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Abstract attention recently is that @feneralisation in planningThe
idea is that the cost of planning with propositional represe
tations can be mitigated by technologies that plan for a do-
main rather than for individual problems. These approaches
yield general policiesvhich can be executed in any problem

We consider the problem of computing general policies for
decision-theoretic planning problems with temporally ex-
tended rewards. We describe a gradient-based approach to
relational reinforcement-learning (RRL) of policies fdrat

setting. In particular, the learner optimises its behavioy state from the domain at hand. In practice general policies
acting in a set of problems drawn from a target domain. Our are expressed in first-order/relational formalisms. PS@.’:E)
approach is similar tinductive policy selectiobecause the to date suggest general policies can be achieved by either (1
policies learnt are given in terms of relational contrderu reasoning from the domain description (Boutilier, Reiger,
These rules are generated either (1) by reasoning fromafirst  Price 2001; K. Kersting, M. V. Otterlo, & L. D. Raedt 2004;
order specification of the domain, or (2) more or less arbi-  Sanner & Boutilier 2005; Karabaev & Skvortsova 2005;

trarily according to a taxonomic concept language. To this Wang, Joshi, & Khardon 2007), or (2) by developing plan-
endblthe papﬁr Com”b‘fltes a dgméaun def(ljmtnon dlanguage for  ners that catearn from experiencé<hardon 1999; Martin
problems with temporally extended rewards, and a taxonomic . . . iy .
concept language in which concepts and relations can be tem- g ﬁgfeflrlbefi%éoggbg'. Egri?izgtg?léi\%%? '2%%T-aggﬁlz s(?(;g'oé

poral. We evaluate our approach in versions of the miconic, ) . L
logistics and blocks-world planning benchmarks and findl tha Givan 2006). There has also been some work in combining

it is able to learn good policies. Our experiments show there ~ the two (Gretton & Thiébaux 2004).

is a significant advantage in making temporal concepts-avail Reasoning approaches can achieve optimal general poli-
able in RRL for planning, whether rewards are temporally cies without recourse to individual problems. On the down-
extended or not. side they rely on expensive theorem proving and cannot give

- . . guarantees about the quality and generality of policieg the
Decision-theoretic planning systems are often called upon 0 te for domains where the value of a state is drawn
to solve numerous related problems from a particular do- &0 an infinite set. For example, this is the case in the

main. This was the case at the recent International Proba- |05 world because the value of a state given any policy is
bilistic Planning Competitions (Youne al. 2005). More the number of actions it takes for that policy to achieve the
Importantly, itis al_so _usu_ally the case in practice. In the d goal, which is proportional to the number of blocks. Induc-
main of energy-distribution networks (Thiébaux & Cordie e jearing approaches have a significant advantage over
2001), we usually plan for a number of distinct systems o,q4ning approaches because they avoid theorem proving
made from common classes of objects (circuit breakers, onq g not rely on an exhaustive domain description. They

switches, remote controllers, etc.). Because domains in 5e)y achieve optimality, however are able to compute good
planning often exhibit a strong relational structure, they policies with very little effort. As was the case for reason-

formalised using first-order languages supporting theadecl ing approaches, learning techniques cannot learn a palicy i

ration of objects and relations between these as well as the (g5 of state values in domains where these are drawn from

use ofquantific.ation overobjgcts.. o . an infinite set (K. Kersting, M. V. Otterlo, & L. D. Raedt
The cost of isolated planning in individual problems is 2004).

substantial. State-of-the-art solution algorithms thegther
state-based (tabular) or factored propositional problepa r
resentations, thus they succumb to Bellman’s curse of di-
mensionality —i.e. The complexity of computing the optimal
policy for a problem instance can be exponential in the di-
mension of the problem (Littman, Goldsmith, & Mundhenk
1998). A research direction which has garnered significant

Orthogonal to generalisation in planning, there have also
been significant developments towards propositional plan-
ning with temporally extended rewardén this case, rather
than accepting the standard scenario where rewards are allo
cated to individual states, rewards are allocated to sexpsen
of states calledewarding behavioursTypical examples of
rewarding behaviours occur where we reward the mainte-
Copyright © 2007, American Association for Artificial Intelli- nance of some property, the periodic achievement of some
gence (www.aaai.org). All rights reserved. objective, the achievement of an objective after a trigger h



occurred (and not expired), or the first achievement of an
objective. These rewards are not supported in a reasonable
way where problems are modelled using Markov decision
processes (MDPs), the standard problem representation for
malism. In particular, for an MDP we say both dynamics
and reward aréarkovian because, at any time both the
effects of an action and the reward allocated are determined
completely by the state the process is in. Moreover, althoug

it may be possible in principle to manually compile tempo-
rally extended rewards into an MDP, by adding propositions
that capture temporal events, the original structure isdns

an MDP solution algorithm that is not aware of the tempo-
ral interpretation of some state characterising propassti

In order to address weaknesses in the MDP model where
temporally extended rewards are involved, formalisms and
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Figure 1: Data-flows for the two settings in which we eval-

uate ROPG. (A) Demonstrates the case where control-rules
are generated using first-order regression, and (B) the case
where control-rules are generated according to a taxonomic
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solution methods have been proposed for decision processesconcept language.

with non-Markovian rewards (NMRDPs) (Thieébaex al.
2006). For an NMRDP, the problem dynamics is Marko-
vian, and reward is a compact temporal logic specification
of temporally extended rewards. NMRDP solution meth-
ods exploit the temporal logic specification of the reward-
ing behaviours to efficiently translate NMRDPs into equiv-
alent MDPs amenable to MDP solution methods. Conse-
qguently, NRMDP solution techniques still succumb to Bell-
man’s curse.

We develop ROPG (Relational Online Policy Gradient),
an unsupervised RRL approach to computing temporally ex-
tended policies for domains with non-Markovian rewards.
In a similar vein to some of the more fruitful techniques for
RRL such as inductive policy selection (Yoon, Fern, & Gi-
van 2002; Gretton & Thieébaux 2004), ROPG learns policies
in terms of relational control-rules. Each control-ruleais
small expression in a first-order language that can be inter-
preted at an NMRDP state to provide an action prescription.
We adapt two very different techniques from the literature
for generating relational control-rules, and evaluatéhezfc
these separately in our experimental results. The first tech
nigue is based on (Fern, Yoon, & Givan 2006). Relational
control-rules are generated more or less arbitrarily atcor
ing to the grammar of a temporal taxonomic concept lan-
guage. In order to avoid redundant taxonomic control-tules
and also to avoid overwhelming the learner with too many

distinguish states according to propositional featuratahe

not available to a relational learner. Along the same lines,
ROPG also addresses some pitfalls of value-based relationa
reinforcement-learning. Our approach directly learnsla po
icy, thus it does not attempt to classify the infinite states
from a target planning domain according to a finite set of
values. Rather, it classifies those states according to-an in
finite set of actions prescribed by a small set of relational
control-rules. To summarise, ROPG learns a general pol-
icy directly by acting in domain instances. Consequently,
ROPG is suited to planning in domains such as the blocks-
world, where there is no known sound technique to repre-
sent a general policy in terms of a value function with finite
range. Moreover, ROPG is not crippled by a reinforcement-
learning scheme which punishes a learner for not mimicking
the actions of “problem specialist” in the form of a state-
based agent. Figure 1 shows the data-flows for using ROPG
in the cases where control-rules are generated by regnessio
and where these are generated according to a taxonomic syn-
tax.

We evaluate our approach in Markovian, non-Markovian,
stochastic and deterministic versions of the miconic,degi
tics and blocks-world planning benchmarks, where control-
rules available to the learner are generated accordingrto ou

rules, they are evaluated in small problems and only a small temporal taxonomic syntax, the extended taxonomic syntax,
number of rules that behave well are passed to ROPG. The or regression. We find that ROPG can obtain a good general
second technique is based on (Gretton & Thiébaux 2004). policy by learning in small to medium sized instances drawn

In this case we exploit first-order regression to generate from a target domain. Our experiments also show there is

control-rules from a given domain description that are guar
anteed to cover all concepts relevant to the optiniatate-
to-go value function for a given. To this end, we develop

a significant advantage in making temporal concepts avail-
able in RRL for planning whether rewards are temporally
extended or not.

a domain description language which accommodates non-  The paper is organised as follows: We develop our do-
Markovian rewards, and also extend the standard definition main description formalism for decision-theoretic plarmi
of first-order regression to this setting. problems with non-Markovian reward. We then develop two
ROPG is a version of online policy gradient, and thus mechanisms for automatically computirgdational control-
learns by acting in problems. ROPG is the first reported rules the basis for our learner’s actions and observations in
technique for direct relational reinforcement-learning o a domain. We then present our online policy gradient ap-
general policies which does not rely on a state-based plan- proach for computing a general policy for a domain given
ning (or learning) mechanism. This means ROPG does not an arbitrary set of control-rules. We present experimental
capture action decisions made by an optimal (or good) state- results, and then discuss our approach further and consider
based planning agent which is inevitably better equipped to future directions.



Domains with Non-Markovian Rewar d formularewrites. Finally, we adopt the shorthahdP(z). f
We require adomain description languagéor decision- for 3z.(P(z) A f) andV : P().f for Va.(P(z) — f).
theoretic planning domains where problem instances can We now develop axioms schemes for specifying a do-
have non-Markovian rewards. Our intention here is to de- Main of NMRDP with examples for the logistics domain
velop a formalism that allows us to describe a domain in in (Boutilier, Reiter, & Price 2001): o
terms of its relational structure. To this end we use a logic _ Action precondition axioms: For each deterministic ac-
and axiom schemes that let us describe (1) objects and rela-tion A(y), we write one axiom of the form:
tions between these, (2) actions, their preconditions &nd e E Vy.(act = A(Y) — poss(A(Y)))

fects, and (3) the details of how reward is allocated to state whereposs(A(3)) is a behavioural-formula characterising

and/or state sequences. Key to this is mgic of event- e preconditions of the action. For example, in logisties w
formulag a first-order past-looking linear temporal logic we 46 the actioh.oad (b, t) that loads a bok onto a truckt.

developed, denoted’®, with equality, first-order quantifi- - Thjs’is possible whehandt are in the same city, artcoes
cation over objectqV, 3}, and the usual binary connec- . already have a box loaded oRit

tives {A,V,—,—,—}. So we can write about rewarding
behaviours — and also so that we have a mechanism forcom- = V:Truck(z).(V: Box(y).act = Load(y,z) —
pactly specifying the behaviour of fluents when actions are —=(3 : Box(b).(On(b,x)))A

executed — sentences 44° must be able to discuss histo- (3:Cty(e).(Bl n(y,c) ATIn(x,c))))

ries. To this end we consider temporal operators from PLTL
the linear temporal logic of the pasa mechanism for ex-
pressing rewarding behaviours for NMRDP in the proposi-
tional case (Bacchus, Boutilier, & Grove 1996). In partic-

Successor-states axioms: specify the behaviour of a flu-
ent under the domains deterministic actions. For each fluent
p(¥), there is one axiom of the form:

ular, this means we have, pronounced “in the last state”, , , ., , ,
5 “always in the past’© “sometime in the past’, ang ForallZandi > 0, (X,i) = ¥y. © SSA(p(y)) < ()
“since”! where SSA(p(7)) is an event-formula characterising the

_In what follows “*” is the KIeen(i star, so for example  tryth value ofp(i) in the situation resulting from performing
if Sis the set of states and € S*, then we have that  3p action in a state. In logistics we have fluentT, so that

I' is a finite sequence of states. Also, whers a natu-  OnT(News, t r uck) says that the newspaper is on the truck.
ral number[’; is the state at indexin I, e}r;dl“(z) is the A package is on a truck at some event, if it was previously
prefix (Lo, ..., I';) € S* of I'. We developC’° for specify- on the truck and this fact is maintained by action choices ex-

ing rewarding behaviours and domain action physics. Con- cjyding the unloading of the package from the truck, or if

sequently we need!° to specify both behaviours as se-  the package was legally loaded onto the truck and since then
guences of states, and also trajectories of state actios. pai that fact has not been disturbed:

Henceforth, we shall refer to the latter aserentdenoted

3. Thus, for a domain with state$ and actions4, we can Forall¥ andi >0, (¥,i) = V:Box(b).V: Truck(t)
write ¥ € (S x A)*. We develop a semantics fdif°® so ( ©f(act =Load(b,?)) vV (OnT(b, t)A

that sentences in the language relate via a modelling rela- —(act = Unl oad(t)))] < OnT(b, 1))

tion = to events. A formula without action symbols is a Unique-name axiom: In order that we can evaluate ac-

behavioural-formula. These are analogues of state-f@mul tion equality based on the action symbol and its arguments,
in the situation-calculus (Reiter 2001) in the sense tlzdest we include unique-name axioms. For any two distinct action
formula are for MDPs what a behavioural-formula is for symbolsA and B we have

NMRDPs - In the situation-calculus, state-formula discuss = VIV A(Z)# B(7)

properties of states while behavioural-formulaeCf? dis-
cuss histories as sequences of states. A behavioural-farmu
free of temporal operators is directly analogous to a state-

Natur€e's choice and probability axioms: For stochas-
tic action A(Z) we specify the deterministic actions

formula in the situation-calculus. Dy (%), ..., Dy(%) available for nature to choose from, and
] . . . the probabilityr,, o, . .., rx that nature makes a particular
(%,7) Fact = A iff  Aisthe action part oF; choice. Each deterministic choide; uniquely identifies
(¥,9) Fp iff where; = (si,ai),p € s the stochastic action symbdl that permits nature making
(257’) :fl\/fQ iff (E?Z) ':fl or (Evl) ':fQ choiceD..
(8,4) = ~f iff Itis not the case that>, i) = f ‘
(%,0) = Ja.f iff There is an objecf(, so that vZ when(X,i) E act = A(Z) then
(£,0) | flz/X] LF(S,0) E @)D (), 715 s Dia (@), 7 ;
(232) :ef iff (237’_1) ':f and7'>0 el se |f((2,l) ':fQ(f))[Dkl-l-l(f)arkl-i-lav
(E,Z) :flsf2 iff HJSZSt(Ea]) ':fQ and DkQ(f)arkz];'-'
v_] <k S n (Z, k) ': fl el Se[ka—l_’_l(ii"), Tpm—=1415...3 ka (f),’]"km];

We assume the object universe is non-empty so that for all For example, consider a stochastic logistics domain where i
¥, (%,0) = 32.T. Operators/, A, — and« are given via can rain. Unloading a box from a truck is non-deterministic

We do not consider the case 6t° formulae with free vari- 2Notice that£'° can accommodate non-Markovian dynamics,
ables here because they have no place in a domain description however in this paper we shall not consider those.



so that nature decides whether the unloading is successful Generating £7° Control-Rules

Unl oadS or otherwiseUnl oadF. If it is not raining, un-
loading a truck is successful 90% of the time, otherwise it is
only successful 30% of the time:

vZ whenact = Unl oad(Z) then

i f (—raining)[Unl oadS(Z),0.9; Unl oadF(Z),0.1];

el se[Unl oadS(%),0.3; Unl oadF(%),0.7];

Reward axiom: Rewards as they are allocated to events
are conveniently expressed using the inclusive conditiona

form:
F((2,0) | A)R(S()+ =13
al 50 i f((S,4) F [2)R(E()+ = ra;

al'so if((S,i) = n)R(zV)) =T

Here eacly; is a behavioural-formula.' Whe#eis the non-
Markovian reward function so th&(3(:)) is the reward
achieved at everi(i), the semantics for the inclusive con-

ditional are
RE@) = Y
J St(S0)Ef5)
For example we could have the agent only receives reward
the first time it deliverers a package correctly:

i f((2,i) E (V:Package(p).(Del i vered(p)A
© B -Delivered(p))))R(X(7))+ = 100.0;

T

Generating Control-Rules for General Policies

ROPG computes a general policy over a small set of control-
rules which in our case are generated automatically. Poli-
cies over relational control-rules already appear in tteg-li
ature, for example, they can correspond to a relational ver-
sion of the classic Rivest-style decision list (Khardon 9,99
Martin & Geffner 2000; Fern, Yoon, & Givan 2006). A
control-rule is an expression in a relational formalismethi
prescribesan action given a problem state. For example,
taking ann-ary action symboM and the£f° formula¢(z)
where ¥ are the onlyn variable symbols that appear free
in ¢, we can have a control-rule “executf(r) at %; if
(%,7) E ¢(&)". For the logistics domain specifically we
can have:A(Z) = Unl oad(t) and¢(Z) =3: G ty(c).3
Package(p).(TI n(t,c) A OnT(p,t) A GBI n(p,c)). As a
control-rule, this prescribes an action that unloads a pack
age from a truck, if the truck is located in the city where the
package is supposed to be delivered. When there igsm
that (3,7) &= ¢(Z), we say for evenk(s) the control-rule
does not prescribe an action.

We develop two separate techniques for generating
control-rules. The first was explored for the Markovian
setting in (Gretton & Thiébaux 2004). In our case it cor-
responds to using first-order regression, a computatipnall
cheap mechanism for reasoning about®@ domain def-
inition, to compute control-rules which are sufficient to
build ann-state-to-go optimal policy. The second is based
on (Fern, Yoon, & Givan 2006), which again only deals with
the Markovian setting. We develop a method of generating
taxonomic control-rules according to the grammar of a tem-
poral taxonomic language bias. In this case we give ROPG
a few such control-rules which seem to make good action
prescriptions in small NMRDPs.

Like (Gretton & Thiébaux 2004), we use first-order regres-
sion to compute control-rules from2{® domain definition.
The regression of a behavioural-formylahrough an ac-
tion a is a behavioural-formula that holds befards exe-
cuted iff f holds after the execution. Regression requires
that for each fluenp € f, SSA(p) is given. In detail,
consider a behavioural-formufaand a deterministic action
term A(y). Behavioural-formulaf holds after we execute
A(y) iff poss(A(¥)) A regr(f, A(¥)) holds, where regr is
defined in Algorithm 1.

Algorithm 1 £f° Regression

regr(p, A(y)) = SSA(p) with every occurrence of
act = A’'(Z) replaced withEQUAL (Z, 7/) if A’ andA
are the same symbol, and otherwise replaced with
regi(f1 Vv f2, A(Y)) = regifi, ( y)) v regi(fa, A(4))
reg(-/, Aly) = —regt, Alp)
regdr. £, A(y) = Juregr(f A(y)
regiof, A(y) =
egnof, Alg)) = fVOof
regBf, A(y)) =

(freBAHV(fA-0T)
1

regr( f1Sf2, Ay 2V (fi NO(f1Sf2))

Now, consider the se{tgbo} consisting of the behavioural-
formulae in the reward speC|f|cat|on of the domain at hand.
We can compute the set of formulde}} from {¢}} by
regressing thabg? over all deterministic actions with exis-
tentially quantified arguments. That is, eaﬁj'] is of the
form 3Z.poss(D(Z)) A regi¢?, D(Z)) for somei. Any
eventX that is one action application from reward mod-
els'\/; gb;. More usefully, a behavioural-formula charac-
terising pre-action events for each stochastic action, can
be formed by considering disjunctions over formulae from
{gbl} Similarly we can capture longer trajectories facili-
tated by stochastic actions by computipyg; } for n larger
than1. The set of behavioural-formulae sufficient to encap-
sulate such trajectories are members of the set:

U {ei}

i=0...n

FTI

Thus, using regression we can obtain a set of behavioural-
formula which are sufficient to induce a value-base clas-
sification of events that are steps from reward. More-
over, fori > 0, eIement&;Sl € F™ along with informa-
tion about the deterministic action symholfrom which it
is generated using regression acts as the specification for a
control-rule as follows: Takel to be the unique stochastic
action for whichD is a choice. Aloneg’ is of the form
3Z.poss(D(T)) A regi(¢~t, D(Z)) for some¢i—t € F™.

We say that as a control-rul¢ prescribesA(¥) at state>;
so that(X,4) | poss(D(T)) A regi(¢*~—t, D(Z)). Where
there are multipler that satisfy this condition, in practice
we resolve to choose from these deterministically — i.ea, If
control-rule prescribes an action®¢:), this will always be
that rule’s prescription aX(i).



Generating Taxonomic Control-Rules

Control-rules can be specified in, and generated according
to, a concept or taxonomic language. This was the case
in (Martin & Geffner 2000) and (Fern, Yoon, & Givan 2006)
where, for examples, useful general policies over taxonomi
control-rules were obtained for blocks-world and logistic
Here, we extend the@xonomic-syntakom (Fern, Yoon, &
Givan 2006) that we denotg , with temporal operators to
obtain a languagé&! s suitable for specifying control-rules
for NMRDP.

Expressions inCtS are constructed over primitive con-
cepts (unary predicates, e.8l ock in blocks-world), de-
notedC),, and primitive relations (binary predicate), denoted
R,. The interpretation of a primitive concept is the corre-
sponding predicate’s extension at a given state. For exgmpl
the interpretation of the concept ock at a block-world
state is simply the set of all the blocks in that world. Simi-
larly the interpretation of a role at a state is the correspon
ing binary predicates extension at a state —i.e, A set o pair
of objects. The expressiond S we will build from these
primitives are given by the following grammar. Again, we
use the PLTL temporal modalities, ©, B andS yielding
the following grammar:

R:= Ry|ld|R"!|RNR|R*|© R|RSR|®R|B R
C = C,lathing-C| © C|CSC| B C|©C|RC|C N C

In order to give formal semantics fa' ® we need a few
more notations. Tak® as a set of domain objects, for exam-
ple the set of blocks and the table in blocks-worlds, and the
set of cities, trucks and packages in the logistics. We write
o for an element in0. Whereas(!S expressions are inter-
preted at an MDP state£!S expressions are interpreted at
the i'th state of a histor¥' (i.e. a sequence of states). Thisis
achieved using a functioh: (S* x N x £13) — (20U2°97),
defined below. We writ€'(0) € s andR(o,0’) € s, if the
unary propositiorC'(o) and binary propositiorR(o, o’) la-
bel the states respectively. Thus, we obtain the interpreta-
tion of the primitive concepBl ock in blocks-world at the
i'th state of historyl" as the sef (T, i, Bl ock) := {o|o €
0, Bl ock(o) € T';}. Finally in the semantics below, " on
the left-hand side of an assignment’ is for transitive clo-
sure and otherwise it is a Kleene star. We omit the semantics
for interpreting sentences with a temporal operator agdplie
to a role because they follow in the obvious way.

I(I", 4, a-thing) = (@)

(T, i, 1d) = {(o,0)l0 }

I(T,4,C) = {O\OE C( erl;}

I(T,4, R) = (0,0")]0,0" € O, R(0,0") € T;}
I(T,4,-C) = {o\o Q I(F i, C)}

I(T, 4, RC) = {0\30 € I(F i, C),

) (o, o)GI(FiR)}
I(I,4,Cq N Cy) = I(FLCQ)ﬁI(FLCb)
10 R = {{o:0)I(o', 0) € I(T, i, R)}
I(T.i,Rq A Ry) = I(Tyi, Re) N I(T, i, Ry)
I(T',i, R™) = I(led)U{(oo)HkEN

P € OF g =o, lZJk—O
VieN s st. 0<1i<
(i, ¥iy1) € I(T, 4, R)}
I(T,i, ©C):={o|3j <i.0€ I(T,4,C)}
I(1,4,8C) :={o|Vj < i.o € I(I',5,C)}
I(T,i,0C) :={olo € I(I',i — 1,C)
(T, cascb)._}{o\aJ <isto€I(T,j,Cp),Vj <k < i
)

o€ I(I'k,C

3i.e., thedomain of discoursi&s an MDP state

Taxonomic Control-Rules The length of a sentence is the
number of operators appearing in it. In order to generate
taxonomic control-rules we start by computing a set of sen-
tencesinCts (or £'%) up to a given limiting length. Compu-
tation is bottom up, starting with zero length sentences.—i.
Primitive domain concepts and roles. Sentences of length
1,2,...,4, are used along with operators fraphs to build
concept and role expressions up to ler@jth- 1. In practice

we avoid generating logically equivalent sentences via sim
ple syntactic checks and by interpreting sentences ovéy a co
lection of histories taken from small to medium sized prob-
lems. We build taxonomic control-rules by arbitrarily clseo
ing, for ann-ary action,n generated concept-expressions so
that the i'th action argument is to be taken from the interpre
tation of thei'th concept-expression. When a control-rule
is executed at a history, thigh argument is chosen arbitrar-
ily from the interpretation of theé'th concept-expression at
that history. For example in blocks-world, we could have a
control-rule that places blocks on the table if they have not
been there before

a; € I(?T, 7i,-©On~'t abl e),
az € I(*T, 7i,t abl e) = nove(ai,a2)
Executing this at the i'th state of sonie we input: for 7:
andT for ?T" in the above expression, and thus can obtain
somea; andas. We say this control rule then prescribes ac-
tion Move(aq,a2) atT';. Unlike (Martin & Geffner 2000),

we treat control-rules deterministically — If they applyap
ticular action af"(¢), this will always be the control’s action
atI'(i).

In order to collect a small set of taxonomic control-rules
to give to the reinforcement learner, we generate a small set
that seem to make useful prescriptions according to the op-
timal policies and value functions computed by the propo-
sitional planneNMRDPP (Thiébauxet al. 2006). There is
insufficient space to give complete details here.

ROPG

Here we model learning to act in a domain of NMRDPs
given a set of control-rules, as learning to act in a paytiall
observable Markov decision process (POMDP) with a de-
terministic observation model. The POMDP is a six-tuple
(S, A, Pr,R, 0, v) whereS is the set of domain states and
A is a small set of control-rulesPs is the star-state distri-
bution, and we denot€; the probability of starting in state
s.* Wheres, s’ € S, o € AthenPr(s, o, s') is the unknown
probability of a transition from state to s’ given control-
rule ¢ is executed at state. R is a bounded real-valued
reward functionk : S* — R.°> O is the set of observa-
tions, each observation corresponding to an element in the
powerset ofA. Intuitively, an observation is the set of ap-
plicable control-rules. In a typical POMDP, for eacke S,

an observatiolm € O is generated independently according

“For this paper we assume starting states are drawn uniformly
from a small set.

SBecause NMRDPs can be expanded into equivalent
MDPs (Thiébauxet al. 2006), no difficulties arise using
R:S8* — RinsteadofR: S — R.



to some probability distribution(s). We denotey,(s) the
probability of getting observation in states. In our case
the observation at a state is the set of control-rules that
prescribe an action, and is thus deterministically geeedrat
Because we cannot generally compute an optimal pol-
icy for our POMDP, we consider a technique for solving

Algorithm 2 Relational Online Policy Gradient (ROPG)

1: Given:
e Initial parameterd € 1™ and policyu(6).
e Distribution over starting statei3s
e Reward and trace discount factorsc v, 5 < 1
e Step-size parameter

POMDPs that concentrates policy search on parameterised 2: repeat

reactive “memoryless” policies : (0 x 0) — Py. § € RIA|
is an|A| length vector of real parameters/weights dndis
a distribution over the POMDP actions.

For each control-rulg; in A, we associate a single weight
6; which is used to compute the probability thatis exe-
cuted given an observatien The probabilityu,, (o, 6) that
controlp; with weighté; is chosen to prescribe an action for
observatiorv is given by a discrete Boltzmann distribution

e

(0,0) = K(0j,0) =&
,LLQz( ’ ) (Q )Zj K(Qlj, 0)697
wherex is 1 or 0 depending on whethes; is in o or not.
Taking0/0 = 0, u(o,0) is sometimes called theoft-max
distribution. In our case, finding the best soft-max policy
equates to finding € R*! that maximise the expected dis-
counted reward over an infinite horizon of acting according
to () in the domain. We denote the value of a policy pa-
rameterised by asn(6). There will usually be no obvious
way to compute;(6) for arbitrary starting state distribution

Ps, however a good estimafén of its gradient with re-
spect to parameters Vn, can be computed by executing
() in problems drawn according tBs. The online RE-
INFORCE (Williams 1992) style gradient ascent optimisa-
tion strategy of Algorithm 2, can indeed find a local max-
imum of the utility functionn(6) by computing a sequence
69, ..,0™ so that for a small step-size

0" = 6" + aVn(6')

Experimental Evaluation

In this section we evaluate ROPG in Markovian, non-
Markovian, stochastic and deterministic domains, where
control-rules available to the learner are generated decor
ingto LS, £'S, or regression. We includ& S here even for

3:  Sample an NMRDP starting statg from Pgs

4:  Generate a sef, of observationf)-action() trajec-
tories that yielcf rewara, starting at the observation
deterministically generated fromy,, and using the
current policyu(6)

5: Vnp <0
6: for Each T € 7, (length|T'|) with rewardrs do
7. zZ0 —
8 for Eacho;, o; € T chronologicallydo
. Vp,gj (05)
9: Zivr =%+ e
10: end for . )
11: Vnit1 < Vn; + i-ﬁ-_l[ﬁw' STT 27| — V’I]i]
12: endfor
130 00+ aVng,

14: until @mTM =0

Domains and Problems

We experiment with 6 domains including four variants of
miconic elevator scheduling systems (Koehler & Schuster
2000) distinguished by whether they are stochastiemic’

or deterministicdet-mic’, and whether they feature com-
plex non-Markoviarimic-rea’ or simple’'mic-sim’ reward
schemes. The stochastic and non-Markovian elements of
miconic are from (Thiébaurt al. 2006). We also exper-
iment with deterministic Markovian versions of the classic
benchmarks logistics from (Boutilier, Reiter, & Price 2001
and blocks-world (Slaney & Thiébaux 2001) with the usual
goal achievement and maintenance reward schemes.

Our experiments examine the behaviour of ROPG in a
small group oftraining problemsfrom each domain. The
problems are sufficiently small for the optimal planners-
RDPP to solve. This permits a comparison of the policy
learnt by ROPG with the optimal. With this objective we
samplel1 problems from each of the miconic variants. For

Markovian domains because we want to see the advantage ofeach miconic domain, ifi of the problems there aepeo-
providing the learner with temporal features. Questions we Ple and a single elevator, with the number of floors ranging
address include: (1) Can ROPG obtain a good general pol- from2, .., 7. For the otheb problems we have the number of
icy in a set of small to medium sized instances drawn from a people and floors ranging simultaneously frém., 7. For
target domain? (2) What are the costs and benefits of using |0gistics we sample 13 random problems each with 2 trucks.
control-rules drawn from the different mechanisms we have With the number of boxes ranging from.., 4, we consider

discussed? (3) Can ROPG achieve good generalisation? (4)Problems with2, .., 5 cities. We also have a problem with
What are the benefits of including temporal features even 5 boxes ana cities. We experiment with two different sets

when the domain is Markovian? To this end, we have imple-
mented our approach in C++ and will email this on request.
This includes functionality for generating control-rules
cording to£'S, £'S, and regression. It also includes the
domain descriptions and problem instances from this paper.
®In ROPG, settingy < 1 is a standard strategy for addressing

the temporal credit assignment problem (Baxter & BartléfD).
If this is inappropriate; = 1 is admissible in our setting.

of problems from the blocks-world. The first, called blocks-
world-10, is a set ol 0 problems: with 2 problems with 2,

3 and so on up to 6 block worlds. Wheneis the number

of blocks in a world, for each € 2..6 we include one ran-
domly generated problem in which the goal is distinct from
the initial state. For each sizewe also include a problem
that requires the planner to reverserablock stack on the
table. The second set, called blocks-world-15, is a set of 15
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Figure 2:For £'® (t-tax-N) and£'® (tax-N) control-rules inA, we report convergence of average discounted reward exped as ROPG
undertakes episodes in training problemé.reports the size of\. (opt) the optimal performance according tarRDPP, and fegr) the
performance of the best policy obtained by ROPG witlcomprising control-rules generated by regression. We aggitin the case of
blocks-world because control-rules based on regressigrotiwork in that domain [Gretton and Thiébaux, 2004].

distinct random problems. In this set we include 5 problems Langgage - tPr9b|e’_“m30 1{;';3';)“957 3‘;2';2’1
1 i - et-mic-si m .

with 3, 4 and 5 blocks respectively. L:S dot.miccingo | 971m3l | 89,5118

. : L3 det-mic-rea30 | 1136m4 | 305.538
Results and Discussion £ | det-mic-rea30 | 798m51 | 340.22
Our experiments were conducted on an AMD Athlon(tm) 64 Etﬁ stc-mic-sira30 | 2208md45 | 246.922
Processo8200+ machine withe gigabytes of ram. Both the Ctz stc-mic-sim30 | 758m22 | 116.114
trace and reward discount factors were sett8 = 0.95. L stc-mic-rea30 | 1089m28 | 554.717
The step-sizex was 10~3 for learning with control-rules £ stc-mic-rea30 | 896m59 | 399.742

: 7. X )
Egsfi(rj] ?on irset?c:se\S/vSrI\%rr]éivng uc;tggimlgi; '?:g:l eda%?a'gsbfg m Table 1: Runtime and utility experienced using generakpoli
p 9 — ' P cies on large test problems. Policies are executed#66

set, Ps is configured so that problems are drawn uniformly episodes, where each episode lastd fioractions.
at random by the learner. '

Performance results are summarised in FigufeThese

show that if we measure policy performance in terms of gy cted using rules generated via regression are by far the
expected discounted cumulative rewardilty) sampling — gjowest to execute. For example, in training problems from
uniformly in training problems, the best is achieved using det-mic-rea to undertakel 0% episodes of ROPG using re-
control-rules generated via regression, the next best-is ob gressed control-rules takd§26 minutes while usingCts

tained with£® control-rules, and theg'® rul?g. The only rules only takes arountil0 minutes. This occurs because
exception occurs fodett-gnlc-r_eawhere theL™* policy is of the operator-length (and relative complexity) of senten
slightly better than theC.® policy. Convergence is notal-  seq to describs'° control-rules, and not because the num-

ways to the optimal when control-rules are generated ac- per of control-rules is large. We also find that it is between
cording to regression because (1) ROPG only guarantees 4 and2 times slower on average to undertake episodes of
local convergence, and (2) more S|gn!f|cantly we limit the learning with£LS control-rules than with thei€!' s counter-
number of regression steps in generating control-rules, th  parts. This is because, (1) the learner was given more rules
these rules do not always facilitate optimality. Not shown i, the £ts case, and (2) the interpretation of temporal rules
Figure 2, is performance in terms of how much computation ¢5n pe rzlatively expensive.

time it takes the policies to execute. We find policies con- 14 getermine how well policies ROPG learns in training

’In that figure we have not shown convergence in the case that ﬁ]rol?l)%rlr;sn?se cvie'[;]agll_%eilvgeaﬁ\(ljaé%aé?g Ctl?se :)If:gcé?(;\cl)vr?illd rglaij(!%s
rules are generated by regression because that case hagastech P ! ' P

convergence than the case where rules are generated acrtirdi in problems with 15, 20 and 30 passengers, and the logis-
concept language. tics policies in problems with 15 packages, trucks and<itie



The results we obtained for miconic test problems are sum-
marised in Table £.Not shown in that table is the fact that
non-Markovian rewards were being sought out and achieved
by the learnt policies. We found that policies based on re-
gression were very (sometimes prohibitively) expensive in
computation time to execute, relative to taxonomic poticie
The latter generalised well for all domains except blocks-
world. The taxonomic policies computed for the blocks-
world-10 problems only generalised reliably where a stack
of blocks had to be reversed on the table. In a similar vein,
the generalisation achieved by the taxonomic policies com-
puted in the block-world-15 problems was unreliable. On a
final positive note, the temporal blocks-world policies com
pleted episodes more quickly than their atemporal counter-
parts in large problems. Not surprisingly, factors which we
find can negatively effect generalisation include biasaimtr

ing problems, and the overall quality of control-rules &vai
able to ROPG.

Concluding Remarks

We developed ROPG, an approach to unsupervised
planning-as-learning for generalisation in non-Markovia
domains. This operates given a set of control-rules which we
proposed be computed automatically. To this end we created
a domain definition language based@? for axiomatising
non-Markovian domains and extended first-order decision-
theoretic regression to this setting for the purpose of-auto
matically generating control-rules along the lines of (f&ne
& Thiébaux 2004). We also extended the taxonomic syntax
from (Fern, Yoon, & Givan 2006) to accommodate tempo-
ral concepts and relations for the purpose of automatically
generating taxonomic control-rules suited to NMRDPs and
useful in MDPs. We evaluate our approach in a number of
planning benchmarks and find that it is able to learn good
general policies. ROPG is attractive and unique because it
can both (1) generalise from experience without recourse to
state values, and (2) policy improvement occurs at a first-
order, resp. propositional, level. A pressing item for fetu
work is to investigate ways of mitigating slow convergence
of ROPG. Also, future work should try to address the cost
of model checking for control-rules, which is a significant
bottle neck of our approach.
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