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Overview

f #® Decision-theoretic planning T

» MDP, the model for decision-theoretic planning

o What about the relational structure of domains
(situation-calculus, PPDDL, Prob-STRIPS)?

® RMDPs, computing a generalised policy

» Previous approaches:
s Reasoning — decision theoretic regression
s Learning — policy and/or value function

» Situation-calculus specification

o Algorithm

o Results

| #® Future work J
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MDP, the model for decision-theoretic planning
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Markov Decision Process

An MDP is a 4-tuple (£, A, Pr, R) T
Which includes fully observable states £ and actions A

{Pr(e,a,®) | ec& ac A(e)} Is a family of probability
distributions over £ such that Pr(e, a, ¢) is the

probability of being in state ¢’ after performing action «
In state e

R : £ — R is a reward function such that R(e) is the
Immediate reward for being in state e

We want a stationary policy 7 : £ — A. The value V(e)
of state e given r Is:

n

Va(e) = lim E| D" A"R(er) | 7 e0 = e]

T— 00
t=0

7 is optimal iff V.(e) > V. (e) for all e € € and =’ J
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Planning (MDP)
- -

moveS(A, D) - Domain Instances
Pr=10.9 D
B <9
" A
A|D|move(A,D) _|D D
B B B|A
movel'(A,D) %
Pr=20.1
D
B|A
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Planning (MDP)

Domain Instances

moveS (A, TAB)
Pr=10.9

D
B|A move(A, TAB) __|D
/////' B|A
A D move(A, D) % DI
B c|B B|A

moveF' (A, TAB) <2
Pr=20.1 N
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Planning (MDP)

Domain Instances
R = 0.0 R = 10.0
AlD E.E D
B mu [A[E]c]o] AlB
ofs) eista
R = 10.0
R = 0.0 A
A 0 B
B ] [

|
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Policy Instances

Planning (MDP)

T o— |F
|7 Current Goal T
State A
A B
B
THEN
move(A, TAB)
Domain Instances
R =0.0 R =10.0
ar S A[D 3 ol D
Planner 5 o oo e
: : fe
# Value/Policy Iteration —
(factored/tabular) R — 0.0 A
® LAO* (factored/tabular) A B
| ® LRTDP o J
= R Q-Learning, TD()), API
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Overview

f #® Decision-theoretic planning T
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o What about the relational structure of domains
(situation-calculus, PPDDL, Prob-STRIPS)?
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Planning (RMDP)

Generalised Policy

Policy Instances Domaln MOdeI (Domain Specific)
T — IF (Situation Calculus) IE
Current Goal
e [a Current State = ¢

A B . THEN
Relationd R
B move( i1 L1d1)
N — Planner /""" L st

move(A, TAB)

Domain Instances
R =0.0 R = 10.0
PR AD| E IE D
Planner S e 5
_ _ o
# Value/Policy lteration 100
(factored/tabular) R — 0.0 A
® LAO* (factored/tabular) o F B
| e LRTDP B
- R Q-Learning, TD()), API
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Overview

RMDPs, computing a generalised policy

» Previous approaches:
s Reasoning — decision theoretic regression
s Learning — policy and/or value function

|
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Previous Approaches — (Reasoning)

o N

# Use pure reasoning to compute a generalised policy
# [Boutilier et al., 2001]
» Requires theorem proving
» Smart data structures
» Not particularly practical

| |
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Previous Approaches — (Learning)

# Policy focused T

» Use pure induction, given a fairly arbitrary
hypotheses space
& [Fern et al., 2004], [Mausam and Weld, 2003], [Yoon et al., 2002],
[Dzeroski and Raedt, 2001], [Martin and Geffner, 2000], [Khardon, 1999]
s Hypotheses space is either a user enumerated
list of concepts or

s Sentences, in a taxonomic language bias

# Value focused
s Multi agent planning problemsicuestrin et al., 2003]

# Our plan is to combine the best attributes of learning
and reasoning

|
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Planning (RMDP)
[

IF
Current Goal
State  [A Current State = ¢

A B . THEN
Relational T T
B move( i1 L1d1)
THEN — Planner /| ""*Y%C0 L ni Y,

move(A, TAB)

Generalised Policy

(Domain Specific) —‘

Domain Instances
R =0.0 R = 10.0
AT AlD|  E . D
Planner S e 5
. . o
» Value/Policy Iteration _—
(factored/tabular) R —00 A
® LAO* (factored/tabular) A B
| ® LRTDP o J
- R Q-Learning, TD()), API
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Situation Calculus — as an RMDP Specification Language

f # Usual quantifiers and connectives :: {3,V, A, V,—, —} T

# 3 disjoint sorts:
1. Obijects :: Blocks-World (block)
Logistics (box, truck, city)
2. Actions :: first-order terms built from an action

function symbol of sort object™ — action and Its
arguments (i.e. mowve(a, b)).

3. Situations :: are lists of actions:
s Constant symbol Sy denotes the initial situation
(empty list)
s Function symbol
do : action X situation — situation
lists of length greater than 0.

| |
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RMDP Specification (cont)

o N

® Relational Fluents :: relations that have truth values
which vary from situation to situation.

» Built using predicate symbols of sort
object™ x situation (1.e. On(bl, b2, do(move(a,b), s))).

# Precondition :: for each deterministic action A(x), we
need to write one axiom of the form:
poss(A(T),s) = W 4(T, s).
poss(moveS(bl,b2), s) = poss(movel'(bl,b2),s) =
bl # table A\ b1 # b2N\ Ab3 On(b3, b1, s)A
(b2 = tablev Ab3 On(b3,02,s))

| |
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RMDP Specification (cont)
f ® {=case|f1,l1;...; fn,ty) AbDreviates VI (fi Nt =t;). T
# Possibilities (natures choices) ::
choice(a, A(:E’))E\/é?:l(a:Dj(f))
prob(D; (), A(Z), 3):case[gb}(f, s),p}; 90N s), Pl
choice(a, move(bl,b2)) =
a = moveS(bl,b2) V a = moveF'(bl,b2)
prob(moveS(bl,b2), move(bl,b2),s) =
case|Rain(s), 0.7, ~Rain(s), 0.9]
prob(moveF (b1, b2), move(bl,b2),s) =
case|Rain(s),0.3; " Rain(s),0.1]

| |
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State Formulae

-

f(Z,s), whose only free variables are non-situation
variables 7 and situation variable s, and in which no
other situation term occurs.

State formulae do not contain statements involving
predicates poss and choice, and functions prob.

¢ Is a state formula whose only free variable is s.

|
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RMDP Specification (cont)

® Successor state axiom :: For each relational fluent

-

F(Z,s), there is one axiom of the form:

F(%,do(a,s)) = ®r(Z, a,s), where (%, a, s) IS a state
formula characterising the truth value of F' in the
situation resulting from performing a In s.

On(bl,b2,do(a, s)) = a = moveS(bl,b2)V
(On(b1,b2,s)A Ab3 (b3 # b2 N a = moveS(bl,03)))

moveS (A, D)
Pr=10.9

Domain Instances (Simplified)

W o>

moveF (A, D)

Pr=20.1

<)
\“W A
A|D|move(A,D) D] |AD
B B

A

O

7, ZO?/
.
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RMDP Specification (cont)

o N

® {=case|f1,l1;...; fn,ty) AbDreviates VI (fi Nt =t;).
#® Reward :: R(s) = case|p1(s),71;...;0n(s),Tn], Where the
r;S are reals and the ¢;s are state formulae.
R(s) =
case| Vbl Vb2 (OnG(b1,b2) — On(bl,b2,s)), 10.0;
3b1 32 (OnG(b1,12) A =On(bl, 12, s)),0.0]

Domain Instances

R = 0.0 R = 10.0
AlD| D
g Eﬂtﬁﬁm AlB
SO
R = 10.0
R = 0.0 A

A .. |B
[c] [a[B]c]
B
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Regression gives a Hypotheses Language

o N

#® The regression of a state formula ¢ through a
deterministic action « (I.e. r egr (¢, «)) Is a state
formula that holds before « Is executed iff ¢ holds after
the execution.

o Consider the set {¢9} consisting of the state formulae
In the reward axiom case statement.

» We can compute {¢;} from {¢7} by regressing the ¢}
over all the domain’s deterministic actions.

# A state in a subset of MDP states I C £ that are one
action application from a rewarding state, “models”

V; ;.

| |
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Regression gives a Hypotheses Language

o N

# A state formula characterising pre-action states for
each stochastic action, can be formed by considering

disjunctions over {¢;}.

# We can encapsulate longer trajectories facilitated by
stochastic actions, by computing {¢7 } for larger n.

# Formulae relevant to n-step trajectories are found in:

= {9
1=0...n
# We shall always be able to induce a classification of
state-space regions by value and/or policy using
state-formulae given by regression.

| |
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Picture of First-Order Regression

2 ¢G oal

Goal:moveF :moveF

¢

2

1
¢G0al:moveS

Goal:moveS:movel’

¢2
Goal:moveS:moveS

-

¢G oal:movelF

A

A

D A

|
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Planning (RMDP)

Generalised Policy

Policy Instances Domaln MOdeI (Domain Specific)
T — IF (Situation Calculus) IE
Current Goal
e [a l Current State = ¢

A B THEN
B , move( i1 L1d1)
THEN | @y |

move(A, TAB)

Domain Instances
R =0.0 R = 10.0
AT AlD|  E . D
Planner S e 5
. . o
» Value/Policy Iteration _—
(factored/tabular) R —00 A
® LAO* (factored/tabular) o F B
| ® LRTDP J
- Q-Learning, TD()), API
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Algorithm

-

f'ﬁgﬁ

® ¢ IS an MDP state

® v listhe value of e

® [B(t) is the optimal ground stochastic action

Generalised Policy
(Domain Specific)

Domain Model
(Situation Calculus)
¢ c Fizl...n
Policy Instances
T— IF _ /
Current Goal Relational 0
State |A Planner <U7; : NA
A B
5 1
THEN (e,v, B(t)) <1%,_£3
move(A, TAB)

|
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Planning (RMDP)

f Policy Instances Domaln MOdeI
T — IF (Situation Calculus)
Current Goal
State A
A B :
Relational
Cc|B C
SN Planner
move(A, TAB)
Domain Instances
R =0.0 R = 10.0
ar S A[D - D
Planner 1B Eg clalB
# Value/Policy Iteration o 2 — 10.0
(factored/tabular) R =00 Al
# LAO* (factored/tabular) 2 5 g
» LRTDP
- R Q-Learning, TD()), API J
A4
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LOg iSti CS [Boutilier et al., 2001]

Sydney Initial Situation
A OO [@)
B |[C
D
Sydney Load(A, T1)
SO [@)
B [C
D
Sydney Drive(T 1, Canberra)
B |[C
D
Sydney Unload(A, T1)
B |[C
| 5

i
"

Workshop on Relational Reinforcement Learning — (July 8, 2004) — p. 27/34



|7|F

UV

J ¥y

ELSE
I=

ELSE

1=

ELSE
1=

ELSE
1=

Policy — Logistics

3b (Box(b) N Bin(b, Syd))
THEN act = NA, val = 2000

3b3t (Box(b) A Truck(t) A Tin(t, Syd) A On(b,t))
THEN act = unload(b, t), val = 1900

3b3t3c (Box(b) A Truck(t) N City(c)A
Tin(t,c) AN On(b,t) A c # Syd)
THEN act = drive(t, Syd), val = 1805

Jb3tdc (Box(b) A Truck(t) A City(c)A
Tin(t,c) A Bin(b,c) A ¢ # Syd)
THEN act = load(b, t), val = 1714.75

Jb3tdc (Box(b) A Truck(t) A City(c)A
—Tin(t,c) A Bin(b, c))
THEN act = drive(t, c), val = 1629.01

|
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Results — Deterministic

Domain | max_n | size |E| type time scope
LG-EX 4 2 56 P 0.2 00
LG-EX 4 3 4536 14.41 00
BW-EX 2 3 13 P 0.2 00
BW-EX 2 4 73 P 2.2 00
BW-EX 2 ) 501 P 23.5 o0
BW-ALL ) 4 73 T 33.9 )
BW-ALL 6 4 73 T 136.8 6
BW-ALL ) 10 10 T 131.9 )
BW-ALL 6 10 10 T 2558.5 6
LG-ALL 8 2 56 P 1.8 8
LG-ALL 8 2 56 P *0.5 8
LG-ALL 12 3 4536 P #17630.3 5
LG-ALL 12 3 4536 P #*263.4 6
LG-ALL 12 3 4536 P #*1034.2 9

|
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Results — Stochastic

Domain max_n | size |E| type time scope
LG-EX; 5 2 56 P 0.2 00
LG-EX; 5 3 4536 P 16.19 00
BW-EX 3 3 13 P 0.3 00
BW-EX; 3 4 73 P 2.8 o0
BW-EX; 3 ) 501 P 29.3 o0
BW-ALL g 4 4 73 P *0.4 4
BW-ALL; 7 4 73 P *11.5 7
BW-ALL; 8 4 73 P *58.0 8
BW-ALL, 9 4 73 P *1389.6 9
LG-ALLg 12 2 56 P 2.1 12
LG-ALL 12 2 56 P *0.7 12
LG-ALL 22 3 4536 P #1990.8 12
LG-ALL 22 3 4536 P #*574.4 14
LG-ALL, 22 3 4536 P #*1074.5 15 J

i

J 7]
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Conclusions

o N

# GOOD :: Given domains for which the optimal
generalised value function has finite range

o BAD :: With infinite objects, the value function can
have an infinite range

# Model checking is a bottle neck

| |
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Future work

-

# Prune more via control knowledge

Do not try unload after aload
= O(a = load(¥)) — (a # unload(y))

# Avoid implicit and explicit universal guantification at all
costs

» May have to sacrifice optimality

# Concatenate n-step-to-go optimal policies
s Macro actions

| |
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Algorithm
f Domain Model T

(Situation Calculus) | |Generalised Policy
(Domain Specific)
c Fizl...n 0
Policy Instances ¢ IF [ ¢Z
T IF : THEN <v,?, NA)
Current Goal Relational 1
state  [A] |{e, v, B()) Planner ELSE IF = gb@
A THEN (v}, B)
SN ELSE IF ...
move(A, TAB)

® cIs an MDP state
® v isthe value of e

| ® [B(t) is the optimal ground stochastic action

- |

eI
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Algorithm (pseudo code)

Initialise {max_n, {¢°}, F°}; Compute set of examples E; Call BUILD_TREE(0, E)
function BUILD_TREE(n : integer, E . examples)

if PURE(E) then
return success_| eaf
end if
¢ < good classifi er in F* for E. NULL if none exists
if = NULL then
n+—n-+1
if n > max_nthen
returnfail ure | eaf
end if
{¢™} < UPDATE_HYPOTHESES_SPACE({¢"1})
F™ e {§"} U F!
return BUILD_TREE(n, F)
else
positive < {n € E | n satisfies ¢}
negative «— E\positive
positive_tree «— BUILD_TREE(n, positive)
negative_tree «— BUILD_TREE(n, negative)
return TREE(¢, positive_tree, negative_tree) J

i%g end if
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