A More Expressive Behavioral Logic for
Decision-Theoretic Planning

Charles Gretton

NICTA, Canberra, Australia; Australian National University; Griffith University

Abstract. We examine the problem of compactly expressing models
of non-Markovian reward decision processes (NMRDP). In the field of
decision-theoretic planning NMRDPs are used whenever the agent’s re-
ward is determined by the history of visited states. Two different proposi-
tional linear temporal logics can be used to describe execution histories
that are rewarding. Called PLTL and $FLTL, they are backward and
forward looking logics respectively. In this paper we find both to be ex-
pressively weak and propose a change to $FLTL resulting in a much more
expressive logic that we have called $* FLTL. The time complexities of
$*FLTL and $FLTL related model checking operations performed in
planning are the same.

Keywords: decision-theoretic planning, non-Markovian, temporal logic

1 Introduction

Problems in robot navigation, elevator control, energy distribution networks, etc.
can often be modelled as stochastic decision processes. In the field of decision-
theoretic planning we research general computational tools for synthesizing poli-
cies that efficiently and /or robustly control such processes. The de facto standard
process model is the fully observable finite state propositional Markov Decision
Process (MDP) described by Boutilier et al. (1999). That model is Markovian
in the sense that the current state of the process determines the instantanious
effects of an action and reward allocated. Reality motivates a richer formalism,
one that can compactly model processes where reward allocation occurs when
the system’s behavior (i.e. the execution history) exhibits desirable temporally
extended properties. Common rewarding behaviors include the achievement of
an objective/configuration once and only once, the maintenance of a desirable
configuration, the periodic achievement of an objective, and the achievement of a
dynamic objective. A decision process in which rewards depend on the sequence
of states passed through rather than merely on the current state is called a deci-
sion process with non-Markovian rewards (NMRDP). There have been a number
of formalisms proposed to compactly describe NMRDP. A detailed review and
empirical study of all existing solution methods and related formalisms is given
by Thiébaux et al. (2006).

2 C. Gretton

Proposals to date describe rewarding behaviors using one of two linear tem-
poral logistics, either PLTL or $FLTL.! In this paper we review propositional
MDPs, these two temporal logics, the motivations for each in our setting, and
discuss how NMRDPs are described in practice. We also briefly review the dif-
ferent approaches to solving NMRDPs. We characterise rewarding behaviors in
terms of language, and prove that PLTL and $FLTL can only describe rewarding
behaviors that correspond to noncounting regular languages. We then make a
minor change to $FLTL yielding a much more expressive logic that is able to
describe behaviors that correspond to counting languages. Examples of counting
languages in everyday life occur in the lighting sequences at traffic intersections
— Consider a first car arrives, the signal facing that vehicle remains red for a
fixed count of states, is set to green for a fixed count of states, then orange,
and so on. In mobile robotics, rewarding battery-charge profiles correspond to
counting languages. Importantly, both $*FLTL and $FLTL progression — i.e.
the operation used in planning to reason about rewarding behaviors — have the
same computational time complexity.

2 Propositionally Factored Markov Decision Processes

An MDP is given by a four-tuple (S, A, Pr,R). S is a finite set of states. A is a
finite set of actions. Where s,s" € S, a € A then Pr(s,a,s’) is the probability of
a transition from state s to s’ given action a is executed at state s. Also present
is a bounded real-valued reward function R : § — R. R is bounded in the sense
that there is a positive constant ¢ so that for all s € S, |R(s)| < c.

A flat MDP model, i.e. where the atoms of the model are states and actions,
is a fundamental conceptual tool in the study of automated planning, however it
does not expose how process models are described. Typically (see Boutilier and
Dearden, 1994) the underlying process dynamics are described in terms of a finite
set of probabilistic STRIPS operators A over state-characterising propositions
P. A problem state s is characterised by a set of propositions, in the sense that
s € P. For p € s we say proposition p is true in s. The reward description
however is usually flat, tabulating R(s) for each s with non-zero reward.

Describing the process dynamics in this setting, every stochastic action has
a precondition poss(a), which is a set of propositions. An action can be executed
at a state s when poss(a) C s. Let A(s) be the set of actions that can be
executed at state s. When a € A(s) is executed, nature decides amongst a
small set of deterministic outcomes O(a) = {daj,...,da;} what actually occurs.
Each possible outcome is described as a deterministic STRIPS operator with no
precondition. To keep this exposition simple, for any two distinct actions a; # a;,
if outcome da is a possibility for a; then it cannot also be a possibility for a; —
ie., if da € O(a;) then da € O(a;). We denote p,(da;) the (rational) probability
that nature takes outcome da;, and for all a we require .. €O(a) Ha (da;) = 1.
The outcome that nature chooses is observable, and its effect is given in terms of

L PLTL is called the “propositional linear temporal logic of the past” and $FLTL is
called the “future linear temporal logic with a dollar”.

Expressive Forward Behavioural Logic 3

two lists of propositions called the add list, add(da), and delete list, delete(da).
If a proposition is in the add list of da, then it cannot be in the delete list and
vice versa. If outcome da with add(da) := [p1, .., pn] and delete(da) := [p], ..,]
is executed at state s, then the resultant state is (s U add(da))\delete(da) — i.e.,
propositions from add(da) are added to s, and those from delete(da) are removed
from s.

3 Non-Markovian Rewards

A decision process with non-Markovian rewards is identical to an MDP except
that the domain of the reward function is S*, the set of finite sequences of states
over §. We adopt the notation I" for a member of §*, and where 7 is a natural
number, I is the state at index ¢ in I"; and I'(7) is the prefix (Ig,..., ;) € 8* of
I'. In an NMRDP, at I'; the agent receives the reward associated with the history
I'(i). There are two important observations to be made about NMRDPs. First,
there are NMRDP models for which all optimal policies depend on the history
of states traversed by the agent. Consequently, efficient MDP solution methods
cannot be applied directly to optimal planning in NMRDPs. Fortunately, every
non-Markovian model can be translated into an equivalent finite state MDP that
is amenable to state-of-the-art MDP solution procedures. In theory then, we can
solve an NMRDP by first translating it into an equivalent MDP, and then solve
the latter. All proposed solution methods proceed in that vein. First appearing
in (Bacchus et al., 1996), the criteria for MDP-NMRDP equivalence is given in
Def 1.

Definition 1. MPD-NMRDP Equivalence

An MDP (S’, A, Pr',R’Y is equivalent to an NMRDP (S, A, Pr,R), if there
exists mappings, surjective function T : 8’ — S, and injective functiono : S — §’,
such that:

1. Vs € § we have 7(o(s)) = s

2. For all s1,80 € S, a € A, and s} € S, if Pr(s1,a,82) = p is non-zero
and T(sy) = s1, then there exists a s5 € S’ such that 7(sh) = s2 and
Pr'(sy,a,85) =p

3. For sequences of states I'' and I" which can occur with non-zero probability
in the MDP and NMRDP respectively, where 7(I'}) = I; and o(Iy) = I,
we have R(I'(2)) = R'(I7}).

In Def 1, R : &' — R is the stationary reward function of the equivalent
MDP, and R : §* — R is the non-stationary reward function of the NMRDP.
Function ¢ maps each NMRDP state s to an MDP state s’ that models the
case where s = Iy — i.e. is the first state, or starting state of the NMRDP.
Conditions 2 and 3 say that the MDP and NMRDP models are equivalent wrt
their dynamics and reward structure.

Although one can painstakingly hand engineer equivalent MDPs, we are in-
terested in procedures which automate this task. Three proposals have been

4 C. Gretton

made, all of them suffering in one way or another from the fact that an equiva-
lent MDP can have exponentially more states than the corresponding NMRDP.
In each case that problem is tackled differently. Two approaches adopt a propo-
sitional linear temporal logic of the past (PLTL) to describe non-Markovian
rewards. In the first (see Bacchus et al., 1996), a preprocessing step translates
the entire NMRDP into an equivalent MDP. PLTL is motivated in this case
because it enables one to easily produce an equivalent MDP with the minimal
number of states. The second proposal (see Bacchus et al., 1997) describes how
compact factored representations of the reward, transition, and value functions
of the equivalent MDP can be used to achieve scalable procedures for solv-
ing structured problems. A third and later approach uses the forward looking
propositional linear temporal logic $FLTL to describe NMRDP rewards. That
choice was motivated by the success of online MDP solutions techniques, such
as LAO* (Hansen and Zilberstein, 2001), which in practice find very good poli-
cies without evaluating all the states of a model. $FLTL logic has a number of
advantages in that online setting. These are discussed in Thiébaux et al. (2006),
who give a detailed empirical analysis of all the approaches just discussed.

4 PLTL Reward Logic

The first logic proposed for describing rewarding behaviours in NMRDP was
PLTL. That is a propositional logic with 4 additional temporal operators: O,
unary prefix operator intuitively saying “in the last state”, H unary prefix “always
in the past”, § unary prefix “sometime in the past”, and S binary infix operator
“since”. A formula f describes a set of finite sequences of states By, where
By = {I'(#))|'(¢) = f}. Where f,g are formulae and p is a proposition, the
modelling relation |= is defined as follows:

r)Ep iffpel;
FEZ%':—'f ift (@) & f
(4)

IrGg)Fof iti>0and I'G—-1)Ef
I EfSgiff3j <i.I(j) Eg and Vk.j<k<i,T'(k) [f
Operators H and © are syntactic sugar: & f iff TS f, and Bf iff =&~ f. Using
this logic the NMRDP model is given by: 1) a propositional model of the starting
state and system dynamics, as discussed in Section 2, and 2) a PLTL reward
model. The latter is a set of PLTL formulae each associated with a real-valued

reward. Taking I'(k) = f to have value 1 if true and 0 otherwise, the reward
allocated at I'(k) is:

R(C(k) = Y (I'(k) &= fi)rs
(fisri)
For i ranging over indices of elements in the set of rewarding formula. A key topic
of our work is the expressive power of PLTL and related formalisms. In other
words, the rewarding behaviours By that can be described using propositional
logics from the decision-theoretic planning literature.

Expressive Forward Behavioural Logic 5

5 $FLTL Reward Logic

$FLTL is a future linear temporal logic (Emerson, 1990) augmented with a
special propositional constant ‘§’. The latter can be thought of as a 0-ary past
operator whose interpretation is determined according to where it appears in a
formula. This logic was the subject of a detailed empirical study by Thiébaux
et al. (2006) and was examined from a theoretical perspective by Slaney (2005).
To define $FLTL, we start with a much more general language, denoted F$.
That language has literals given by:

C:=P|=P|T|L|$

where T and L stand for true and false respectively, and P is a proposition.
Notice that —$ is not a literal in this logic. A formula in F$ is generated by the
following grammar:

F == l|F A F|F V FIOF|FUF|IOF

The [J operator is syntactic sugar, where [Jf iff fU L, thus we do not consider
its semantics below. The semantics requires a behavioral index B, which is a set
of sequences of states. For finite ¢ € N we have that formula f models a sequence
?fnstates I'(i) provided (I',i) |5, f. The consequence relation |, is defined as
ollows:

iff I'(i) € B

$
-
L
p iff p € I; — Here, p is a proposition
—p iff(]“,i)[;%p
fAgiE(Ii) s g and (1) K f
f\/giﬁ’(ﬂi)'ng or (F,i)lzBf
Oof iff(ﬂi—&-l)):Bf
fUgifft Vk > iifVy,i <j <k

(I'j) ¥ g then (I k) b, f

F$ semantics only differ in the first line—i.e. the interpretation of the special
reward proposition $—from those of classical forward linear temporal logic with
the weak until. To see how F$ formulae can delineate rewarding behaviours we
must consider the behavioural index B. For formula f we intend a behavioural
index By defined in terms of =p. The behaviour By intended by f is the smallest
set of sequences of states that make f a theorem. Formally, By satisfies the
following equivalence:

NHNEEEENES
USRS

By = (Bl K/} (1)

The structure of an F$ specified NMRDP is the same as in the PLTL case,
except the reward formulae—i.e. temporal logic formulae describing the non-

6 C. Gretton

Markovian rewards—are written in F$. For pair (f,r), reward r is allocated to
history I'(¢) iff I'(:) € By.

F$ was developed for describing NMRDPs for online search-based solution
procedures. Those procedures determine whether a state sequence is a rewarding
behaviour as successive states in that sequence are discovered during search. For
that purpose the technique of formula progression from model checking is used.
Formula progression is a syntactic operation. Given f, progression produces a
formula f’ that is true at step 7+ 1 iff f is true at step i. Treating F$, let f be a
formula that describes the rewarding behavior at I;. The progression operator
yields f’, a formula that describes a rewarding behavior available from state
I';11 onwards. Taking $prgg as defined in Alg 1, we have f' = $prgg(I5, f).

Algorithm 1 F$ Progression

Rew (I3, f) = Tiff prgg(L, I3, f) =1
prg(Fz‘7f) = prg$(ReW(“f)vFlv)
prgg(T, I3, $) = T

preg(L1L8) = 1

prgg(b I T) = T

pregg (b, I, L) = 1

prgg(b, I, p) = T iff p€ s and L otherwise
prgg (b, I, —p) = T iff p¢ s and L otherwise
prg$(b7Fiaf1 /\fQ) = prg$(b7Fi7f1)/\prg$(baFi7f2)
pres(b, Ii, f1 V f2) = preg(b, I, f1) V preg(b, I3, f2)
prg$(b7 Fivof) = f

prg$(b7Fiaf1Uf2) = prg$(b7Fi7f2) v(prg$(b7Fi7f1)/\f1Uf2)

Above, the function Rew(I7;, f) evaluates to true if and only if the formula f
would be false at state I'; taking $ = L. The first argument to prgg is a Boolean
giving us the truth value of $ at state I;. Alg 1 is therefore only admissible
where “Rew(I5, f) = T iff I'(¢) € By” holds. The function Rew is employed in
practice to determine whether a state sequence I'(7) implies a reward at I'; or
not. In detail, take f to be a reward formula and let:

£ = $preg(Li_1..., $preg (11, $prgg (1o, f))).

In the NMRDP, the numerical reward associated with f is achieved at I; iff
ReW(Fia fl) =

In general Alg 1 cannot be used as a tool for deciding if I" € By according
to Eq 1. For example, in the case of formula “$V O$” the above would allocate
reward deterministically, and arguably incorrectly. In the case of “Op — $7,
Alg 1 is simply wrong. In practice we only concern ourselves with the fragment
of F$ where Alg 1 and Eq 1 make sense and are in correspondence. From hereon
we shall restrict our attention to the fragment used in practice, given in Def 2.

Definition 2. $FLTL

Expressive Forward Behavioural Logic 7

$FLTL is the fragment of F$ that is generated by the following grammar.

F:=8$|OF|IMV FIFUM|FAF
Here, M is a modality free formula with no occurrences of the $ symbol.

The grammar of Def 2 provides us with reward formulae that satisfy an
intuition of “no funny business” (Slaney, 2005). Essentially, $FLTL makes sense
wrt Alg 1 and Eq 1.

6 (Noncounting) Regular Languages and LTL Models

We now compare the expressive power of the logics for describing rewarding
behaviours. We begin by reviewing a few prerequisite concepts from language
theory. A language of finite strings is a set of finite-length words drawn from
a finite set X, called the alphabet. Classic examples of formal languages from
computer science include regular languages and context free languages. To de-
scribe a language, one will invoke an abstract structure that delineates a set of
words. Regular languages can be specified using regular expressions.

Definition 3. Where a is an element in the alphabet, a € X, reqular expres-
sions satisfy the following grammar.

regxp ::= aregxp U regxp|regxp o regxp|regxpx

We write regxp™ to abbreviate regxp o regxp*. To interpret an expression, U is
union, o is concatenation, and * is Kleene closure. We write € for the empty
string.?

An important subfamily of the regular languages are the noncounting lan-
guages, also called star-free regular languages.

Definition 4. A regular language X is noncounting iff there exists a finite n so
that forall x,y,z € X*, xoy™oz € X iffvoy"t oz € X. Here, X* is the Kleene
closure of the alphabet and y™ is shorthand for n concatenated occurrences of y.

Every regular language that can be specified as a star-free regular expression
is noncounting. A short proof of this is given by Naughton and Papert (1971).
Moreover, noncounting regular languages are a proper subfamily of the regular
languages. That star-free regular expressions are able to describe any noncount-
ing language requires a more substantial investment of space to prove.

Relating language in the above sense to execution histories in a decision
process, we have already seen that a state s is the set of propositions that are
true when the process is in s. In other words, where P is the finite set of state
characterising propositions we have S C 2%. In discussing behaviour as language
we take as our finite alphabet the powerset of propositions ¥ = 2.

2 Given the available space, we must assume reader familiarity with the basic concepts
and intuitions of language theory in computer science.

8 C. Gretton

6.1 PLTL Behaviours are Noncounting Regular

We can now characterise the relative expressiveness of PLTL and $FLTL in terms
of these concepts. We begin by reviewing the case of PLTL. That behaviours are
regular in this case follows from the fact that there is an equivalent MDP (i.e.
finite stochastic automaton) associated with every NMRDP with a finite reward
specification. That counting languages cannot be described using PLTL can be
shown by structural induction as follows.

Theorem 1. PLTL Behaviours are Noncounting

Proof. That behaviours are noncounting for the PLTL fragment confined to oper-
ators N\,V,— and O is straightforward. Hence our proof shall focus on the binary
infix operator S. Suppose f,g € PLTL are formulae that denote noncounting
behaviours. We can augment any model I' with propositions (“temporal vari-
ables”) py and py to obtain a new model I'[py, pg] satisfying: Vi I'pr, pgl(i) =
pr ff I'(2) = f, and Ilpy,pgl(i) = py iff I'(i) = g. For any model I' and
its augmented counterpart I'[ps,pg], we have that for any i, I'(3) = fSg iff
Ilps,pgl(i) = psSpy. Now consider X*[py, pg] obtained by augmenting all state
sequences in X* as above. Given f and g are noncounting, there must be star-free
reqular expressions ey and e, delineating languages X, and X., respectively,
satisfying: I'(i) &= f iff I'(i) € Xe,, and I'(i) = g iff I'(i) € X.,. Therefore,
py € Llpy,pgli iff I'(i) € Xy, and pg € I'lpg,pgli iff I'(i) € Xe,. Let X(ef,eq)
be any regular expression, and X (ps,py) the same expression with subexpressions
ey and ey replaced with alphabet symbols for py and pg respectively. Because py
and py are redundant in X*[pg,pg), if X(pg,pg) is noncounting using X*[ps, pg)
rather than X* in Def 4, then X(es,ey) is noncounting using X*. Now, let
X(ps,pg) = (X*[ps,pg] 0 pg) 0 p}. Observe that Vi I'lpy,pyl(i) € X(py,py) iff
I'lpy,pgl(i) E psSpg. Both p} and X*[py,p,] are obviously noncounting taking
X*[ps.pg| as X* in Def 4, otherwise the expression X(ef,eq) is star-free and
therefore noncounting. Consequently fSg is noncounting, so the theorem holds.

We have just proved that PLTL can only describe behaviours that correspond
to languages that are noncounting. In wrapping up this section it is worth noting
that Thm 1 is stated by Lichtenstein et al. (1985), however no proof was given.
Otherwise, in the literature Thm 1 is stated as a consequence of a symmetry
with another LTL, and not directly and from first principles as we have shown.

6.2 S$FLTL Behaviours

Dealing exclusively with $FLTL, we have that questions regarding the expressive
power of the logic have yet to be answered. We know, because it is first-order
definable (see Slaney, 2005), that it can only describe behaviors that correspond
to regular languages. Here, we show that behaviours expressible in $FLTL are
noncounting.

Theorem 2. $FLTL Behaviours are Noncounting Reqular

Expressive Forward Behavioural Logic 9

Proof. Clearly none of formulae $, —p, p, L or T specifies a counting language.
Non-dollar propositional formulae f have By = XF or else By = (. Formula
$ specifies the set of state sequences of length 1. For the formula Of, we have:
Bo, = {¥oI'\l' € By}. Thus, if By is noncounting so is Boy. Taking non-
counting f1 and fa, for fi A fa we have By Ay, = By, UBy, which is not counting.
Also, if I' € By,vy, then I' € By, or else I' € By, — i.e., by definition either
f1 or fa is free of $ symbols and modalities. Thus, we cannot get a counting
language from disjunction. In the case fUm where m is propositional, we have
By, = (L) o (BrN (L)) where L' = {s|s g m} for any B. Thus U does
not give us a counting language.

7 $*FLTL: A More Expressive LTL for Planning

We are thus motivated to enhance $FLTL to obtain a logic equal in expressive
power to regular expressions. We only enhance the forward looking language
because our primary interest lies in online search-based planning procedures, a
setting that is ill-suited to PLTL approaches. To increase the expressive power
of $FLTL we design formulae in which multiple occurrences of distinguishable
reward propositions occur. Moreover, we shall do that without increasing the
computational cost of formula progression, and therefore the computational cost
of using our new logic to describe rewards in practice. We call the resulting
logic $*FLTL. To describe it, we begin by considering a future looking linear
temporal logic F$* given by the grammar:

F u= M|$;|T|L|F — F|-FIOF|FUF

This differs from $FLTL in two key ways: 1) there are now many $ symbols,
each indexed by an element in the natural numbers, and 2) a negation normal
formula in F$* can have subformulae of the form —$;. These minor differences
are sufficient for us to create a much more powerful logic with only minor modi-
fications. For F$* the modelling relation is indexed by a sequence of behaviours,
written B, rather than by a single behavior/history. The semantics differ notably
from $FLTL only in the interpretation of $ symbols,

(L) $;iff I'(i) € B(j)

Using F$* we can describe the union of behaviours as $; V $5 (e.g.

(I,9) k5 81V $2 then I'(i) € B(1) UB(2)), their intersection as $; A S and the
complement of a behaviour as —$;. We write about behavioural equivalences
= O(81 > 82), which says for all I" and i, I'(i) € B(1) iff I'(i) € B(2), or equiv-
alently B(1) = B(2).? The universal quantification over I" comes from the original
statement having the form |:B ¢ for some ¢ € F$*. Universal quantification over
i comes from the [J modality. In a similar way we write about sub/super-set
relationships between behaviours via |= [1($1 — $2), which says B(1) € B(2).

3 Recall, unary operator] is syntactic sugar for fU L.

10 C. Gretton

We now consider the behaviors we intend by formula f. Let B} be the set of
sequences of behaviours which make f a theorem:

B} = {Bl 5 /}

To interpret the rewarding behaviour described by f, here we restrict ourselves
to the situation where we choose the behaviour for each reward-proposition ac-
cording to the following inductive scheme.

Bf(o) = ﬁmem; B(O)

. . 2
By (i) = ﬂIB%E]B;,B(o):Bf(o),...IBa(iq):Bf(iq) B(i) @)

In other words, the behaviour $ is minimal, that of $; is minimal given B(0),
and generally the behaviour described by a $; is determined after those of $; for
j <. A fragment of F$* that satisfies Eq 2, which we call $*FLTL, is given
by:

Fuo=M-—$; letter-rule
|Fi ANFr AD((S; ASk) = 8) {7 <k<i} intersection
|[Fi AFe AD((8; VE,) — 8) {1 <k<i} union
|[F; A8 vS) {j<i} complement

8 = (O(Fng1 A Fng2 Ao o AFntm))) concatenation
|]:Z‘/\]:i+1/\.../\]:n/\|:|($n—> ($n+1/\o(]:i/\]:i+1/\~~~/\]:n)>) star

Above, M is a propositional formula. All F; are formula that satisfy the following
index criteria. If F; is not an instance of the star-rule, then $; is the rightmost
occurrence of a reward proposition in JF;. Otherwise, if F; is a star-rule then $;
is the second reward-proposition appearing to the right of the [operator (as it
appears in the grammar). For example, F3 could be the formula “p — $; A g —
$o /\D(($1 /\$2) — $3)”, and Fy might be “p — $; /\D($1 — ($2 /\O(p — $1)))”.

Theorem 3. An $*FLTL formula can express any regular language.

Proof. We have access to all alphabet symbols because a propositional formula M
can imply a reward proposition —i.e. M — $;. We also have access to the union,
intersection, complement, concatenation and Kleene closure via their respective
labelled rules in the $*FLTL grammar.

To specify an NMRDP reward function R using $* FLT L, for each rewarding
behavior we give a reward formula f, again associate it with the numeric reward
value, and additionally provide the index of the $; symbol where By () is the
rewarding behavior.

We are left to describe a linear time formula progression procedure for $FLTL.
If f is a letter-rule formula then Alg 1 is sufficient — i.e. treating $; as $. For
the other formula types we require a few building blocks. First, we require an
$* FLTL analogue of function Rew from Alg 1. In other words, a function that

Expressive Forward Behavioural Logic 11

tells us when I'(k) € B;(i) for each $; € f. Below we adopt the notation f[$;/C|
to describe the formula f in which every occurrence of the symbol $; is replaced
with the expression C.* Let F be the set of all $* FLTL formulae and consider
the function Rew™ : {0,1}* x & x F x N — {0, 1} where:

T if prgg(L,s, f[$;/% and $;/T forj >i]) =L

Rew (67 S, fa 7’) ~ L otherwise

in the case that the first argument is the empty string, and otherwise where it
is defined,

Rew™(B, s, f,i) = Rew™ (e, s, f[$,/B; for j < i],1).

Recall prgg is described in Alg 1. Given a state s and formula f, we can obtain a
Boolean string B whose i’th element, written B;, determines the truth of reward-
proposition $; € f at s using the following recursion:

B(0) = Rew™(e, s, f,0)
B(i) =B(i — 1) o Rew™(B(i — 1), s, f,9)

If f is the reward formula at state s, Rew™ can be used to tell us the values
of §; symbols in f at s. We are left to describe a formula progression that takes
f and B(i) (here, 7 is the largest index of a $ term in f) producing f’, a formula
that describes rewards at I'y1 iff f is true at I',. Taking prgg as defined in Alg 2
and s = I}, we have that f’ = prgg(B(i), s, f). Because terms in a conjunction
can be progressed independently and are limited to be of constant length, the
structure of $*FLTL means Alg 2, including the computation of B(i), can be
implemented to run in linear time in the length of the input formula. In other
words, $*FLTL and $FLTL progression have the same runtime complexity.

On a final note, we developed $* FLTL in order to make the statement of
Thm 3 straightforward. In practice it is a small matter to modify Alg 2 to also
support $FLTL formulae. Essentially, $* FLT L sketches how to enhance $FLTL
so that reward engineers can keep their existing corpus of formulae, while adding
much richer reward models that cannot be described using $FLTL.

8 Conclusion and Related Work

There are well established formal relationships between monadic theories of lin-
ear ordering, regular languages and classical propositional linear temporal logic
— see (Emerson, 1990) and (Wolper, 1983). In that tradition we have studied the
relationship between regular languages, star-free (or noncounting) regular lan-
guages, PLTL and $FLTL. The latter are logics that are used for describing re-
warding behaviours in decision-theoretic planning with non-Markovian rewards.

4 For multiple replacements, written f [$1/C182/C2], it makes no difference whether
replacement be taken as consecutive (replacing for index 1 and then 2) or simulta-
neous (replacing at the same time for all indices).

12 C. Gretton

Algorithm 2 $* FLTL Progression

Prgg(Bw&T) =T

prgg(B,S,J_) =1

prez (B, s, $;) = T if 1 is the i’th bit in B otherwise, L
pres (B, s, p) = T if p € s otherwise L

pres (B, s, f — 9) = prgg(B, s, f) — prgg(B, s,9)

prgs (B, s, f A g) = prgg(B, s, f) A prgg(B, s,9)

prgg(Bv S, D($J \ $7€)) = prg§ (B7 S, $j \ $k) A D($J \4 $k)
prgs (B, s,00((3: VvV $5) — $x)) = pregg (B, s, ($: V §5) — $x)A

prgg (B, s, 0((8: A 85) — 8k)) = prag(B, s, ($: A $;
D(($z A $j) — S)

prgg(B, s,0(8n = Snp1 AO(fi AL A fr)))) =
{fi/\.../\fn/\m(& = Bat1 AO(fi Ao A fn))) if B =1

)
O((%: vV $;) — %))

) — $k)/\

)

O6n — Gns1 AO(fi Ao A fr))) otherwise
pres (B, s, 0(8n — (O(fati Ao A faim))) =
{an Ao A Farm AOGR = (O(fnt1i Ao A fagm))) if By =1
On = (O(fas1 Ao A frym))) otherwise

We have discussed the expressive power of both $FLTL and PLTL. We provided
a proof that PLTL can only describe behaviours that correspond to star-free
regular languages. We showed that the same is true for $FLTL. Finding both
$FLTL and PLTL wanting of expressive power, we have developed a forward
looking logic $*F LT L which is able to describe behaviours that correspond to
regular languages. The formulae we used to define $*FLTL will give reward
engineers much more flexibility in compactly expressing rich reward signals in
decision-theoretic planning.

In closing, we note that $*FLTL is by no means the first linear temporal
logic with the power to describe any regular language. In particular Kesten
and Pnueli (1995) and Emerson (1990) discuss various Quantified Propositional
Temporal Logics (QPTL) and Wolper (1983) gives an Extended Temporal Logic
(ETL). The key advantages of $*FLTL are: 1) that model checking—i.e. as is
implemented by formula progression in our setting—is relatively cheap, and 2)
$*FLTL is based closely on a logic for describing non-Markovian rewards in
decision-theoretic planning.

Acknowledgments. NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT Centre of Ex-
cellence program.

Bibliography

Bacchus, F., Boutilier, C., Grove, A.: Rewarding behaviors. In: Proc. American
National Conference on Artificial Intelligence (AAAI). pp. 1160-1167 (1996)

Bacchus, F., Boutilier, C., Grove, A.: Structured solution methods for non-
Markovian decision processes. In: Proc. American National Conference on
Artificial Intelligence (AAAT). pp. 112-117 (1997)

Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural as-
sumptions and computational leverage. In: Journal of Artificial Intelligence
Research. vol. 11, pp. 1-94 (1999)

Boutilier, C., Dearden, R.: Using abstractions for decision-theoretic planning
with time constraints. In: AAAL pp. 1016-1022 (1994)

Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Com-
puter Science, vol. B, pp. 997-1072. Elsevier and MIT Press (1990)

Hansen, E.; Zilberstein, S.: LAO*: A heuristic search algorithm that finds solu-
tions with loops. Artificial Intelligence 129, 35-62 (2001)

Kesten, Y., Pnueli, A.: A complete proof systems for QPTL. In: Logic in Com-
puter Science. pp. 2-12 (1995)

Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Proc. Conference
on Logics of Programs. pp. 196-218. LNCS, volume 193 (1985)

Naughton, R.M., Papert, S.: Counter-Free Automata. M.I.T. Press, Cambridge,
Mass. (1971)

Slaney, J.: Semi-positive LTL with an uninterpreted past operator. Logic Journal
of the IGPL 13, 211-229 (2005)

Thiébaux, S., Gretton, C., Slaney, J., Price, D., Kabanza, F.: Decision-theoretic
planning with non-markovian rewards. J. Artif. Intell. Res.(JAIR) 25, 17-74
(2006)

Wolper, P.: Temporal logic can be more expressive. Information and Control
56(1/2), 72-99 (1983)

