
Exploiting First-Order Regression in
Inductive Policy Selection

Charles Gretton, Sylvie Thiébaux

{charlesg,thiebaux}@csl.anu.edu.au

Computer Sciences Laboratory

Australian National University + NICTA

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 1/34

Overview

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 2/34

Overview

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 3/34

Markov Decision Process
An MDP is a 4-tuple 〈E ,A,Pr,R〉

Which includes fully observable states E and actions A

{Pr(e, a, •) | e∈E , a∈A(e)} is a family of probability
distributions over E such that Pr(e, a, e′) is the
probability of being in state e′ after performing action a

in state e

R : E → IR is a reward function such that R(e) is the
immediate reward for being in state e

We want a stationary policy π : E 7→ A. The value Vπ(e)
of state e given π is:

Vπ(e) = lim
n→∞

E
[

n
∑

t=0

βtR(et) | π, e0 = e
]

π is optimal iff Vπ(e) ≥ Vπ′(e) for all e ∈ E and π′

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 4/34

Planning (MDP)

moveS(,)
Pr = 0.9

moveF (,)
Pr = 0.1

move
(A,TA

B)

move(,)

move(. . .)

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 5/34

Planning (MDP)

moveS(,TAB)
Pr = 0.9

moveF (,TAB)
Pr = 0.1

move(,TAB)

move(A,D)

move(. . .)

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 6/34

Planning (MDP)

R = 0.0

.

R = 10.0

R = 0.0

.

R = 10.0

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 7/34

Planning (MDP)

Planner
R = 0.0

.

R = 10.0

R = 0.0

.

R = 10.0

IF
Current
State

Goal

THEN
move(,TAB)

Value/Policy Iteration
(factored/tabular)

LAO* (factored/tabular)

LRTDP

Q-Learning, TD(λ), API
Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 8/34

Overview

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 9/34

Planning (RMDP)

Planner
R = 0.0

.

R = 10.0

R = 0.0

.

R = 10.0

IF
Current
State

Goal

THEN
move(,TAB)

Relational
Planner

Domain Model
(Situation Calculus) IF

Current State |= φ

THEN
move(,)

Value/Policy Iteration
(factored/tabular)

LAO* (factored/tabular)

LRTDP

Q-Learning, TD(λ), API
Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 10/34

Overview

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 11/34

Previous Approaches – (Reasoning)

Use pure reasoning to compute a generalised policy
[Boutilier et al., 2001]

Requires theorem proving
Smart data structures
Not particularly practical

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 12/34

Previous Approaches – (Learning)

Policy focused
Use pure induction, given a fairly arbitrary
hypotheses space

[Fern et al., 2004], [Mausam and Weld, 2003], [Yoon et al., 2002],

[Dzeroski and Raedt, 2001], [Martin and Geffner, 2000], [Khardon, 1999]

Hypotheses space is either a user enumerated
list of concepts or
Sentences, in a taxonomic language bias

Value focused
Multi agent planning problems[Guestrin et al., 2003]

Our plan is to combine the best attributes of learning
and reasoning

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 13/34

Planning (RMDP)

Planner
R = 0.0

.

R = 10.0

R = 0.0

.

R = 10.0

IF
Current
State

Goal

THEN
move(,TAB)

Relational
Planner

Domain Model
(Situation Calculus) IF

Current State |= φ

THEN
move(,)

Value/Policy Iteration
(factored/tabular)

LAO* (factored/tabular)

LRTDP

Q-Learning, TD(λ), API
Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 14/34

Situation Calculus – as an RMDP Specification Language

Usual quantifiers and connectives :: {∃,∀,∧,∨,¬,→}

3 disjoint sorts:
1. Objects :: Blocks-World (block)

Logistics (box, truck, city)
2. Actions :: first-order terms built from an action

function symbol of sort objectn → action and its
arguments (i.e. move(a, b)).

3. Situations :: are lists of actions:
Constant symbol S0 denotes the initial situation
(empty list)
Function symbol
do : action × situation → situation

lists of length greater than 0.

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 15/34

RMDP Specification (cont)

Relational Fluents :: relations that have truth values
which vary from situation to situation.

Built using predicate symbols of sort
objectn × situation (i.e. On(b1, b2, do(move(a, b), s))).

Precondition :: for each deterministic action A(~x), we
need to write one axiom of the form:
poss(A(~x), s) ≡ ΨA(~x, s).

poss(moveS(b1, b2), s) ≡ poss(moveF (b1, b2), s) ≡

b1 6= table ∧ b1 6= b2∧ 6 ∃b3 On(b3, b1, s)∧

(b2 = table∨ 6 ∃b3 On(b3, b2, s))

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 16/34

RMDP Specification (cont)

t = case[f1, t1; . . . ; fn, tn] abbreviates ∨n
i=1

(fi ∧ t = ti).

Possibilities (natures choices) ::
choice(a,A(~x))≡∨k

j=1
(a=Dj(~x))

prob(Dj(~x), A(~x), s)=case[φ1

j(~x, s), p1

j ; . . . ;φ
m
j (~x, s), pm

j]

choice(a,move(b1, b2)) ≡

a = moveS(b1, b2) ∨ a = moveF (b1, b2)

prob(moveS(b1, b2),move(b1, b2), s) =

case[Rain(s), 0.7;¬Rain(s), 0.9]

prob(moveF (b1, b2),move(b1, b2), s) =

case[Rain(s), 0.3;¬Rain(s), 0.1]

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 17/34

State Formulae

f(~x, s), whose only free variables are non-situation
variables ~x and situation variable s, and in which no
other situation term occurs.

State formulae do not contain statements involving
predicates poss and choice, and functions prob.

φ is a state formula whose only free variable is s.

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 18/34

RMDP Specification (cont)

Successor state axiom :: For each relational fluent
F (~x, s), there is one axiom of the form:
F (~x, do(a, s)) ≡ ΦF (~x, a, s), where ΦF (~x, a, s) is a state
formula characterising the truth value of F in the
situation resulting from performing a in s.

On(b1, b2, do(a, s)) ≡ a = moveS(b1, b2)∨

(On(b1, b2, s)∧ 6 ∃b3 (b3 6= b2 ∧ a = moveS(b1, b3)))

moveS(,)
Pr = 0.9

moveF (,)
Pr = 0.1

On(, , ?)
move

(A,TA
B)

move(,)

move(. . .)

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 19/34

RMDP Specification (cont)

t = case[f1, t1; . . . ; fn, tn] abbreviates ∨n
i=1

(fi ∧ t = ti).

Reward :: R(s) = case[φ1(s), r1; . . . ;φn(s), rn], where the
ris are reals and the φis are state formulae.

R(s) ≡

case[∀b1 ∀b2 (OnG(b1, b2) → On(b1, b2, s)), 10.0;

∃b1 ∃b2 (OnG(b1, b2) ∧ ¬On(b1, b2, s)), 0.0]

R = 0.0

.

R = 10.0

R = 0.0

.

R = 10.0

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 20/34

Regression gives a Hypotheses Language

The regression of a state formula φ through a
deterministic action α (i.e. regr(φ, α)) is a state
formula that holds before α is executed iff φ holds after
the execution.

Consider the set {φ0

j} consisting of the state formulae
in the reward axiom case statement.

We can compute {φ1

j} from {φ0

j} by regressing the φ0

j

over all the domain’s deterministic actions.

A state in a subset of MDP states I ⊆ E that are one
action application from a rewarding state, “models”
∨

j φ1

j .

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 21/34

Regression gives a Hypotheses Language

A state formula characterising pre-action states for
each stochastic action, can be formed by considering
disjunctions over {φ1

j}.

We can encapsulate longer trajectories facilitated by
stochastic actions, by computing {φn

j } for larger n.

Formulae relevant to n-step trajectories are found in:

Fn ≡
⋃

i=0...n

{φi
j}

We shall always be able to induce a classification of
state-space regions by value and/or policy using
state-formulae given by regression.

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 22/34

Picture of First-Order Regression

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 23/34

Planning (RMDP)

Planner
R = 0.0

.

R = 10.0

R = 0.0

.

R = 10.0

IF
Current
State

Goal

THEN
move(,TAB)

Relational
Planner

Domain Model
(Situation Calculus) IF

Current State |= φ

THEN
move(,)

Value/Policy Iteration
(factored/tabular)

LAO* (factored/tabular)

LRTDP

Q-Learning, TD(λ), API
Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 24/34

Algorithm

IF
Current
State

Goal

THEN
move(,TAB)

Relational
Planner

Domain Model
(Situation Calculus)

〈e, v, B(~t)〉

φ ∈ F i=1...n

φ0
i

〈v0
i , NA〉 φ1

i

〈v1
i , B〉 . . .

e is an MDP state

v is the value of e

B(~t) is the optimal ground stochastic action

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 25/34

Planning (RMDP)

Planner
R = 0.0

.

R = 10.0

R = 0.0

.

R = 10.0

IF
Current
State

Goal

THEN
move(,TAB)

Relational
Planner

Domain Model
(Situation Calculus) IF

Current State |= φ

THEN
move(,)

Value/Policy Iteration
(factored/tabular)

LAO* (factored/tabular)

LRTDP

Q-Learning, TD(λ), API
Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 26/34

Logistics [Boutilier et al., 2001]

Canberra

A

A

A

D
B C

E

D
B
A

C
E

Canberra

F

F

Sydney

D
B C

E

Canberra

F

Unload(A, T1)

Sydney

D
B C

E

Drive(T1, Canberra)

Load(A, T1)

Initial SituationSydney Canberra

Sydney

F

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 27/34

Policy – Logistics
IF ∃b (Box(b) ∧Bin(b, Syd))

THEN act = NA, val = 2000

ELSE

IF ∃b∃t (Box(b) ∧ Truck(t) ∧ Tin(t, Syd) ∧On(b, t))

THEN act = unload(b, t), val = 1900

ELSE

IF ∃b∃t∃c (Box(b) ∧ Truck(t) ∧ City(c)∧

Tin(t, c) ∧On(b, t) ∧ c 6= Syd)

THEN act = drive(t, Syd), val = 1805

ELSE

IF ∃b∃t∃c (Box(b) ∧ Truck(t) ∧ City(c)∧

Tin(t, c) ∧Bin(b, c) ∧ c 6= Syd)

THEN act = load(b, t), val = 1714.75

ELSE

IF ∃b∃t∃c (Box(b) ∧ Truck(t) ∧ City(c)∧

¬Tin(t, c) ∧Bin(b, c))

THEN act = drive(t, c), val = 1629.01

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 28/34

Results – Deterministic

Domain max_n size |E| type time scope

LG-EX 4 2 56 P 0.2 ∞

LG-EX 4 3 4536 P 14.41 ∞

BW-EX 2 3 13 P 0.2 ∞

BW-EX 2 4 73 P 2.2 ∞

BW-EX 2 5 501 P 23.5 ∞

BW-ALL 5 4 73 T 33.9 5

BW-ALL 6 4 73 T 136.8 6

BW-ALL 5 10 10 T 131.9 5

BW-ALL 6 10 10 T 2558.5 6

LG-ALL 8 2 56 P 1.8 8

LG-ALL 8 2 56 P *0.5 8

LG-ALL 12 3 4536 P #17630.3 5

LG-ALL 12 3 4536 P #*263.4 6

LG-ALL 12 3 4536 P #*1034.2 9

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 29/34

Results – Stochastic

Domain max_n size |E| type time scope

LG-EXs 5 2 56 P 0.2 ∞

LG-EXs 5 3 4536 P 16.19 ∞

BW-EXs 3 3 13 P 0.3 ∞

BW-EXs 3 4 73 P 2.8 ∞

BW-EXs 3 5 501 P 29.3 ∞

BW-ALLs 4 4 73 P *0.4 4

BW-ALLs 7 4 73 P *11.5 7

BW-ALLs 8 4 73 P *58.0 8

BW-ALLs 9 4 73 P *1389.6 9

LG-ALLs 12 2 56 P 2.1 12

LG-ALLs 12 2 56 P *0.7 12

LG-ALLs 22 3 4536 P #1990.8 12

LG-ALLs 22 3 4536 P #*574.4 14

LG-ALLs 22 3 4536 P #*1074.5 15

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 30/34

Conclusions

GOOD :: Given domains for which the optimal
generalised value function has finite range

BAD :: With infinite objects, the value function can
have an infinite range

Model checking is a bottle neck

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 31/34

Future work

Prune more via control knowledge

Do not try unload after a load
|= �(a = load(~x)) → (a 6= unload(~y))

Avoid implicit and explicit universal quantification at all
costs

May have to sacrifice optimality

Concatenate n-step-to-go optimal policies
Macro actions

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 32/34

Algorithm

IF
Current
State

Goal

THEN
move(,TAB)

Relational
Planner

Domain Model
(Situation Calculus)

〈e, v, B(~t)〉

φ ∈ F i=1...n
IF |= φ0

i
THEN 〈v0

i , NA〉

ELSE IF |= φ1
i

THEN 〈v1
i , B〉

ELSE IF . . .

e is an MDP state

v is the value of e

B(~t) is the optimal ground stochastic action

Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 33/34

Algorithm (pseudo code)
Initialise {max_n, {φ0}, F 0}; Compute set of examples E; Call BUILD TREE(0, E)

function BUILD TREE(n : integer, E : examples)
if PURE(E) then

return success_leaf

end if
φ← good classifier in Fn for E. NULL if none exists
if φ ≡ NULL then

n← n + 1

if n > max_n then
return failure_leaf

end if
{φn} ← UPDATE HYPOTHESES SPACE({φn−1})
Fn ← {φn} ∪ F n−1

return BUILD TREE(n, E)

else
positive← {η ∈ E | η satisfies φ}

negative← E\positive

positive_tree← BUILD TREE(n, positive)

negative_tree← BUILD TREE(n, negative)

return TREE(φ, positive_tree, negative_tree)

end if
Workshop on Relational Reinforcement Learning – (July 8, 2004) – p. 34/34

References

[Boutilier et al., 2001] C. Boutilier, R. Reiter, and
B. Price. Symbolic Dynamic Programming for First-
Order MDPs. In Proc. IJCAI, 2001.

[Dzeroski and Raedt, 2001] S. Dzeroski and L. De
Raedt. Relational reinforcement learning. Machine
Learning, 43:7–52, 2001.

[Fern et al., 2004] A. Fern, S. Yoon, and R. Givan.
Learning Domain-Specific Knowledge from Random
Walks. In Proc. ICAPS, 2004.

[Guestrin et al., 2003] C. Guestrin, D. Koller,
C. Gearhart, and N. Kanodia. Generalising Plans to
New Environments in Relational MDPs. In Proc.
IJCAI, 2003.

[Khardon, 1999] R. Khardon. Learning action strategies
for planning domains. Artificial Intelligence, 113(1-
2):125–148, 1999.

[Martin and Geffner, 2000] M. Martin and H. Geffner.
Learning generalized policies in planning using con-
cept languages. In Proc. KR, 2000.

34-1

[Mausam and Weld, 2003] Mausam and D. Weld. Solv-
ing Relational MDPs with First-Order Machine
Learning. In Proc. ICAPS Workshop on Planning un-
der Uncertainty and Incomplete Information, 2003.

[Yoon et al., 2002] S.W. Yoon, A. Fern, and R. Givan.
Inductive Policy Selection for First-Order MDPs. In
Proc. UAI, 2002.

34-2

	Overview
	Overview
	Markov Decision Process
	Planning (MDP)
	Planning (MDP)
	Planning (MDP)
	hspace {2cm}Planning (MDP)
	Overview
	hspace {-4cm}Planning (RMDP)
	Overview
	Previous Approaches -- (Reasoning)
	Previous Approaches -- (Learning)
	hspace {-4cm}Planning (RMDP)
	{
ormalsize Situation Calculus -- as an RMDP Specification Language}
	RMDP Specification (cont)
	RMDP Specification (cont)
	State Formulae
	RMDP Specification (cont)
	RMDP Specification (cont)
	Regression gives a Hypotheses Language
	Regression gives a Hypotheses Language
	Picture of First-Order Regression
	hspace {-4cm}Planning (RMDP)
	Algorithm
	hspace {-4cm}Planning (RMDP)
	Logistics {	iny cite {boutilier:etal:01}}
	Policy -- Logistics
	Results -- Deterministic
	Results -- Stochastic
	Conclusions
	Future work
	Algorithm
	Algorithm (pseudo code)

