
Gradient-Based Relational Reinforcement-Learning of Temporally Extended
Policies

Charles Gretton
NICTA, 300 Adelaide St, Brisbane QLD 4000, Australia

charles.gretton@nicta.com.au

Abstract

We consider the problem of computing general policies for
decision-theoretic planning problems with temporally ex-
tended rewards. We describe a gradient-based approach to
relational reinforcement-learning (RRL) of policies for that
setting. In particular, the learner optimises its behaviour by
acting in a set of problems drawn from a target domain. Our
approach is similar toinductive policy selectionbecause the
policies learnt are given in terms of relational control-rules.
These rules are generated either (1) by reasoning from a first-
order specification of the domain, or (2) more or less arbi-
trarily according to a taxonomic concept language. To this
end the paper contributes a domain definition language for
problems with temporally extended rewards, and a taxonomic
concept language in which concepts and relations can be tem-
poral. We evaluate our approach in versions of the miconic,
logistics and blocks-world planning benchmarks and find that
it is able to learn good policies. Our experiments show there
is a significant advantage in making temporal concepts avail-
able in RRL for planning, whether rewards are temporally
extended or not.

Decision-theoretic planning systems are often called upon
to solve numerous related problems from a particular do-
main. This was the case at the recent International Proba-
bilistic Planning Competitions (Youneset al. 2005). More
importantly, it is also usually the case in practice. In the do-
main of energy-distribution networks (Thiébaux & Cordie
2001), we usually plan for a number of distinct systems
made from common classes of objects (circuit breakers,
switches, remote controllers, etc.). Because domains in
planning often exhibit a strong relational structure, theyare
formalised using first-order languages supporting the decla-
ration of objects and relations between these as well as the
use of quantification over objects.

The cost of isolated planning in individual problems is
substantial. State-of-the-art solution algorithms target either
state-based (tabular) or factored propositional problem rep-
resentations, thus they succumb to Bellman’s curse of di-
mensionality – i.e. The complexity of computing the optimal
policy for a problem instance can be exponential in the di-
mension of the problem (Littman, Goldsmith, & Mundhenk
1998). A research direction which has garnered significant

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

attention recently is that ofgeneralisation in planning. The
idea is that the cost of planning with propositional represen-
tations can be mitigated by technologies that plan for a do-
main rather than for individual problems. These approaches
yield general policieswhich can be executed in any problem
state from the domain at hand. In practice general policies
are expressed in first-order/relational formalisms. Proposals
to date suggest general policies can be achieved by either (1)
reasoning from the domain description (Boutilier, Reiter,&
Price 2001; K. Kersting, M. V. Otterlo, & L. D. Raedt 2004;
Sanner & Boutilier 2005; Karabaev & Skvortsova 2005;
Wang, Joshi, & Khardon 2007), or (2) by developing plan-
ners that canlearn from experience(Khardon 1999; Martin
& Geffner 2000; C. Guestrinet al. 2003; Hernandez-Gardiol
& Kaelbling 2003; Kersting & Raedt 2004; Fern, Yoon, &
Givan 2006). There has also been some work in combining
the two (Gretton & Thiébaux 2004).

Reasoning approaches can achieve optimal general poli-
cies without recourse to individual problems. On the down-
side they rely on expensive theorem proving and cannot give
guarantees about the quality and generality of policies they
compute for domains where the value of a state is drawn
from an infinite set. For example, this is the case in the
blocks-world because the value of a state given any policy is
the number of actions it takes for that policy to achieve the
goal, which is proportional to the number of blocks. Induc-
tive learning approaches have a significant advantage over
reasoning approaches because they avoid theorem proving
and do not rely on an exhaustive domain description. They
rarely achieve optimality, however are able to compute good
policies with very little effort. As was the case for reason-
ing approaches, learning techniques cannot learn a policy in
terms of state values in domains where these are drawn from
an infinite set (K. Kersting, M. V. Otterlo, & L. D. Raedt
2004).

Orthogonal to generalisation in planning, there have also
been significant developments towards propositional plan-
ning with temporally extended rewards. In this case, rather
than accepting the standard scenario where rewards are allo-
cated to individual states, rewards are allocated to sequences
of states calledrewarding behaviours. Typical examples of
rewarding behaviours occur where we reward the mainte-
nance of some property, the periodic achievement of some
objective, the achievement of an objective after a trigger has

occurred (and not expired), or the first achievement of an
objective. These rewards are not supported in a reasonable
way where problems are modelled using Markov decision
processes (MDPs), the standard problem representation for-
malism. In particular, for an MDP we say both dynamics
and reward areMarkovian, because, at any time both the
effects of an action and the reward allocated are determined
completely by the state the process is in. Moreover, although
it may be possible in principle to manually compile tempo-
rally extended rewards into an MDP, by adding propositions
that capture temporal events, the original structure is lost on
an MDP solution algorithm that is not aware of the tempo-
ral interpretation of some state characterising propositions.
In order to address weaknesses in the MDP model where
temporally extended rewards are involved, formalisms and
solution methods have been proposed for decision processes
with non-Markovian rewards (NMRDPs) (Thiébauxet al.
2006). For an NMRDP, the problem dynamics is Marko-
vian, and reward is a compact temporal logic specification
of temporally extended rewards. NMRDP solution meth-
ods exploit the temporal logic specification of the reward-
ing behaviours to efficiently translate NMRDPs into equiv-
alent MDPs amenable to MDP solution methods. Conse-
quently, NRMDP solution techniques still succumb to Bell-
man’s curse.

We develop ROPG (Relational Online Policy Gradient),
an unsupervised RRL approach to computing temporally ex-
tended policies for domains with non-Markovian rewards.
In a similar vein to some of the more fruitful techniques for
RRL such as inductive policy selection (Yoon, Fern, & Gi-
van 2002; Gretton & Thiébaux 2004), ROPG learns policies
in terms of relational control-rules. Each control-rule isa
small expression in a first-order language that can be inter-
preted at an NMRDP state to provide an action prescription.
We adapt two very different techniques from the literature
for generating relational control-rules, and evaluate each of
these separately in our experimental results. The first tech-
nique is based on (Fern, Yoon, & Givan 2006). Relational
control-rules are generated more or less arbitrarily accord-
ing to the grammar of a temporal taxonomic concept lan-
guage. In order to avoid redundant taxonomic control-rules,
and also to avoid overwhelming the learner with too many
rules, they are evaluated in small problems and only a small
number of rules that behave well are passed to ROPG. The
second technique is based on (Gretton & Thiébaux 2004).
In this case we exploit first-order regression to generate
control-rules from a given domain description that are guar-
anteed to cover all concepts relevant to the optimaln-state-
to-go value function for a givenn. To this end, we develop
a domain description language which accommodates non-
Markovian rewards, and also extend the standard definition
of first-order regression to this setting.

ROPG is a version of online policy gradient, and thus
learns by acting in problems. ROPG is the first reported
technique for direct relational reinforcement-learning of
general policies which does not rely on a state-based plan-
ning (or learning) mechanism. This means ROPG does not
capture action decisions made by an optimal (or good) state-
based planning agent which is inevitably better equipped to

Figure 1: Data-flows for the two settings in which we eval-
uate ROPG. (A) Demonstrates the case where control-rules
are generated using first-order regression, and (B) the case
where control-rules are generated according to a taxonomic
concept language.

distinguish states according to propositional features that are
not available to a relational learner. Along the same lines,
ROPG also addresses some pitfalls of value-based relational
reinforcement-learning. Our approach directly learns a pol-
icy, thus it does not attempt to classify the infinite states
from a target planning domain according to a finite set of
values. Rather, it classifies those states according to an in-
finite set of actions prescribed by a small set of relational
control-rules. To summarise, ROPG learns a general pol-
icy directly by acting in domain instances. Consequently,
ROPG is suited to planning in domains such as the blocks-
world, where there is no known sound technique to repre-
sent a general policy in terms of a value function with finite
range. Moreover, ROPG is not crippled by a reinforcement-
learning scheme which punishes a learner for not mimicking
the actions of “problem specialist” in the form of a state-
based agent. Figure 1 shows the data-flows for using ROPG
in the cases where control-rules are generated by regression,
and where these are generated according to a taxonomic syn-
tax.

We evaluate our approach in Markovian, non-Markovian,
stochastic and deterministic versions of the miconic, logis-
tics and blocks-world planning benchmarks, where control-
rules available to the learner are generated according to our
temporal taxonomic syntax, the extended taxonomic syntax,
or regression. We find that ROPG can obtain a good general
policy by learning in small to medium sized instances drawn
from a target domain. Our experiments also show there is
a significant advantage in making temporal concepts avail-
able in RRL for planning whether rewards are temporally
extended or not.

The paper is organised as follows: We develop our do-
main description formalism for decision-theoretic planning
problems with non-Markovian reward. We then develop two
mechanisms for automatically computingrelational control-
rules, the basis for our learner’s actions and observations in
a domain. We then present our online policy gradient ap-
proach for computing a general policy for a domain given
an arbitrary set of control-rules. We present experimental
results, and then discuss our approach further and consider
future directions.

Domains with Non-Markovian Reward
We require adomain description languagefor decision-
theoretic planning domains where problem instances can
have non-Markovian rewards. Our intention here is to de-
velop a formalism that allows us to describe a domain in
terms of its relational structure. To this end we use a logic
and axiom schemes that let us describe (1) objects and rela-
tions between these, (2) actions, their preconditions and ef-
fects, and (3) the details of how reward is allocated to states
and/or state sequences. Key to this is ourlogic of event-
formulae, a first-order past-looking linear temporal logic we
developed, denotedLfo← , with equality, first-order quantifi-
cation over objects{∀, ∃}, and the usual binary connec-
tives {∧,∨,¬,→,↔}. So we can write about rewarding
behaviours – and also so that we have a mechanism for com-
pactly specifying the behaviour of fluents when actions are
executed – sentences inLfo← must be able to discuss histo-
ries. To this end we consider temporal operators from PLTL
the linear temporal logic of the past, a mechanism for ex-
pressing rewarding behaviours for NMRDP in the proposi-
tional case (Bacchus, Boutilier, & Grove 1996). In partic-
ular, this means we have⊖, pronounced “in the last state”,
⊟ “always in the past”,3- “sometime in the past”, andS
“since”.1

In what follows “*” is the Kleene star, so for example
if S is the set of states andΓ ∈ S∗, then we have that
Γ is a finite sequence of states. Also, wherei is a natu-
ral number,Γi is the state at indexi in Γ, andΓ(i) is the
prefix 〈Γ0, . . . , Γi〉 ∈ S

∗ of Γ. We developLfo← for specify-
ing rewarding behaviours and domain action physics. Con-
sequently we needLfo← to specify both behaviours as se-
quences of states, and also trajectories of state action pairs.
Henceforth, we shall refer to the latter as aneventdenoted
Σ. Thus, for a domain with statesS and actionsA, we can
write Σ ∈ (S × A)∗. We develop a semantics forLfo← so
that sentences in the language relate via a modelling rela-
tion |= to events. A formula without action symbols is a
behavioural-formula. These are analogues of state-formula
in the situation-calculus (Reiter 2001) in the sense that state-
formula are for MDPs what a behavioural-formula is for
NMRDPs – In the situation-calculus, state-formula discuss
properties of states while behavioural-formulae inLfo← dis-
cuss histories as sequences of states. A behavioural-formula
free of temporal operators is directly analogous to a state-
formula in the situation-calculus.

(Σ, i) |= act = A iff A is the action part ofΣi

(Σ, i) |= p iff whereΣi = (si, ai), p ∈ si

(Σ, i) |= f1 ∨ f2 iff (Σ, i) |= f1 or (Σ, i) |= f2

(Σ, i) |= ¬f iff It is not the case that(Σ, i) |= f
(Σ, i) |= ∃x.f iff There is an objectX , so that

(Σ, i) |= f [x/X]
(Σ, i) |= ⊖f iff (Σ, i− 1) |= f andi > 0
(Σ, i) |= f1Sf2 iff ∃j ≤ i s.t.(Σ, j) |= f2 and

∀j < k ≤ n (Σ, k) |= f1

We assume the object universe is non-empty so that for all
Σ, (Σ, 0) |= ∃x.⊤. Operators∀, ∧,→ and↔ are given via

1We do not consider the case ofLfo
← formulae with free vari-

ables here because they have no place in a domain description.

formula rewrites. Finally, we adopt the shorthand∃ : P(x).f
for ∃x.(P(x) ∧ f) and∀ : P(x).f for ∀x.(P(x)→ f).

We now develop axioms schemes for specifying a do-
main of NMRDP with examples for the logistics domain
in (Boutilier, Reiter, & Price 2001):

Action precondition axioms: For each deterministic ac-
tion A(~y), we write one axiom of the form:

|= ∀~y.(act = A(~y)→ poss(A(~y)))

whereposs(A(~y)) is a behavioural-formula characterising
the preconditions of the action. For example, in logistics we
have the actionLoad(b, t) that loads a boxb onto a truckt.
This is possible whenb andt are in the same city, andt does
not already have a box loaded on it2:

|= ∀ : Truck(x).(∀ : Box(y).act = Load(y, x)→
¬(∃ : Box(b).(On(b, x)))∧
(∃ : City(c).(BIn(y, c) ∧ TIn(x, c))))

Successor-states axioms: specify the behaviour of a flu-
ent under the domains deterministic actions. For each fluent
p(~y), there is one axiom of the form:

For allΣ andi > 0, (Σ, i) |= ∀~y. ⊖ SSA(p(~y))↔ p(~y)

where SSA(p(~y)) is an event-formula characterising the
truth value ofp(~y) in the situation resulting from performing
an action in a state. In logistics we have fluentOnT, so that
OnT(News,truck) says that the newspaper is on the truck.
A package is on a truck at some event, if it was previously
on the truck and this fact is maintained by action choices ex-
cluding the unloading of the package from the truck, or if
the package was legally loaded onto the truck and since then
that fact has not been disturbed:

For allΣ andi > 0, (Σ, i) |= ∀ : Box(b).∀ : Truck(t)
.(⊖[(act = Load(b, t)) ∨ (OnT(b, t)∧
¬(act = Unload(t)))]↔ OnT(b, t))

Unique-name axiom: In order that we can evaluate ac-
tion equality based on the action symbol and its arguments,
we include unique-name axioms. For any two distinct action
symbolsA andB we have

|= ∀~x∀~y A(~x) 6=B(~y)

Nature’s choice and probability axioms: For stochas-
tic action A(~x) we specify the deterministic actions
D1(~x), . . . , Dk(~x) available for nature to choose from, and
the probabilityr1, r2, . . . , rk that nature makes a particular
choice. Each deterministic choiceDi uniquely identifies
the stochastic action symbolA that permits nature making
choiceDi.

∀~x when(Σ, i) |= act = A(~x) then
if((Σ, i) |= f1(~x))[D1(~x), r1; . . . ; Dk1(~x), r1

k1];
else if((Σ, i) |= f2(~x))[Dk1+1(~x), rk1+1; . . . ;

Dk2(~x), rk2]; . . .
else[Dkm−1+1(~x), rkm−1+1; . . . ; Dkm(~x), rkm];

For example, consider a stochastic logistics domain where it
can rain. Unloading a box from a truck is non-deterministic

2Notice thatLfo
← can accommodate non-Markovian dynamics,

however in this paper we shall not consider those.

so that nature decides whether the unloading is successful
UnloadS or otherwiseUnloadF. If it is not raining, un-
loading a truck is successful 90% of the time, otherwise it is
only successful 30% of the time:

∀~x whenact = Unload(~x) then
if(¬raining)[UnloadS(~x), 0.9;UnloadF(~x), 0.1];
else[UnloadS(~x), 0.3;UnloadF(~x), 0.7];
Reward axiom: Rewards as they are allocated to events

are conveniently expressed using the inclusive conditional
form:

if((Σ, i) |= f1)R(Σ(i))+ = r1;
also if((Σ, i) |= f2)R(Σ(i))+ = r2;
. . .
also if((Σ, i) |= fn)R(Σ(i))+ = rn;

Here eachfj is a behavioural-formula. WhereR is the non-
Markovian reward function so thatR(Σ(i)) is the reward
achieved at eventΣ(i), the semantics for the inclusive con-
ditional are

R(Σ(i)) =
∑

j s.t. (Σ,i)|=fj)

rj

For example we could have the agent only receives reward
the first time it deliverers a package correctly:

if((Σ, i) |= (∀ : Package(p).(Delivered(p)∧
⊖ ⊟ ¬Delivered(p))))R(Σ(i))+ = 100.0;

Generating Control-Rules for General Policies
ROPG computes a general policy over a small set of control-
rules which in our case are generated automatically. Poli-
cies over relational control-rules already appear in the liter-
ature, for example, they can correspond to a relational ver-
sion of the classic Rivest-style decision list (Khardon 1999;
Martin & Geffner 2000; Fern, Yoon, & Givan 2006). A
control-rule is an expression in a relational formalism which
prescribesan action given a problem state. For example,
taking ann-ary action symbolA and theLfo← formulaφ(~x)
where~x are the onlyn variable symbols that appear free
in φ, we can have a control-rule “executeA(~x) at Σi if
(Σ, i) |= φ(~x)”. For the logistics domain specifically we
can have:A(~x) = Unload(t) andφ(~x) = ∃ : City(c).∃ :
Package(p).(TIn(t, c) ∧ OnT(p, t) ∧ GBIn(p, c)). As a
control-rule, this prescribes an action that unloads a pack-
age from a truck, if the truck is located in the city where the
package is supposed to be delivered. When there is no~x so
that (Σ, i) |= φ(~x), we say for eventΣ(i) the control-rule
does not prescribe an action.

We develop two separate techniques for generating
control-rules. The first was explored for the Markovian
setting in (Gretton & Thiébaux 2004). In our case it cor-
responds to using first-order regression, a computationally
cheap mechanism for reasoning about aLfo← domain def-
inition, to compute control-rules which are sufficient to
build ann-state-to-go optimal policy. The second is based
on (Fern, Yoon, & Givan 2006), which again only deals with
the Markovian setting. We develop a method of generating
taxonomic control-rules according to the grammar of a tem-
poral taxonomic language bias. In this case we give ROPG
a few such control-rules which seem to make good action
prescriptions in small NMRDPs.

Generating Lfo
←

Control-Rules

Like (Gretton & Thiébaux 2004), we use first-order regres-
sion to compute control-rules from aLfo← domain definition.
The regression of a behavioural-formulaf through an ac-
tion a is a behavioural-formula that holds beforea is exe-
cuted iff f holds after the execution. Regression requires
that for each fluentp ∈ f , SSA(p) is given. In detail,
consider a behavioural-formulaf and a deterministic action
term A(~y). Behavioural-formulaf holds after we execute
A(~y) iff poss(A(~y)) ∧ regr(f, A(~y)) holds, where regr is
defined in Algorithm 1.

Algorithm 1 Lfo← Regression

regr(p, A(~y)) = SSA(p) with every occurrence of
act = A′(~x) replaced withEQUAL(~x, ~y) if A′ andA
are the same symbol, and otherwise replaced with⊥

regr(f1 ∨ f2, A(~y)) = regr(f1, A(~y)) ∨ regr(f2, A(~y))
regr(¬f, A(~y)) = ¬regr(f, A(~y))
regr(∃x.f, A(~y)) = ∃x.regr(f, A(~y))
regr(⊖f, A(~y)) = f
regr(3- f, A(~y)) = f ∨⊖3- f
regr(⊟f, A(~y)) = (f ∧⊖ ⊟ f) ∨ (f ∧ ¬⊖⊤)
regr(f1Sf2, A(~y)) = f2 ∨ (f1 ∧⊖(f1Sf2))

Now, consider the set{φ0
j} consisting of the behavioural-

formulae in the reward specification of the domain at hand.
We can compute the set of formulae{φ1

j} from {φ0
j} by

regressing theφ0
j over all deterministic actions with exis-

tentially quantified arguments. That is, eachφ1
j is of the

form ∃~x.poss(D(~x)) ∧ regr(φ0
i , D(~x)) for somei. Any

eventΣ that is one action application from reward mod-
els

∨
j φ1

j . More usefully, a behavioural-formula charac-
terising pre-action events for each stochastic action, can
be formed by considering disjunctions over formulae from
{φ1

j}. Similarly we can capture longer trajectories facili-
tated by stochastic actions by computing{φn

j } for n larger
than1. The set of behavioural-formulae sufficient to encap-
sulate such trajectories are members of the set:

Fn ≡
⋃

i=0...n

{φi
j}

Thus, using regression we can obtain a set of behavioural-
formula which are sufficient to induce a value-base clas-
sification of events that aren steps from reward. More-
over, for i > 0, elementsφi

j ∈ Fn along with informa-
tion about the deterministic action symbolD from which it
is generated using regression acts as the specification for a
control-rule as follows: TakeA to be the unique stochastic
action for whichD is a choice. Alone,φi is of the form
∃~x.poss(D(~x)) ∧ regr(φi−1, D(~x)) for someφi−1 ∈ Fn.
We say that as a control-ruleφi prescribesA(~x) at stateΣi

so that(Σ, i) |= poss(D(~x)) ∧ regr(φi−1, D(~x)). Where
there are multiple~x that satisfy this condition, in practice
we resolve to choose from these deterministically – i.e., Ifa
control-rule prescribes an action atΣ(i), this will always be
that rule’s prescription atΣ(i).

Generating Taxonomic Control-Rules

Control-rules can be specified in, and generated according
to, a concept or taxonomic language. This was the case
in (Martin & Geffner 2000) and (Fern, Yoon, & Givan 2006)
where, for examples, useful general policies over taxonomic
control-rules were obtained for blocks-world and logistics.
Here, we extend thetaxonomic-syntaxfrom (Fern, Yoon, &
Givan 2006) that we denoteLts, with temporal operators to
obtain a languageLts← suitable for specifying control-rules
for NMRDP.

Expressions inLts← are constructed over primitive con-
cepts (unary predicates, e.g.Block in blocks-world), de-
notedCp, and primitive relations (binary predicate), denoted
Rp. The interpretation of a primitive concept is the corre-
sponding predicate’s extension at a given state. For example,
the interpretation of the conceptBlock at a block-world
state is simply the set of all the blocks in that world. Simi-
larly the interpretation of a role at a state is the correspond-
ing binary predicates extension at a state – i.e, A set of pairs
of objects. The expressionsLts← we will build from these
primitives are given by the following grammar. Again, we
use the PLTL temporal modalities⊖, 3- , ⊟ andS yielding
the following grammar:

R ::= Rp|Id|R−1|R ∩R|R∗|⊖ R|RSR|3- R|⊟ R
C ::= Cp|a-thing|¬C|⊖ C|CSC|⊟ C|3- C|RC|C ∩C

In order to give formal semantics forLts← we need a few
more notations. TakeO as a set of domain objects, for exam-
ple the set of blocks and the table in blocks-worlds, and the
set of cities, trucks and packages in the logistics. We write
o for an element inO. WhereasLts expressions are inter-
preted at an MDP state3, Lts← expressions are interpreted at
the i’th state of a historyΓ (i.e. a sequence of states). This is
achieved using a functionI : (S∗×N×Lts←)→ (2O∪2O

2

),
defined below. We writeC(o) ∈ s andR(o, o′) ∈ s, if the
unary propositionC(o) and binary propositionR(o, o′) la-
bel the states respectively. Thus, we obtain the interpreta-
tion of the primitive conceptBlock in blocks-world at the
i’th state of historyΓ as the setI(Γ, i,Block) := {o|o ∈
O,Block(o) ∈ Γi}. Finally in the semantics below, ’*’ on
the left-hand side of an assignment ’:=’ is for transitive clo-
sure and otherwise it is a Kleene star. We omit the semantics
for interpreting sentences with a temporal operator applied
to a role because they follow in the obvious way.

I(Γ, i, a-thing) := O
I(Γ, i, Id) := {〈o, o〉|o ∈ O}
I(Γ, i, C) := {o|o ∈ O, C(o) ∈ Γi}
I(Γ, i, R) := {〈o, o′〉|o, o′ ∈ O, R(o, o′) ∈ Γi}
I(Γ, i,¬C) := {o|o /∈ I(Γ, i, C)}
I(Γ, i, RC) := {o|∃o′ ∈ I(Γ, i, C),

〈o′, o〉 ∈ I(Γ, i, R)}
I(Γ, i, Ca ∩ Cb) := I(Γ, i, Ca) ∩ I(Γ, i, Cb)

I(Γ, i, R−1) := {〈o, o′〉|〈o′, o〉 ∈ I(Γ, i, R)}
I(Γ, i, Ra ∩ Rb) := I(Γ, i, Ra) ∩ I(Γ, i, Rb)
I(Γ, i, R∗) := I(Γ, i, Id) ∪ {〈o, o′〉|∃k ∈ N,

ψ ∈ O∗, ψ0 = o, ψk = o′,
∀i ∈ N s.t. 0 ≤ i < k
〈ψi, ψi+1〉 ∈ I(Γ, i, R)}

I(Γ, i, 3- C) := {o|∃j ≤ i.o ∈ I(Γ, j, C)}
I(Γ, i,⊟C) := {o|∀j ≤ i.o ∈ I(Γ, j, C)}
I(Γ, i,⊖C) := {o|o ∈ I(Γ, i− 1, C)}
I(Γ, i, CaSCb) := {o|∃j ≤ i s.t. o ∈ I(Γ, j, Cb),∀j < k ≤ i.
o ∈ I(Γ, k, Ca)}

3i.e., thedomain of discourseis an MDP state

Taxonomic Control-Rules The length of a sentence is the
number of operators appearing in it. In order to generate
taxonomic control-rules we start by computing a set of sen-
tences inLts← (orLts) up to a given limiting length. Compu-
tation is bottom up, starting with zero length sentences – i.e.
Primitive domain concepts and roles. Sentences of length
1, 2, . . . , i, are used along with operators fromLts← to build
concept and role expressions up to length2i+ 1. In practice
we avoid generating logically equivalent sentences via sim-
ple syntactic checks and by interpreting sentences over a col-
lection of histories taken from small to medium sized prob-
lems. We build taxonomic control-rules by arbitrarily choos-
ing, for ann-ary action,n generated concept-expressions so
that the i’th action argument is to be taken from the interpre-
tation of thei’th concept-expression. When a control-rule
is executed at a history, thei’th argument is chosen arbitrar-
ily from the interpretation of thei’th concept-expression at
that history. For example in blocks-world, we could have a
control-rule that places blocks on the table if they have not
been there before

a1 ∈ I(?Γ, ?i,¬3- On−1table),
a2 ∈ I(?Γ, ?i,table) =⇒ move(a1, a2)

Executing this at the i’th state of someΓ, we inputi for ?i
andΓ for ?Γ in the above expression, and thus can obtain
somea1 anda2. We say this control rule then prescribes ac-
tion Move(a1, a2) at Γi. Unlike (Martin & Geffner 2000),
we treat control-rules deterministically – If they apply a par-
ticular action atΓ(i), this will always be the control’s action
atΓ(i).

In order to collect a small set of taxonomic control-rules
to give to the reinforcement learner, we generate a small set
that seem to make useful prescriptions according to the op-
timal policies and value functions computed by the propo-
sitional plannerNMRDPP (Thiébauxet al. 2006). There is
insufficient space to give complete details here.

ROPG
Here we model learning to act in a domain of NMRDPs
given a set of control-rules, as learning to act in a partially
observable Markov decision process (POMDP) with a de-
terministic observation model. The POMDP is a six-tuple
〈S, A, P r, R, O, v〉 whereS is the set of domain states and
A is a small set of control-rules.PS is the star-state distri-
bution, and we denotePs the probability of starting in state
s.4 Wheres, s′ ∈ S, ̺ ∈ A thenPr(s, ̺, s′) is the unknown
probability of a transition from states to s′ given control-
rule ̺ is executed at states. R is a bounded real-valued
reward functionR : S∗ → ℜ.5 O is the set of observa-
tions, each observation corresponding to an element in the
powerset ofA. Intuitively, an observation is the set of ap-
plicable control-rules. In a typical POMDP, for eachs ∈ S,
an observationo ∈ O is generated independently according

4For this paper we assume starting states are drawn uniformly
from a small set.

5Because NMRDPs can be expanded into equivalent
MDPs (Thiébaux et al. 2006), no difficulties arise using
R : S∗ → ℜ instead ofR : S → ℜ.

to some probability distributionv(s). We denotevo(s) the
probability of getting observationo in states. In our case
the observation at a state is the set of control-rules inA that
prescribe an action, and is thus deterministically generated.

Because we cannot generally compute an optimal pol-
icy for our POMDP, we consider a technique for solving
POMDPs that concentrates policy search on parameterised
reactive “memoryless” policiesµ : (O×θ)→ PA. θ ∈ ℜ|A|

is an|A| length vector of real parameters/weights andPA is
a distribution over the POMDP actions.

For each control-rule̺i in A, we associate a single weight
θi which is used to compute the probability that̺i is exe-
cuted given an observationo. The probabilityµ̺i

(o, θ) that
control̺i with weightθi is chosen to prescribe an action for
observationo is given by a discrete Boltzmann distribution

µ̺i
(o, θ) = κ(̺i, o)

eθi

∑
j κ(̺j , o)eθj

whereκ is 1 or 0 depending on whether̺i is in o or not.
Taking 0/0 = 0, µ(o, θ) is sometimes called thesoft-max
distribution. In our case, finding the best soft-max policy
equates to findingθ ∈ ℜ|A| that maximise the expected dis-
counted reward over an infinite horizon of acting according
to µ(θ) in the domain. We denote the value of a policy pa-
rameterised byθ asη(θ). There will usually be no obvious
way to computeη(θ) for arbitrary starting state distribution
PS , however a good estimatê∇η of its gradient with re-
spect to parametersθ, ∇η, can be computed by executing
µ(θ) in problems drawn according toPS . The online RE-
INFORCE (Williams 1992) style gradient ascent optimisa-
tion strategy of Algorithm 2,6 can indeed find a local max-
imum of the utility functionη(θ) by computing a sequence
θ0, .., θn so that for a small step-sizeα.

θi+1 = θi + α∇̂η(θi)

Experimental Evaluation
In this section we evaluate ROPG in Markovian, non-
Markovian, stochastic and deterministic domains, where
control-rules available to the learner are generated accord-
ing toLts← ,Lts, or regression. We includeLts← here even for
Markovian domains because we want to see the advantage of
providing the learner with temporal features. Questions we
address include: (1) Can ROPG obtain a good general pol-
icy in a set of small to medium sized instances drawn from a
target domain? (2) What are the costs and benefits of using
control-rules drawn from the different mechanisms we have
discussed? (3) Can ROPG achieve good generalisation? (4)
What are the benefits of including temporal features even
when the domain is Markovian? To this end, we have imple-
mented our approach in C++ and will email this on request.
This includes functionality for generating control-rulesac-
cording toLts← , Lts, and regression. It also includes the
domain descriptions and problem instances from this paper.

6In ROPG, settingγ < 1 is a standard strategy for addressing
the temporal credit assignment problem (Baxter & Bartlett 2001).
If this is inappropriate,γ = 1 is admissible in our setting.

Algorithm 2 Relational Online Policy Gradient (ROPG)
1: Given:
• Initial parametersθ ∈ ℜn and policyµ(θ).
• Distribution over starting statesPS
• Reward and trace discount factors0 < γ, β < 1
• Step-size parameterα

2: repeat
3: Sample an NMRDP starting states0 from PS
4: Generate a setTµ of observation(o)-action(̺) trajec-

tories that yield rewardr, starting at the observation
deterministically generated froms0, and using the
current policyµ(θ)

5: ∇̂η0 ← 0
6: for Each T ∈ Tµ (length|T |) with rewardrT do
7: z0 ← 0
8: for Eachoj , ̺j ∈ T chronologicallydo

9: zj+1 ← γzj +
∇µ̺j

(oj)

µ̺j
(oj)

10: end for
11: ∇̂ηi+1 ← ∇̂ηi + 1

i+1 [β|T | · rT · z|T | − ∇̂ηi]
12: end for
13: θ ← θ + α∇̂η|Tµ|

14: until ∇̂η|Tµ| = 0

Domains and Problems
We experiment with 6 domains including four variants of
miconic elevator scheduling systems (Koehler & Schuster
2000) distinguished by whether they are stochastic’stc-mic’
or deterministic’det-mic’, and whether they feature com-
plex non-Markovian’mic-rea’ or simple ’mic-sim’ reward
schemes. The stochastic and non-Markovian elements of
miconic are from (Thiébauxet al. 2006). We also exper-
iment with deterministic Markovian versions of the classic
benchmarks logistics from (Boutilier, Reiter, & Price 2001)
and blocks-world (Slaney & Thiébaux 2001) with the usual
goal achievement and maintenance reward schemes.

Our experiments examine the behaviour of ROPG in a
small group oftraining problemsfrom each domain. The
problems are sufficiently small for the optimal plannerNM-
RDPP to solve. This permits a comparison of the policy
learnt by ROPG with the optimal. With this objective we
sample11 problems from each of the miconic variants. For
each miconic domain, in6 of the problems there are2 peo-
ple and a single elevator, with the number of floors ranging
from2, .., 7. For the other5 problems we have the number of
people and floors ranging simultaneously from3, .., 7. For
logistics we sample 13 random problems each with 2 trucks.
With the number of boxes ranging from2, .., 4, we consider
problems with2, .., 5 cities. We also have a problem with
5 boxes and2 cities. We experiment with two different sets
of problems from the blocks-world. The first, called blocks-
world-10, is a set of10 problems: with 2 problems with 2,
3 and so on up to 6 block worlds. Wheren is the number
of blocks in a world, for eachn ∈ 2..6 we include one ran-
domly generated problem in which the goal is distinct from
the initial state. For each sizen we also include a problem
that requires the planner to reverse ann block stack on the
table. The second set, called blocks-world-15, is a set of 15

 120

 140

 160

 180

 200

 220

 240

 260

 0 50 100 150 200 250 300 350 400 450 500

A
vg

. R
ew

ar
d

Episodes / 1600

 (a) Performance of ROPG in Logistics

tax-20
t-tax-40

regr
opt

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
ew

ar
d

Episodes / 240

 (b) Performance of ROPG in Blocks-World-15

tax-10
t-tax-10

opt
 90

 95

 100

 105

 110

 115

 120

 125

 130

 135

 140

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
ew

ar
d

Episodes / 800

 (c) Performance of ROPG in det-mic-sim

tax-10
t-tax-30

regr
opt

 90

 95

 100

 105

 110

 115

 120

 125

 130

 135

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
ew

ar
d

Episodes / 800

 (d) Performance of ROPG in stc-mic-sim

tax-20
t-tax-40

regr
opt

 100

 110

 120

 130

 140

 150

 160

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
ew

ar
d

Episodes / 800

 (e) Performance of ROPG in det-mic-rea

tax-10
t-tax-30

regr
opt

 95

 100

 105

 110

 115

 120

 125

 130

 135

 140

 145

 0 10 20 30 40 50 60 70 80 90 100

A
vg

. R
ew

ar
d

Episodes / 800

 (f) Performance of ROPG in stc-mic-rea

tax-10
t-tax-30

regr
opt

Figure 2:ForLts
← (t-tax-N) andLts (tax-N) control-rules inA, we report convergence of average discounted reward experienced as ROPG

undertakes episodes in training problems.N reports the size ofA. (opt) the optimal performance according toNMRDPP, and (regr) the
performance of the best policy obtained by ROPG withA comprising control-rules generated by regression. We omitregr in the case of
blocks-world because control-rules based on regression donot work in that domain [Gretton and Thiébaux, 2004].

distinct random problems. In this set we include 5 problems
with 3, 4 and 5 blocks respectively.

Results and Discussion
Our experiments were conducted on an AMD Athlon(tm) 64
Processor3200+ machine with2 gigabytes of ram. Both the
trace and reward discount factors were set toγ, β = 0.95.
The step-sizeα was 10−3 for learning with control-rules
based on regression, and otherwise10−4 in all domains ex-
cept in logistics where we usedα = 10−5. For each problem
set,PS is configured so that problems are drawn uniformly
at random by the learner.

Performance results are summarised in Figure 2.7 These
show that if we measure policy performance in terms of
expected discounted cumulative reward (utility) sampling
uniformly in training problems, the best is achieved using
control-rules generated via regression, the next best is ob-
tained withLts← control-rules, and thenLts rules. The only
exception occurs fordet-mic-reawhere theLts policy is
slightly better than theLts← policy. Convergence is not al-
ways to the optimal when control-rules are generated ac-
cording to regression because (1) ROPG only guarantees
local convergence, and (2) more significantly we limit the
number of regression steps in generating control-rules, thus
these rules do not always facilitate optimality. Not shown in
Figure 2, is performance in terms of how much computation
time it takes the policies to execute. We find policies con-

7In that figure we have not shown convergence in the case that
rules are generated by regression because that case has muchfaster
convergence than the case where rules are generated according to a
concept language.

Language Problem Time Utility
Lts
← det-mic-sim-30 1885m57 327.231

Lts det-mic-sim-30 971m31 99.3418
Lts
← det-mic-rea-30 1136m4 305.538

Lts det-mic-rea-30 798m51 340.22
Lts
← stc-mic-sim-30 2208m45 246.922

Lts stc-mic-sim-30 758m22 116.114
Lts
← stc-mic-rea-30 1089m28 554.717

Lts stc-mic-rea-30 896m59 399.742

Table 1: Runtime and utility experienced using general poli-
cies on large test problems. Policies are executed for1000
episodes, where each episode lasts for100 actions.

structed using rules generated via regression are by far the
slowest to execute. For example, in training problems from
det-mic-rea, to undertake103 episodes of ROPG using re-
gressed control-rules takes1026 minutes while usingLts←
rules only takes around110 minutes. This occurs because
of the operator-length (and relative complexity) of sentences
used to describeLfo← control-rules, and not because the num-
ber of control-rules is large. We also find that it is between
1.4 and2 times slower on average to undertake episodes of
learning withLts← control-rules than with theirLts counter-
parts. This is because, (1) the learner was given more rules
in theLts← case, and (2) the interpretation of temporal rules
can be relatively expensive.

To determine how well policies ROPG learns in training
problems generalise, we evaluated the blocks-world policies
in problems with 10, 15 and 20 blocks, the miconic policies
in problems with 15, 20 and 30 passengers, and the logis-
tics policies in problems with 15 packages, trucks and cities.

The results we obtained for miconic test problems are sum-
marised in Table 1.8 Not shown in that table is the fact that
non-Markovian rewards were being sought out and achieved
by the learnt policies. We found that policies based on re-
gression were very (sometimes prohibitively) expensive in
computation time to execute, relative to taxonomic policies.
The latter generalised well for all domains except blocks-
world. The taxonomic policies computed for the blocks-
world-10 problems only generalised reliably where a stack
of blocks had to be reversed on the table. In a similar vein,
the generalisation achieved by the taxonomic policies com-
puted in the block-world-15 problems was unreliable. On a
final positive note, the temporal blocks-world policies com-
pleted episodes more quickly than their atemporal counter-
parts in large problems. Not surprisingly, factors which we
find can negatively effect generalisation include bias in train-
ing problems, and the overall quality of control-rules avail-
able to ROPG.

Concluding Remarks
We developed ROPG, an approach to unsupervised
planning-as-learning for generalisation in non-Markovian
domains. This operates given a set of control-rules which we
proposed be computed automatically. To this end we created
a domain definition language based onLfo← for axiomatising
non-Markovian domains and extended first-order decision-
theoretic regression to this setting for the purpose of auto-
matically generating control-rules along the lines of (Gretton
& Thiébaux 2004). We also extended the taxonomic syntax
from (Fern, Yoon, & Givan 2006) to accommodate tempo-
ral concepts and relations for the purpose of automatically
generating taxonomic control-rules suited to NMRDPs and
useful in MDPs. We evaluate our approach in a number of
planning benchmarks and find that it is able to learn good
general policies. ROPG is attractive and unique because it
can both (1) generalise from experience without recourse to
state values, and (2) policy improvement occurs at a first-
order, resp. propositional, level. A pressing item for future
work is to investigate ways of mitigating slow convergence
of ROPG. Also, future work should try to address the cost
of model checking for control-rules, which is a significant
bottle neck of our approach.

Acknowledgements
Thanks to Doug Aberdeen and Sylvie Thiébaux for useful discus-
sions. We would also like to acknowledge the support of NICTA.
NICTA is funded through the Australian Government’sBacking
Australia’s Ability initiative, in part through the Australian Re-
search Council.

References
Bacchus, F.; Boutilier, C.; and Grove, A. 1996. Rewarding
behaviors. InAAAI-96.
Baxter, J., and Bartlett, P. L. 2001. Infinite-horizon policy-
gradient estimation.J. Artif. Intell. Res. (JAIR)15:319–
350.

8The runtime results, while competitive with a state-based plan-
ner that would plan from scratch for each episode, are slightly mis-
leading because ourLfo

← problem simulator was not implemented
to be as efficient as possible.

Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic
dynamic programming for first-order MDPs. InIJCAI-01.
C. Guestrin; D. Koller; C. Gearhart; and N. Kanodia.
2003. Generalizing plans to new environments in relational
MDPs.
Fern, A.; Yoon, S.; and Givan, R. 2006. Approximate pol-
icy iteration with a policy language bias: Solving relational
Markov decision processes.J. Artif. Intell. Res. (JAIR)25.
Gretton, C., and Thiébaux, S. 2004. Exploiting first-order
regression in inductive policy selection. InUAI.
Hernandez-Gardiol, N., and Kaelbling, L. P. 2003.
Envelope-based planning in relational mdps. InNIPS-17.
K. Kersting; M. V. Otterlo; and L. D. Raedt. 2004. Bellman
goes relational. InICML, 59.
Karabaev, E., and Skvortsova, O. 2005. A Heuristic Search
Algorithm for Solving First-Order MDPs. InUAI.
Kersting, K., and Raedt, L. D. 2004. Logical markov deci-
sion programs and the convergence of logical td(lambda).
In ILP, 180–197.
Khardon, R. 1999. Learning action strategies for planning
domains.Artificial Intelligence113(1-2):125–148.
Koehler, J., and Schuster, K. 2000. Elevator control as a
planning problem. InAIPS.
Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998.
The computational complexity of probabilistic planning.J.
Artif. Intell. Res. (JAIR)9:1–36.
Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning using concept languages. InKR, 667–
677.
Reiter, R. 2001.Knowledge in action : logical founda-
tions for specifying and implementing dynamical systems.
Cambridge, Mass.: MIT Press.
Sanner, S., and Boutilier, C. 2005. Approximate linear
programming for first-order mdps. InUAI.
Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artificial Intelligence125:119–153.
Thiébaux, S., and Cordie, M. 2001. Supply restoration
in power distribution systems – a benchmark for planning
under uncertainty. InEPC-01.
Thiébaux, S.; Gretton, C.; Slaney, J.; Price, D.; and Ka-
banza, F. 2006. Decision-theoretic planning with non-
markovian rewards.J. Artif. Intell. Res. (JAIR)25:17–74.
Wang, C.; Joshi, S.; and Khardon, R. 2007. First order
decision diagrams for relational MDPs. InIJCAI-07.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.Ma-
chine Learning8:229–256.
Yoon, S. W.; Fern, A.; and Givan, R. 2002. Inductive
policy selection for first-order mdps. InUAI, 569–576.
Younes, H. L. S.; Littman, M.; Weissmann, D.; and As-
muth, J. 2005. The first probabilistic track of the IPC. In
J. Artif. Intell. Res. (JAIR), volume 24, 851–887.

