Exploiting First-Order Regression in Inductive Policy Selection

Charles Gretton, Sylvie Thiébaux {charlesg,thiebaux}@csl.anu.edu.au

Computer Sciences Laboratory Australian National University + NICTA

Overview

- Decision-theoretic planning
 - MDP, the model for decision-theoretic planning
 - What about the *relational structure* of domains (*situation-calculus*, PPDDL, Prob-STRIPS)?
- RMDPs, computing a generalised policy
 - Previous approaches:
 - Reasoning decision theoretic regression
 - Learning policy and/or value function
 - Situation-calculus specification
 - Algorithm
 - Results

Future work

Overview

Decision-theoretic planning

- MDP, *the* model for decision-theoretic planning
- What about the *relational structure* of domains (*situation-calculus*, PPDDL, Prob-STRIPS)?
- RMDPs, computing a generalised policy
 - Previous approaches:
 - Reasoning decision theoretic regression
 - Learning policy and/or value function
 - Situation-calculus specification
 - Algorithm
 - Sesults

Future work

Markov Decision Process

- An MDP is a 4-tuple $\langle \mathcal{E}, \mathcal{A}, \Pr, \mathcal{R} \rangle$
- Which includes fully observable states \mathcal{E} and actions \mathcal{A}
- $\{\Pr(e, a, \bullet) \mid e \in \mathcal{E}, a \in \mathcal{A}(e)\}$ is a family of probability distributions over \mathcal{E} such that $\Pr(e, a, e')$ is the probability of being in state e' after performing action a in state e
- We want a stationary policy $\pi : \mathcal{E} \mapsto \mathcal{A}$. The value $V_{\pi}(e)$ of state e given π is:

 \boldsymbol{n}

$$V_{\pi}(e) = \lim_{n \to \infty} \mathsf{E}\left[\sum_{t=0}^{n} \beta^{t} \mathcal{R}(e_{t}) \mid \pi, e_{0} = e\right]$$

 π is optimal iff $V_{\pi}(e) \ge V_{\pi'}(e)$ for all $e \in \mathcal{E}$ and π'

Planning (MDP)

Planning (MDP)

Planning (MDP)

Overview

Decision-theoretic planning

- MDP, the model for decision-theoretic planning
- What about the *relational structure* of domains (*situation-calculus*, PPDDL, Prob-STRIPS)?
- RMDPs, computing a generalised policy
 - Previous approaches:
 - Reasoning decision theoretic regression
 - Learning policy and/or value function
 - Situation-calculus specification
 - Algorithm
 - Sesults

Overview

- Decision-theoretic planning
 - MDP, *the* model for decision-theoretic planning
 - What about the *relational structure* of domains (*situation-calculus*, PPDDL, Prob-STRIPS)?
- RMDPs, computing a generalised policy
 - Previous approaches:
 - Reasoning decision theoretic regression
 - Learning policy and/or value function
 - Situation-calculus specification
 - Algorithm
 - Sesults

Previous Approaches – (Reasoning)

Use pure reasoning to compute a generalised policy

- [Boutilier *et al.*, 2001]
- Requires theorem proving
- Smart data structures
- Not particularly practical

Previous Approaches – (Learning)

Policy focused

- Use pure induction, given a fairly arbitrary hypotheses space
 - [Fern et al., 2004], [Mausam and Weld, 2003], [Yoon et al., 2002],
 [Dzeroski and Raedt, 2001], [Martin and Geffner, 2000], [Khardon, 1999]
 - Hypotheses space is either a user enumerated list of concepts or
 - Sentences, in a taxonomic language bias
- Value focused
 - Multi agent planning problems[Guestrin et al., 2003]
- Our plan is to combine the best attributes of learning and reasoning

Situation Calculus – as an RMDP Specification Language

- Usual quantifiers and connectives :: $\{\exists, \forall, \land, \lor, \neg, \rightarrow\}$
- 3 disjoint sorts:
 - 1. *Objects* :: Blocks-World (block)

Logistics (box, truck, city)

- 2. Actions :: first-order terms built from an action function symbol of sort $object^n \rightarrow action$ and its arguments (i.e. move(a, b)).
- 3. *Situations* :: are lists of actions:
 - Constant symbol S₀ denotes the initial situation (empty list)
 - Function symbol

 $do: action \times situation \rightarrow situation$ lists of length greater than 0.

RMDP Specification (cont)

- Relational Fluents :: relations that have truth values which vary from situation to situation.
 - Built using predicate symbols of sort $object^n \times situation$ (i.e. On(b1, b2, do(move(a, b), s))).
- Precondition :: for each deterministic action $A(\vec{x})$, we need to write one axiom of the form:
 $poss(A(\vec{x}),s) \equiv \Psi_A(\vec{x},s)$.

 $\begin{aligned} poss(moveS(b1,b2),s) &\equiv poss(moveF(b1,b2),s) \equiv \\ b1 \neq table \land b1 \neq b2 \land \not\exists b3 \; On(b3,b1,s) \land \\ (b2 = table \lor \not\exists b3 \; On(b3,b2,s)) \end{aligned}$

RMDP Specification (cont)

▶ $t = case[f_1, t_1; ...; f_n, t_n]$ abbreviates $\vee_{i=1}^n (f_i \land t = t_i)$. Possibilities (natures choices) :: $choice(a, A(\vec{x})) \equiv \bigvee_{j=1}^{k} (a = D_j(\vec{x}))$ $prob(D_j(\vec{x}), A(\vec{x}), s) = case[\phi_i^1(\vec{x}, s), p_i^1; \dots; \phi_i^m(\vec{x}, s), p_i^m]$ $choice(a, move(b1, b2)) \equiv$ $a = moveS(b1, b2) \lor a = moveF(b1, b2)$ prob(moveS(b1, b2), move(b1, b2), s) = $case[Rain(s), 0.7; \neg Rain(s), 0.9]$ prob(moveF(b1, b2), move(b1, b2), s) = $case[Rain(s), 0.3; \neg Rain(s), 0.1]$

State Formulae

- $f(\vec{x}, s)$, whose only free variables are non-situation variables \vec{x} and situation variable s, and in which no other situation term occurs.
- State formulae do not contain statements involving predicates *poss* and *choice*, and functions *prob*.
- ϕ is a state formula whose only free variable is s.

RMDP Specification (cont)

• Successor state axiom :: For each relational fluent $F(\vec{x}, s)$, there is one axiom of the form: $F(\vec{x}, do(a, s)) \equiv \Phi_F(\vec{x}, a, s)$, where $\Phi_F(\vec{x}, a, s)$ is a state formula characterising the truth value of F in the situation resulting from performing a in s.

 $On(b1, b2, do(a, s)) \equiv a = moveS(b1, b2) \lor$ $(On(b1, b2, s) \land \not\exists b3 \ (b3 \neq b2 \land a = moveS(b1, b3)))$

RMDP Specification (cont)

• $t = case[f_1, t_1; ...; f_n, t_n]$ abbreviates $\vee_{i=1}^n (f_i \wedge t = t_i)$.

• *Reward* :: $R(s) = case[\phi_1(s), r_1; ...; \phi_n(s), r_n]$, where the r_i s are reals and the ϕ_i s are state formulae.

 $\begin{aligned} R(s) \equiv \\ case[\forall b1 \forall b2 (OnG(b1, b2) \rightarrow On(b1, b2, s)), 10.0; \\ \exists b1 \exists b2 (OnG(b1, b2) \land \neg On(b1, b2, s)), 0.0] \end{aligned}$

Regression gives a Hypotheses Language

- The regression of a state formula φ through a deterministic action α (i.e. regr(φ, α)) is a state formula that holds before α is executed iff φ holds after the execution.
- Consider the set $\{\phi_j^0\}$ consisting of the state formulae in the *reward axiom* case statement.
- We can compute $\{\phi_j^1\}$ from $\{\phi_j^0\}$ by regressing the ϕ_j^0 over all the domain's deterministic actions.
- A state in a subset of MDP states $I \subseteq \mathcal{E}$ that are one action application from a rewarding state, "models" $\bigvee_j \phi_j^1$.

Regression gives a Hypotheses Language

- A state formula characterising pre-action states for each stochastic action, can be formed by considering disjunctions over $\{\phi_i^1\}$.
- We can encapsulate longer trajectories facilitated by stochastic actions, by computing $\{\phi_i^n\}$ for larger n.
- Formulae relevant to n-step trajectories are found in:

$$F^n \equiv \bigcup_{i=0\dots n} \{\phi^i_j\}$$

We shall always be able to induce a classification of state-space regions by value and/or policy using state-formulae given by regression.

Picture of First-Order Regression

Algorithm

- \bullet e is an MDP state
- v is the value of e
- $B(\vec{t})$ is the optimal ground stochastic action

Logistics [Boutilier et al., 2001]

Workshop on Relational Reinforcement Learning - (July 8, 2004) - p. 27/34

Policy – Logistics

 $\mathsf{IF} \qquad \exists b \ (Box(b) \land Bin(b, Syd))$

THEN act = NA, val = 2000

ELSE

IF	$\exists b \exists t \ (Box(b) \land Truck(t) \land Tin(t, Syd) \land On(b, t))$
	THEN $act = unload(b, t)$, val = 1900
ELSE	
IF	$\exists b \exists t \exists c \; (Box(b) \wedge Truck(t) \wedge City(c) \wedge$
	$Tin(t,c) \land On(b,t) \land c \neq Syd)$
	THEN $act = drive(t, Syd)$, val = 1805
ELSE	
IF	$\exists b \exists t \exists c \; (Box(b) \wedge Truck(t) \wedge City(c) \wedge$
	$Tin(t,c) \wedge Bin(b,c) \wedge c \neq Syd)$
	THEN $act = load(b, t)$, val = 1714.75
ELSE	
IF	$\exists b \exists t \exists c \; (Box(b) \land Truck(t) \land City(c) \land$
	$\neg Tin(t,c) \land Bin(b,c))$

Results – Deterministic

Domain	max_n	size	E	type	time	scope
LG-EX	4	2	56	P	0.2	∞
LG-EX	4	3	4536	P	14.41	∞
BW-EX	2	3	13	Р	0.2	∞
BW-EX	2	4	73	Р	2.2	∞
BW-EX	2	5	501	Ρ	23.5	∞
BW-ALL	5	4	73	Т	33.9	5
BW-ALL	6	4	73	Т	136.8	6
BW-ALL	5	10	10	Т	131.9	5
BW-ALL	6	10	10	Т	2558.5	6
LG-ALL	8	2	56	Р	1.8	8
LG-ALL	8	2	56	P	*0.5	8
LG-ALL	12	3	4536	P	#17630.3	5
LG-ALL	12	3	4536	P	#*263.4	6
LG-ALL	12	3	4536	Р	#*1034.2	9

Results – Stochastic

Domain	max_n	size	E	type	time	scope
$LG-EX_s$	5	2	56	P	0.2	∞
$LG\operatorname{-EX}_s$	5	3	4536	P	16.19	∞
$BW\text{-}EX_s$	3	3	13	P	0.3	∞
$BW\text{-}EX_s$	3	4	73	P	2.8	∞
$BW\text{-}EX_s$	3	5	501	P	29.3	∞
$BW\operatorname{-ALL}_s$	4	4	73	P	*0.4	4
$BW\operatorname{-ALL}_s$	7	4	73	P	*11.5	7
$BW\operatorname{-ALL}_s$	8	4	73	P	*58.0	8
$BW\operatorname{-ALL}_s$	9	4	73	Ρ	*1389.6	9
$LG\operatorname{-ALL}_s$	12	2	56	P	2.1	12
$LG\operatorname{-ALL}_s$	12	2	56	P	*0.7	12
$LG\operatorname{-ALL}_s$	22	3	4536	P	#1990.8	12
$LG\operatorname{-ALL}_s$	22	3	4536	Р	#*574.4	14
$LG\operatorname{-ALL}_s$	22	3	4536	P	#*1074.5	15

Conclusions

- GOOD :: Given domains for which the optimal generalised value function has finite range
- BAD :: With infinite objects, the value function can have an infinite range
- Model checking is a bottle neck

Future work

Prune more via control knowledge

Do not *try* unload after a load $\models \ominus (a = load(\vec{x})) \rightarrow (a \neq unload(\vec{y}))$

- Avoid implicit and explicit universal quantification at all costs
 - May have to sacrifice optimality
- Concatenate *n*-step-to-go optimal policies
 - Macro actions

Algorithm

- e is an MDP state
- v is the value of e
- **9** $B(\vec{t})$ is the optimal ground stochastic action

Algorithm (pseudo code)

Initialise {max_n, { ϕ^0 }, F^0 }; Compute set of examples E; Call BUILD_TREE(0, E) function BUILD_TREE(n : integer, E : examples) if PURE(E) then

return success_leaf

end if

```
\phi \leftarrow \text{good classifi er in } F^n \text{ for } E. \text{ NULL if none exists}
```

```
if \phi \equiv {\rm NULL} then
```

 $n \leftarrow n+1$

```
if n > \max_n then
```

return failure_leaf

end if

```
\{\phi^n\} \leftarrow \text{UPDATE_HYPOTHESES\_SPACE}(\{\phi^{n-1}\})
F^n \leftarrow \{\phi^n\} \cup F^{n-1}
return BUILD_TREE(n, E)
```

else

```
\begin{array}{l} positive \leftarrow \{\eta \in E \mid \eta \text{ satisfiles } \phi\} \\ negative \leftarrow E \backslash positive \\ positive\_tree \leftarrow \texttt{BUILD\_TREE}(n, positive) \\ negative\_tree \leftarrow \texttt{BUILD\_TREE}(n, negative) \\ \texttt{return } \texttt{TREE}(\phi, positive\_tree, negative\_tree}) \end{array}
```


References

- [Boutilier *et al.*, 2001] C. Boutilier, R. Reiter, and B. Price. Symbolic Dynamic Programming for First-Order MDPs. In *Proc. IJCAI*, 2001.
- [Dzeroski and Raedt, 2001] S. Dzeroski and L. De Raedt. Relational reinforcement learning. *Machine Learning*, 43:7–52, 2001.
- [Fern *et al.*, 2004] A. Fern, S. Yoon, and R. Givan. Learning Domain-Specific Knowledge from Random Walks. In *Proc. ICAPS*, 2004.
- [Guestrin *et al.*, 2003] C. Guestrin, D. Koller,C. Gearhart, and N. Kanodia. Generalising Plans toNew Environments in Relational MDPs. In *Proc.IJCAI*, 2003.
- [Khardon, 1999] R. Khardon. Learning action strategies for planning domains. *Artificial Intelligence*, 113(1-2):125–148, 1999.
- [Martin and Geffner, 2000] M. Martin and H. Geffner. Learning generalized policies in planning using concept languages. In *Proc. KR*, 2000.

[Mausam and Weld, 2003] Mausam and D. Weld. Solving Relational MDPs with First-Order Machine Learning. In *Proc. ICAPS Workshop on Planning under Uncertainty and Incomplete Information*, 2003.

[Yoon *et al.*, 2002] S.W. Yoon, A. Fern, and R. Givan. Inductive Policy Selection for First-Order MDPs. In *Proc. UAI*, 2002.