
Combinatorial Optimisation
and

Heuristics for Getting Around
--PART 1--

Slides are (mostly) by: Phil Kilby
Speaker today is: Charles Gretton

Presentation title | Presenter name1 |

Outline

PART 1
• Combinatorial Optimisation
• The vehicle routing problem (VRP)

– VRP Variants
• Solving the Combinatorial Optimisation problems

– Exact methods
– Heuristic Construction
– Auction
– Local Search
– Meta-heuristics

PART 2

• Large Neighbourhood Search
• A CP model for the VRP
• Propagation
• Large Neighbourhood Search revisited

2/58

What is Combinatorial Optimisation?

• What is art?

• Problem will be described using language like:

• Variables, assignments, constraints, objective criterion

• Sets, subsets, permutations and combinations

• Vertices, nodes, edges, cliques, paths, cycles

• Solutions are usually finite discrete objects

• Usually interested in problems where exhaustive search is infeasible

• Prototypical deep learning solutions were first described in 1985
(Hopfield and Tank)

3/58

Shortest Path Problem

Find shortest path between two nodes

4/58

Bipartite Matching

Find the pairing with minimum cost

5/58Caveat : Example pre-dates Australia’s 2018 marriage equality laws

Minimum Spanning Tree

Find the spanning tree of minimum weight

6/58

Knapsack / Bin Packing problem

Choose items to give the maximum value within a given capacity.

7/58

Jobshop Scheduling

Schedule jobs on machines to minimize total time

8/58

Travelling Salesman Problem

Find the tour of minimum cost that visits all cities

9/58

Vehicle routing problem

Given a set of customers, and a fleet of vehicles to make deliveries,
find a set of routes that services all customers at minimum cost

10/58

Combinatorial Optimisation
•Usually a graph or set representation

•Some easy (Polynomial)

• SPP (sortest path problem),

• MST (minimum spaning tree),

• Matching (min/max cost/revenue matching)

•Some hard (NP Hard)

• ESSPWRC (Elementary shortest path with resource constraints),

• TSP (travelling sales person),

• VRP (vehicle routing problem)

•(Some in-between: Knapsack: “Easy NP”)

•Many real-world applications

• Add: Garry is not allowed to see Steve while he is driving his truck

• Add: Anthony likes his sleep
11/58

Why study the VRP?

•It’s hard: it exhibits all the difficulties of comb. opt.

•It’s useful:

• The logistics task is 9% of economic activity in Australia

• Logistics accounts for 10% of the selling price of goods

12/58

Vehicle Routing Problem

For each customer, we know

•Quantity required

•The cost to travel to every other customer

For the vehicle fleet, we know

•The number of vehicles

•The capacity

We must determine which customers each vehicle serves,
and in what order, to minimise cost

13/58

Vehicle Routing Problem

Objective function

In academic studies, usually a combination:

– First, minimise number of routes

– Then minimise total distance or total time

In real world

– A combination of time and distance

– Must include vehicle- and staff-dependent costs

– Usually vehicle numbers are fixed

– Includes “preferences” – like pretty routes

14/58

Vehicle Routing with constraints

•Time Window constraints

– A window during which service can start

– E.g. only accept delivery 7:30am to 11:00am

– Additional input data required

• Duration of each customer visit

• Time between each pair of customers

• (Travel time can be vehicle-dependent or time-dependent)

– Makes the route harder to visualise

15/58

Time Window constraints

16/58

Pickup and Delivery problems

•Most routing considers delivery to/from a depot (depots)

•Pickup and Delivery problems consider FedEx style problem:

pickup at location A, deliver to location B

Load profile:

17/58

Other variants

Profitable tour problem

•Not all visits need to be
completed

•Known profit for each visit

•Choose a subset that gives
maximum return
(profit from visits – routing cost)

18/58

VRP meets the real world

Many groups now looking at real-world constraints

Rich Vehicle Routing Problem

•Attempt to model constraints common to many real-life enterprises
– Multiple Time windows
– Multiple Commodities
– Multiple Depots
– Heterogeneous vehicles
– Compatibility constraints
• Goods for customer A {must | cannot} travel with goods from

customer B
• Cardboard and Glass

• Goods for customer A {must | cannot} travel on vehicle C
• Ambient v.s. Chilled

19/58

VRP meets the real world

Other real-world considerations

•Fatigue rules and driver breaks

•Vehicle re-use

•Ability to change vehicle characteristics (composition)

– Add trailer, or move compartment divider

•Use of limited resources

– e.g limited docks for loading, hence need to stagger dispatch
times

•Variable loading /
unloading times

20/58

Solving Combinatorial Problems

21/58

Solution Methods

Exact:

•Bespoke Method (e.g. “Hungarian” method for matching)

•Integer Programming or Mixed Integer Programming

•Constraint Programming

Heuristic:

•Construct

•Improve

• Local Search

• Meta-heuristics

22/58

Exact Methods

VRP:

•MIP: Can only solve problems with 50-100 customers

•CP: Similar size

– Session 2

23/58

ILP

Advantages
•Can find optimal solution
Disadvantages
• Only works for small problems
• One extra constraint  back to
the drawing board
• S is huge

24/58 Depot

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ෍

𝑖𝑗

𝑐𝑖𝑗෍

𝑘

𝑥𝑖𝑗𝑘

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ෍
𝑖
෍

𝑘
𝑥𝑖𝑗𝑘 = 1, ∀𝑗

෍
𝑗
෍

𝑘
𝑥𝑖𝑗𝑘 = 1, ∀𝑖

෍
𝑗
෍

𝑘
𝑥𝑗ℎ𝑘 − ෍

𝑗
෍

𝑘
𝑥ℎ𝑗𝑘 = 0, ∀𝑘ℎ

෍
𝑖
𝑞𝑖෍

𝑗
𝑥𝑖𝑗𝑘 ≤ 𝑄𝑘 , ∀𝑘

ൟ𝑥𝑖𝑗𝑘 ∈ {0, 1

෍
𝑥𝑖𝑗𝑘∈𝑆

𝑥𝑖𝑗𝑘 = 𝑆 − 1, 𝑆 ⊆ 𝑃 𝑁 , 0 ∉ 𝑆

ILP – Column Generation

25/58

89 76 99 45 32

1 1 1 1 0 0 …

2 0 1 1 0 1 …

3 0 0 0 0 0 …

4 1 0 1 1 0 …

5 1 0 0 0 0 …

Columns
represent routes

Rows represent
customers

Column/route cost ck

Array entry aik = 1 iff
customer i is
covered by route k

Column Generation – The Master
Want more details: see 2010 Tutorial by Dominique Feillet

•Decision var xk: Use column k?

•Column only appears if feasible ordering is possible

•Cost of best ordering is ck

•Best order stored separately

•Master problem at right

26/58

i

Dual Solution

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ෍
𝑘
𝑐𝑘𝑥𝑘

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

෍
𝑘
𝑥𝑘𝑎𝑖𝑘 ≥ 1, ∀𝑖

Column Generation – The “Subbie”
Want more details: 2005 Textbook by Stefan Irnich and Guy Desaulniers

Subproblem: add a column to the basis with negative reduced costs

•i.e. above equation is the objective of a shortest path problem

•Elementary shortest path problem with resource constraints

•If subproblem value –ve add column (path) to master problem

• Subproblem is intractable,

• DP solutions are state-of-the-art,

• worth considering CP for realistic problems with unusual constraints

27/58

min෍
𝑖𝑗

൯𝑥𝑖𝑗(𝑐𝑖𝑗 − 𝜆𝑖

Heuristic Methods

Construction:

•Start with an empty solution

•Add one element to the solution at a time

•“Greedy” methods

– Look around and find the “best” move locally

– Do it

– Repeat

• e.g. Knapsack: Insert items with best value/volume ratio

28/58

Heuristics for the VRP

Construction by Insertion

•Start with an empty solution

•Repeat

– Choose which customer to insert

– Choose where to insert it

E.g. (Greedy)

•Choose the customer that increases the cost by the least

•Insert it in the position that increases the cost by the least

29/58

Solving the VRP the easy way

Insert methods

30/58

Order is important:

c203-c-minins.dig
compare.dig

Regret

31/58

Regret

32/58

Regret

33/58

Regret

34/58

Regret

35/58

Regret

Regret = C(insert in 2nd-best route) – C(insert in best route)

= f (2,i) – f (1,i)

K-Regret = ∑k=1,K (f (k,i) – f (1,i))

36/58

Insertion with Regret

37/58

c203-c-noseed.dig

Auction Algorithm

Constrained allocation e.g. Bipartite Matching
•Cost cij to allocate thing i to person j
•Find the matching that minimises the sum of costs
•xij = 1 if i is assigned to j, 0 otherwise

min෍𝑐𝑖𝑗𝑥𝑖𝑗

Subject to

෍

𝑗

𝑥𝑖𝑗 ≤ 1 ∀𝑖

෍

𝑖

𝑥𝑖𝑗 = 1 ∀𝑗

38/58

Auction Algorithm

Start with Greedy Allocation:

– Give each person the lowest cost thing

Repeat

– If no thing is over-subscribed,

 We have a solution! Stop

– Else

 Find the least cost that will make someone flip their choice
amongst all oversubscribed things

 Increase the cost of the thing for everybody by that much

 Give each person the lowest cost thing (using new costs)

39/58

Auction Algorithm

min෍𝑐𝑖𝑗𝑥𝑖𝑗

Subject to

෍

𝑗

𝑥𝑖𝑗 = 1 ∀𝑖 𝜆𝑖

෍

𝑖

𝑥𝑖𝑗 = 1 ∀𝑗

40/58

Exercise

Solve a constrained matching problem using the Auction Algorithm

1. Score your preference for each sweet – lower is

better!

2. Scores must sum to 100

3. Write your score on a sheet of paper

4. We will run an Auction algorithm to allocate the

sweets

41/58

Choices, choices…

42/58

Full size bar!

Choices, choices…

43/58

Choices, choices…

44/58

Choices, choices…

Presentation title | Presenter name45 |

Choices, choices…

~50cm!

46/58

Choices, choices…

5 snakes!

(colours may
vary)

47/58

48/58

4 X

14 X

6 X

4 X

10 X

6 X

Auction Algorithm

Start with Greedy Allocation:

– Give each person the lowest cost thing

Repeat

– If no thing is over-subscribed,

 We have a solution! Stop

– Else

 Find the least cost that will make someone flip their choice
amongst all oversubscribed things

 Increase the cost of the thing for everybody by that much

 Give each person the lowest cost thing (using new costs)

49/58

Local Search

50/58

Improvement Methods

51/58

Local Search

•Often defined using an “operator”

Improvement Methods

52/58

Local Search

•Often defined using an “operator”

• e.g. 1-move

Improvement Methods

53/58

Local Search

•Often defined using an “operator”

• e.g. 1-move

Improvement Methods

54/58

Local Search

•Often defined using an “operator”

• e.g. 1-move

Improvement Methods

55/58

Local Search

•Often defined using an “operator”

• e.g. 1-move

Improvement Methods

56/58

Local Search

•Often defined using an “operator”

• e.g. 1-move

Improvement Methods

Local Search

•Often defined using an “operator”

• e.g. 1-move

• Operators determine the search
"neighbourhood"

• Local Search explores the
neighbourhood of
the current incumbent solution

57/58

Local Search

Other Neighbourhoods for VRP:

Swap 1-1

58/58

Local Search

Other Neighbourhoods for VRP:

Swap 1-1

59/58

Local Search

Other Neighbourhoods for VRP:

Swap 2-1

60/58

Local Search

Other Neighbourhoods for VRP:

Swap 2-1

61/58

Local Search

Other Neighbourhoods for VRP:

Swap tails

62/58

Local Search

Other Neighbourhoods for VRP:

Swap tails

63/58

Local Search

Other Neighbourhoods for VRP:

Swap tails

64/58

Improvement Methods

2-opt (3-opt, 4-opt…)

•Remove 2 arcs

•Replace with 2 others

65/58

Other problems

Neighbourhoods for other problems

Knapsack

• Swap 2 items (in/out)

• Swap 1 item with multiple items of equal size

Scheduling

• Swap jobs between machines

• Swap order of jobs

66/58

Local Search

Local minima

67/58

Objective value

Current solution

Local Search

Escaping local minima

Meta-heuristics

• Heuristic way of combining heuristics

• Designed to escape local minima

68/58

Local Search

Escaping local minima

Define more (larger) neighbourhoods

– 1-move (move 1 visit to another position) O(n2)

– 1-1 swap (swap visits in 2 routes) O(n2)

– 2-2 swap (swap 2 visits between 2 routes) O(n2)

– 2-opt O(n2)

– 3-opt O(n3)

– Or-opt size 2 (move chain of length 2 anywhere) O(n2)

– Or-opt size 3 (chain length 3) O(n2)

– Tail exchange (swap final portion of routes) O(n2)

69/58

Local Search

Variable Neighbourhood Search
•Consider multiple neighbourhoods

– 1-move (move 1 visit to another position)

– 1-1 swap (swap visits in 2 routes)

– 2-2 swap (swap 2 visits between 2 routes)

– 2-opt

– Or-opt size 2 (move chain of length 2 anywhere)

– Or-opt size 3 (chain length 3)

– Tail exchange (swap final portion of routes

– 3-opt

–Explore one neighbourhood completely
–If no improvement found, advance to next neighbourhood
–When an improvement is found, return to level 1

70/58

Local Search

Tabu Search

• Find Local minimum

• Explore each neighbourhood

• If an improving move is found, make it

• Repeat until local minimum is found

• Choose a cost-increasing move

• Make the cost-increasing move

• Make its reversal “tabu”

• Repeat

• Limit size of tabu list

• Bad moves are eventually reversed

71/58

Local Search

Simulated Annealing
•Reflects “annealing” of a crystal
•Minimise energy in crystal Minimise objective

•“Temperature” T controls

• How large an increase ()
will be accepted

• Probability of acceptance

•As T 0, only improving moves
accepted

72/58

TeincreaseacceptP


)(

Temperature

Local Search

Large Neighbourhood Search

= Destroy & Re-create

•Destroy part of the solution

– Remove visits from the solution

•Re-create solution

– Use favourite construct method to re-insert customers

•If the solution is better, keep it

•Repeat

73/58

Local Search

Genetic Algorithms
•Generate a population of solutions (construct methods)

•Evaluate fitness (objective)
•Create next generation:

– Choose two solutions from population
– Combine the two (two ways)
– (Mutate)
– Produce offspring (calculate fitness)
– (Improve)
– Repeat until population doubles

•Apply selection:
– Bottom half “dies”

•Repeat

74/58

Local Search

.. and the whole bag of tricks

•Ants

•Bees

•Moths

•Particle Swarms

•….

75/58

Review

Solving VRPs

•Exact

•Heuristic

Local Search

•“Neighbourhood”

•Neighbourhood-based local search

•Metaheuristics

• Variable Neighbourhood Search

• Large Neighbourhood Search

•Applied these to the VRP

76/58

Presenter’s Transportation Publications
• H. Aziz, C. Cahan, C. Gretton, P. Kilby, N. Mattei and T. Walsh. A

Study of Proxies for Shapley Allocations of Transport Costs.
Journal of Artificial Intelligence Research 56:573-611, 2016.

• H. Grzybowska, C. Gretton, P. Kilby, S. T. Waller. A Decision
Support System for a Real-Time Field Service Engineer Scheduling
Problem with Emergencies and Collaborations. Journal of the
Transportation Research Board 2497:117-123. 2015.tificial
Intelligence Research 56:573-611, 2016.

• C. Gretton and P. Kilby. A Study of Shape Penalties in Vehicle
Routing. TRISTAN VIII, 2013.

Presentation title | Presenter name77 |

Presenter’s Local Search Publications
• D. Pham, J. Thornton, C. Gretton, and A. Sattar. Combining

Adaptive and Dynamic Local Search for Satisfiability. Journal on
Satisfiability, Boolean Model Checking, and Computation, 2008.

• S.Richter, M.Helmert and C.Gretton. A Stochastic Local Search
Approach to Vertex Cover. Proceedings of the 30th German
Conference on Artificial Intelligence (KI-2007), 2007.

Presentation title | Presenter name78 |

