100 150 200 250 300 350

T
ot

al
 C

P
U

 ti
m

e
(s

ec
)

50

100
150
200

Figure 8: Guard with Unrewarding Goal

PLTLMIN

FLTL
PLTLSTRUCT

PLTLSTRUCT (A)

r
0 50 100 150 200 250 300 350

A
ve

ra
ge

 C
P

U
 ti

m
e

(s
ec

)

50

100
150
200

Figure 9: Guard with Unrewarding Condition

PLTLMIN

PLTLSTRUCT

FLTL

PLTLSTRUCT(A)

Table 1: Influence of reward type on MDP size and method performance
type formula size fastest slowest
first time allpis (∧n

i=1pi) ∧ (¬� ♦- ∧n
i=1 pi) O(1)||S|| PLTLSTR(A) PLTLMIN

pis in sequence from start state(∧n
i=1 �i pi) ∧�n¬�> O(n)||S|| FLTL PLTLSTR

two consecutivepis ∨n−1
i=1 (�pi ∧ pi+1) O(nk)||S|| PLTLSTR FLTL

all pisn times ago �n ∧n
i=1 pi O(2n)||S|| PLTLSTR PLTLMIN

is captured in Figure 3. This graph demonstrates how re-
expressingprvOut≡ �n(∧n

i=1pi) asprvIn ≡ ∧n
i=1 �n pi,

thereby creatingn times more temporal subformulae, alters
the running time of all PLTL methods.FLTL is affected too
as $FLTL progression requires two iterations through the
formula. The graph represents the averages of the running
times over all the methods, for theCOMPLETEdomain.

Our most serious concern in relation to the PLTL ap-
proaches is their handling of reward specifications contain-
ing multiple reward elements. Most notably we found that
PLTLMIN does not necessarily produce the minimal equiv-
alent MDP in this situation. To demonstrate, we consider
the set of reward formulae{φ1, φ2, . . . , φn}, each asso-
ciated with the same real valuer. Given this, PLTL ap-
proaches will distinguish unnecessarily between past be-
haviours which lead to identical future rewards. This may
occur when the reward at an e-state is determined by the
truth value ofφ1 ∨ φ2. This formula does not necessarily
require e-states that distinguish between the cases in which
{φ1 ≡ >, φ2 ≡ ⊥} and{φ1 ≡ ⊥, φ2 ≡ >} hold; how-
ever, given the above specification,PLTLMIN shall make
this distinction. For example, takingφi = �pi, Figure 4
shows thatFLTL leads to an MDP whose size is at most 3
times that of the NMRDP. In contrast, the relative size of

the MDP produced byPLTLMIN is linear inn, the num-
ber of rewards and propositions. These results are obtained
with all hand-coded domains exceptSPUDD-EXPON. Fig-
ure 5 shows the run-times as a function ofn for COM-
PLETE. FLTL dominates and is only overtaken byPLTL-
STR(A) for large values ofn, when the MDP becomes too
large for explicit exploration to be practical. To obtain
the minimal equivalent MDP usingPLTLMIN , a bloated re-
ward specification of the form{�∨n

i=1 (pi ∧n
j=1,j 6=i ¬pj) :

r, . . . ,� ∧n
i=1 pi : n ∗ r} is necessary, which, by virtue of

its exponential length, is not an adequate solution.

4.6 INFLUENCE OF REACHABILITY

All approaches claim to have some ability to ignore vari-
ables which are irrelevant because the condition they track
is unreachable:PLTLMIN detects them through prepro-
cessing,PLTLSTR exploits the ability of structured solu-
tion methods to ignore them, andFLTL ignores them when
progression never exposes them. However, given that the
mechanisms for avoiding irrelevance are so different, we
expect corresponding differences in their effects. On ex-
perimental investigation, we found that the differences in
performance are best illustrated by looking atguard formu-
lae, which assert that if a trigger conditionc is reached then

a reward will be received upon achievement of the goalg
in, resp. within,k steps. In PLTL, this is writteng ∧ �kc,
resp.g ∧ ∨k

i=1 �i c, and in $FLTL,�(c → ©k(g → $)),
resp.�(c→ ∧k

i=1
©i(g → $)).

Where thegoal g is unreachable, PLTL approaches per-
form well. As it is always false,g does not lead to be-
havioural distinctions. On the other hand, while construct-
ing the MDP,FLTL considers the successive progressions of
©kg without being able to detect that it is unreachable until
it actually fails to happen. This is exactly what the blind-
ness of blind minimality amounts to. Figure 6 illustrates
the difference in performance as a function of the number
n of propositions involved in theSPUDD-LINEAR domain,
when the reward is of the formg∧�nc, with g unreachable.

FLTL shines when thetrigger c is unreachable: the formula
will always progress to itself, and the goal, however com-
plicated, is never tracked in the generated MDP. In this sit-
uation PLTL approaches still consider�kc and its subfor-
mulae, only to discover, after expensive preprocessing for
PLTLMIN , after reachability analysis forPLTLSTR(A), and
never forPLTLSTR, that these are irrelevant. This is illus-
trated in Figure 7, again withSPUDD-LINEAR and a reward
of the formg ∧�nc, with c unreachable.

4.7 DYNAMIC IRRELEVANCE

[Bacchus et al., 1997; Thiébaux et al., 2002] claim that
one advantage ofPLTLSTR and FLTL over PLTLMIN and
PLTLSIM is that the former perform a dynamic analysis
of rewards capable of detecting irrelevance of variables to
particular policies, e.g. to the optimal policy. Our exper-
iments confirm this claim. However, as for reachability,
whether the goal or the triggering condition in a guard for-
mula becomes irrelevant plays an important role in deter-
mining whether aPLTLSTR or FLTL approach should be
taken: PLTLSTR is able to dynamically ignore the goal,
while FLTL is able to dynamically ignore the trigger.

This is illustrated in Figures 8 and 9. In both figures, the
domain considered isON/OFF with n = 6 propositions, the
guard formula isg ∧�nc as before, here with bothg andc
achievable. This guard formula is assigned a fixed reward.
To study the effect of dynamic irrelevance of the goal, in
Figure 8, achievement of¬g is rewarded by the valuer (i.e.
we have¬g : r in PLTL). In Figure 9, on the other hand,
we study the effect of dynamic irrelevance of the trigger
and achievement of¬c is rewarded by the valuer. Both
figures show the runtime of the methods asr increases.

Achieving the goal, resp. the trigger, is made less attrac-
tive asr increases up to the point where the guard formula
becomes irrelevant under the optimal policy. When this
happens, the run-time ofPLTLSTR resp.FLTL, exhibits an
abrupt but durable improvement. The figures show that
FLTL is able to pick up irrelevance of the trigger, while
PLTLSTR is able to exploit irrelevance of the goal. As ex-
pected,PLTLMIN whose analysis is static does not pick up
either and performs consistently badly.

5 CONCLUSION AND FUTURE WORK

NMRDPP proved a useful tool in the experimental analysis
of approaches for decision processes with Non-Markovian
rewards. Both the system and the analysis are the first of
their kind. We were able to identify a number of general
trends in the behaviours of the methods and to provide ad-
vice concerning which are best suited to certain circum-
stances. We foundPLTLSTR andFLTL preferable to state-
based PLTL approaches in most cases. If one insists on us-
ing the latter, we strongly recommend preprocessing. In all
cases, attention should be paid to the syntax of the reward
formulae and in particular to minimising its length.FLTL is
the technique of choice when the reward requires tracking
a long sequence of events or when the desired behaviour
is composed of many elements with identical rewards. For
guard formulae, we advise the use ofPLTLSTR if the prob-
ability of reaching the goal is low or achieving it is very
risky, and conversely, ofFLTL if the probability of reaching
the triggering condition is low or if reaching it is very risky.
For obvious reasons, this first report has focused on artifi-
cial domains. It remains to be seen what form these results
take in the context of domains of more practical interest.
Another topic for future work is to exploit our findings to
design improved NMRDP solution methods.

Acknowledgements Thanks to John Slaney for useful
discussions.

References
[Bacchus et al., 1996] F. Bacchus, C. Boutilier, and A. Grove.

Rewarding behaviors. InProc. AAAI-96, pages 1160–1167,
1996.

[Bacchus et al., 1997] F. Bacchus, C. Boutilier, and A. Grove.
Structured solution methods for non-markovian decision
processes. InProc. AAAI-97, pages 112–117, 1997.

[Bacchus and Kabanza, 2000] F. Bacchus and F. Kabanza. Us-
ing temporal logic to express search control knowledge for
planning.Artificial Intelligence, 116(1-2), 2000.

[Bonet and Geffner, 2003] B. Bonet and H. Geffner. Labeled
RTDP: Improving the convergence of real-time dynamic
programming. InProc. ICAPS-03, 2003.

[Boutilier et al., 1995] C. Boutilier, R. Dearden, and M. Gold-
szmidt. Exploiting structure in policy construction. InProc.
IJCAI-95, pages 1104–1111, 1995.

[Feng and Hansen, 2002] Z. Feng and E. Hansen. Symbolic
LAO∗ search for factored markov decision processes. In
Proc. AAAI-02, 2002.

[Haddawy and Hanks, 1992] P. Haddawy and S. Hanks. Repre-
sentations for decision-theoretic planning: Utility functions
and deadline goals. InProc. KR-92, pages 71–82, 1992.

[Hansen and Zilberstein, 2001] E. Hansen and S. Zilberstein.
LAO∗: A heuristic search algorithm that finds solutions with
loops.Artificial Intelligence, 129:35–62, 2001.

[Hoey et al., 1999] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier.
SPUDD: stochastic planning using decision diagrams.
In Proc. UAI-99, 1999. SPUDD is available from
http://www.cs.ubc.ca/spider/staubin/Spudd/.

[Howard, 1960] R.A. Howard. Dynamic Programming and
Markov Processes. MIT Press, Cambridge, MA, 1960.

[Thiébaux et al., 2002] S. Thíebaux, F. Kabanza, and J. Slaney.
Anytime state-based solution methods for decision pro-
cesses with non-markovian rewards. InProc. UAI-02, pages
501–510, 2002.

