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Computer Sciences Laboratory

The Australian National University
Canberra, ACT, Australia

{charlesg,davidp,thiebaux}@csl.anu.edu.au

Abstract

This paper examines a number of solution methods for de-
cision processes with non-Markovian rewards (NMRDPs).
They all exploit a temporal logic specification of the re-
ward function to automatically translate the NMRDP into
an equivalent Markov decision process (MDP) amenable to
well-known MDP solution methods. They differ however in
the representation of the target MDP and the class of MDP
solution methods to which they are suited. As a result, they
adopt different temporal logics and different translations. Un-
fortunately, no implementation of these methods nor experi-
mental let alone comparative results have ever been reported.
This paper is the first step towards filling this gap. We de-
scribe an integrated system for solving NMRDPs which im-
plements these methods and several variants under a com-
mon interface; we use it to compare the various approaches
and identify certain problem features favouring one over the
other.

Introduction
A decision process in which rewards depend on the sequence
of states passed through rather than merely on the cur-
rent state is called a decision process with non-Markovian
rewards (NMRDP). In decision-theoretic planning, where
many desirable behaviours are more naturally expressed as
properties of execution sequences rather than as properties
of states, NMRDPs form a more natural model than the com-
monly adopted fully Markovian decision process (MDP)
model (Haddawy and Hanks 1992; Bacchus et al. 1996).

The more tractable solution methods developed for MDPs
do not directly apply to NMRDPs. However, a number
of solution methods for NMRDPs have been proposed in
the literature (Bacchus et al. 1996; Bacchus et al. 1997;
Thiébaux et al. 2002). These all start with a temporal logic
specification of the non-Markovian reward function, which
they exploit to automatically translate the NMRDP into an
equivalent MDP which is solved using efficient MDP so-
lution methods. The states of this MDP result from aug-
menting those of the original NMRDP with extra informa-
tion capturing enough history to make the reward Marko-
vian. Naturally, there is a tradeoff between the effort spent
in the translation, e.g. in producing a small equivalent MDP
without many irrelevant history distinctions, and the effort
required to solve it. Appropriate resolution of this tradeoff

depends on the type of representations and solution meth-
ods envisioned for the MDP. For instance, structured repre-
sentations and solution methods which have some ability to
ignore irrelevant information may cope with a crude trans-
lation, while state-based (flat) representations and methods
will require a more sophisticated translation producing an
MDP as small as feasible.

While the approaches (Bacchus et al. 1996; Bacchus et
al. 1997; Thiébaux et al. 2002) are all based on transla-
tion into an equivalent MDP, they target different types of
MDP representations and solution methods. Specifically,
(Bacchus et al. 1996) targets state-based representations
and classical solution methods such as value or policy it-
eration (Howard 1960). (Thiébaux et al. 2002) also con-
siders state-based representation but targets heuristic search
methods such as LAO* (Hansen and Zilberstein 2001) or la-
belled RTDP (Bonet and Geffner 2003). Finally, (Bacchus
et al. 1997) considers structured representations and solu-
tion methods such as structured policy iteration or SPUDD
(Boutilier et al. 1995; Hoey et al. 1999).

These different targets lead the three approaches to re-
solve the translation/solution tradeoff differently, and in
turn, to adopt different temporal logics, as appropriate. For
instance, both (Bacchus et al. 1996; Bacchus et al. 1997)
use linear temporal logic with past operators (PLTL), as
this yields a straightforward semantics of non-Markovian re-
wards, and lends itself to a simple characterisation of a range
of translations, from the crudest to the finest. (Thiébaux et
al. 2002), on the other hand, relies on a more complex ex-
tension of LTL with future operators ($FLTL), as it naturally
leads to a style of translation suited to the needs of heuristic
search methods.

To date, these approaches do not appear to have been fully
implemented, and none of the three cited papers report any
experimental results. All, however, agree that the most im-
portant item for future work is the implementation and ex-
perimental comparison of the respective approaches, with
a view to identifying the features that favour one over the
other.

This paper is the first step is that direction. We start with
a review of NMRDPs and of the three approaches. We then
describe NMRDPP (Non-Markovian Reward Decision Pro-
cess Planner), an integrated system which implements, un-
der a single interface, a family of NMRDP solution methods
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based on the cited approaches, and reports a range of statis-
tics about their performance. We use this system to compare
their behaviours under the influence of various factors such
as the structure and degree of uncertainty in the dynamics,
the class of rewards and the syntax used to describe them,
reachability, and relevance of rewards to the optimal policy.

NMRDP Solution Methods
MDPs, NMRDPs, Equivalence
We start with some notation and definitions. Given a finite
set S of states, we write S∗ for the set of finite sequences
of states over S, and Sω for the set of possibly infinite state
sequences. Where ‘Γ’ stands for a possibly infinite state se-
quence in Sω and i is a natural number, by ‘Γi’ we mean
the state of index i in Γ, and by ‘Γ(i)’ we mean the prefix
〈Γ0, . . . ,Γi〉 ∈ S

∗ of Γ.
We take a Markov decision process to be a 5-tuple

〈S, s0, A,Pr, R〉, where S is a finite set of fully observable
states, s0 ∈ S is the initial state, A is a finite set of actions
(A(s) denotes the subset of actions applicable in s ∈ S),
{Pr(s, a, •) | s ∈ S, a ∈ A(s)} is a family of probability
distributions over S such that Pr(s, a, s′) is the probability
of being in state s′ after performing action a in state s, and
R : S 7→ IR is a reward function such that R(s) is the im-
mediate reward for being in state s. A stationary policy for
an MDP is a function π : S 7→ A, such that π(s) ∈ A(s)
is the action to be executed in state S. The value V (π) of
the policy, which we seek to maximise, is the sum of the ex-
pected future rewards, discounted by how far into the future
they occur:

V (π) = lim
n→∞

E
[ n

∑

i=0

βiR(Γi) | π,Γ0 = s0

]

where 0 ≤ β ≤ 1 is the discounting factor controlling the
contribution of distant rewards.

A decision process with non-Markovian rewards is identi-
cal to an MDP except that the domain of the reward function
is S∗. The idea is that if the process has passed through
state sequence Γ(i) up to stage i, then the reward R(Γ(i))
is received at stage i. Like the reward function, a policy for
an NMRDP depends on history, and is a mapping from S∗

to A with π(Γ(i)) ∈ A(Γi). As before, the value of π is
the expectation of the discounted cumulative reward over an
infinite horizon:

V (π) = lim
n→∞

E
[ n

∑

i=0

βiR(Γ(i)) | π,Γ0 = s0

]

The solution methods considered here operate by trans-
lating an NMRDP into an equivalent MDP with an extended
state space (Bacchus et al. 1996). The states in this MDP,
which, for clarity, we will sometimes call expanded states
(e-states, for short), augment the states of the NMRDP by
encoding additional information sufficient to make the re-
ward history-independent. For instance, if we only want to
reward the very first achievement of goal g in an NMRDP,
the states of an equivalent MDP would carry at most one ex-
tra bit of information recording whether g has already been

true. In the following, we see an e-state as labelled by a state
of the NMRDP (via the function τ below) and by historical
information. The dynamics of NMRDPs being Markovian,
the actions and their probabilistic effects in the MDP are ex-
actly those of the NMRDP.

Formally, MDP D′=〈S′, s′
0
, A′,Pr′, R′〉 is equivalent to

NMRDP D = 〈S, s0, A,Pr, R〉 if there exists a mapping
τ : S′ 7→ S such that:

1. τ(s′
0
) = s0.

2. For all s′ ∈ S′, A′(s′) = A(τ(s′)).

3. For all s1, s2 ∈ S, if there is a ∈ A(s1) such that
Pr(s1, a, s2) > 0, then for all s′

1
∈ S′ such that τ(s′

1
)=s1,

there exists a unique s′
2
∈S′, τ(s′

2
)=s2, such that for all

a ∈ A′(s′
1
), Pr′(s′

1
, a, s′

2
)=Pr(s1, a, s2).

4. For any feasible1 state sequence Γ for D and any feasible
state sequence Γ′ forD′ such that Γ0 = s0 and ∀i τ(Γ′i) =
Γi, we have: ∀i R′(Γ′i) = R(Γ(i)).

Items 1–3 ensure that there is a bijection between feasi-
ble state sequences in the NMRDP and feasible e-state se-
quences in the equivalent MDP. Therefore, a stationary pol-
icy for the equivalent MDP can be reinterpreted as a non-
stationary policy for the NMRDP. Furthermore, item 4 en-
sures that the two policies have identical values, and that
consequently, solving an NMRDP optimally reduces to pro-
ducing an equivalent MDP and solving it optimally (Bac-
chus et al. 1996).

When solving NMRDPs in this setting, the central is-
sue is to choose a language for compactly representing
non-Markovian reward functions and a translation algorithm
which are adapted to the needs of the MDP representations
and solution methods we are targeting. In particular, this
choice should enable an appropriate resolution of the trade-
off between the time spent in the translation and the time
spent in solving the resulting MDP. The three approaches
we consider have different targets, for which different lan-
guages and translations are appropriate. We now present the
main ideas behind these approaches. For details, the reader
is referred to the (rather technical) respective papers.

PLTLSIMP and PLTLMIN
(Bacchus et al. 1996) targets state-based MDP representa-
tions. The equivalent MDP is first generated entirely—this
involves the enumeration of all e-states and all transitions
between them. Then, it is solved using traditional dynamic
programming methods such as value or policy iteration. Be-
cause these methods are extremely sensitive to the number
of states, attention is paid to producing a minimal equivalent
MDP (with the least number of states).

The language chosen to represent rewards is a linear tem-
poral logic of the past (PLTL). The syntax of PLTL is that of
propositional logic, augmented with the operators � (pre-
viously) and S (since). Whereas a classical propositional
logic formula denotes a set of states (a subset of S), a PLTL
formula denotes a set of finite sequences of states (a subset
of S∗). A formula without temporal modality expresses a

1All transitions along the sequence have non-zero probability.
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property that must be true of the current state, i.e., the last
state of the finite sequence. �φ specifies that φ holds in the
previous state (the state one before the last). We will write
�k (k times ago), for k iterations of the � modality. φ1Sφ2,
requires φ2 to have been true at some point in the sequence,
and φ1 to have held since right after then. From S, one can
define the useful operators ♦- f ≡ > S f meaning that f has
been true at some point, and �f ≡ ¬♦- ¬f meaning that f
has always been true. For instance, g ∧ ¬� ♦- g denotes the
set of finite sequences ending in a state where g is true for
the first time in the sequence. We describe reward functions
simply by a set of pairs φi : ri where φi is a PLTL reward
formula and ri is a real, with the semantics that the reward
assigned to a sequence in S∗ is the sum of the ris for which
that sequence is a model of φi. Below, we let Φ denote the
set of reward formulae φi in the description of the reward
function.

The translation into an MDP relies on the equivalence
φ1 S φ2 = φ2 ∨ (φ1 ∧�(φ1 S φ2)), with which we can de-
compose temporal modalities into a requirement about the
last state Γi of a sequence Γ(i), and a requirement about the
prefix Γ(i−1) of the sequence. More precisely, given state s
and a given formula φ, one can compute in2 O(||Φ||) a new
formula Reg(φ, s) called the regression of φ through s. Re-
gression has the property that φ is true of a finite sequence
Γ(i) ending with Γi = s iff Reg(φ, s) is true of the prefix
Γ(i− 1). That is, Reg(φ, s) represents what must have been
true previously for φ to be true now.

The translation exploits the PLTL representation of re-
wards as follows. Each e-state in the generated MDP is la-
belled with a set Ψ ⊆ Sub(Φ) of subformulae of the reward
formulae in Φ (and their negations).3 The subformulae in Ψ
must be (1) true of the paths leading to the e-state, and (2)
sufficient to determine the current truth of all reward formu-
lae in Φ, as this is needed to compute the current reward.
Ideally the Ψs should also be (3) small enough to enable just
that, i.e. they should not contain subformulae which draw
history distinctions which are irrelevant to determining the
reward at one point or another. Note however that in the
worst-case, the number of distinctions needed, even in the
minimal equivalent MDP, may be exponential in ||Φ||. This
happens for instance with the formula �kφ, which requires
k additional bits of information memorising the truth of φ
over the last k steps.

For the choice of the Ψs, (Bacchus et al. 1996) consid-
ers two cases. In the simple case, which we call PLTLSIM,
an MDP obeying properties (1) and (2) is produced by sim-
ply labelling each e-state with the set of all subformulae in
Sub(Φ) which are true of the sequence leading to that e-
state. This MDP is generated forward, starting from the ini-
tial e-state labelled with s0 and with the set Ψ0 ⊆ Sub(Φ)
of all subformulae which are true of the sequence 〈s0〉. The
successors of any e-state labelled by NMRDP state s and
subformula set Ψ are generated as follows: each of them is
labelled by a successor s′ of s in the NMRDP and by the set

2The size ||Φ|| of a set of reward formulae Φ is measured as the
sum of the lengths of the formulae in Φ.

3Given a set F of formulae, we write F for F ∪ {¬f | f ∈ F}

of subformulae {ψ′ ∈ Sub(Φ) | Ψ |= Reg(ψ′, s′)}.
Unfortunately, this simple MDP is far from minimal. Al-

though it could be postprocessed for minimisation before the
MDP solution method is invoked, the above expansion may
still constitute a serious bottleneck. Therefore, (Bacchus et
al. 1996) considers a more complex two-phase translation,
which we call PLTLMIN, capable of producing an MDP also
satisfying property (3). Here, a preprocessing phase iter-
ates over all states in S, and computes, for each state s, a
set l(s) of subformulae, where the function l is the solu-
tion of the fixpoint equation l(s) = {Φ ∪ {Reg(ψ′, s′)} |

ψ′ ∈ l(s′), s′ is a successor of s}. Only subformulae in l(s)
will be candidates for inclusion in the sets labelling the re-
spective e-states labelled with s. That is, the subsequent ex-
pansion phase will be as above, but taking Ψ0 ⊆ l(s0) and
ψ′ ⊆ l(s′) instead of Ψ0 ⊆ Sub(Φ) and ψ′ ⊆ Sub(Φ). As
the subformulae in l(s) are exactly those that are relevant
to the way actual execution sequences starting from e-states
labelled with s are rewarded, this leads the expansion phase
to produce a minimal equivalent MDP.

In the worst case, computing this l requires a space, and a
number of iterations through S, exponential in ||Φ||. Hence
the question arises of whether the gain during the expan-
sion phase is worth the extra complexity of the preprocess-
ing phase. This is one of the questions we will try to answer.

PLTLSTRUCT

The approach in (Bacchus et al. 1997), which we call PLTL-
STR, targets structured MDP representations: the transition
model, policies, reward and value functions are represented
in a compact form, e.g. as trees or algebraic decision dia-
grams (ADDs). (Boutilier et al. 1995; Hoey et al. 1999).
For instance, the probability of a given proposition (state
variable) being true after the execution of an action is spec-
ified by a tree whose leaves are labelled with probabilities,
whose nodes are labelled with the state variables on whose
previous values the given variable depends, and whose arcs
are labelled by the possible previous values (> or⊥) of these
variables. The translation amounts to augmenting the com-
pact representation of the transition model with new tem-
poral variables together with the compact representation of
(1) their dynamics, e.g. as a tree over the previous values of
the relevant variables, and (2) of the non-Markovian reward
function in terms of the variables’ current values. Then,
structured solution methods such as structured policy itera-
tion or the SPUDD algorithm are run on the resulting struc-
tured MDP. Neither the translation nor the solution methods
explicitly enumerates states.

The PLTLSTR translation can be seen as a symbolic ver-
sion of PLTLSIM. The set T of added temporal variables
contains the purely temporal subformulae PTSub(Φ) of the
reward formulae in Φ, to which the � modality is prepended
(unless already there): T = {�ψ | ψ ∈ PTSub(Φ), ψ 6=
�ε} ∪ {�ψ | �ψ ∈ PTSub(Φ)}. This ensures that the cur-
rent values of the temporal variables can be determined from
the previous values of the state and temporal variables, as re-
quired by the compact representation of the transition model.
It also ensures that we can express the current value of any
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reward formula as a function of the current values of the state
and temporal variables. All this is because, by repeatedly ap-
plying the equivalence φ1 S φ2 = φ2 ∨ (φ1 ∧ �(φ1 S φ2))
to any subformula in PTSub(Φ), we can express its current
value as a function of the current values of formulae in T
and state variables.

As with PLTLSIM, the underlying MDP is far from
minimal—the encoded history features do not even vary
from one state to the next. However, size is not as prob-
lematic as with state-based approaches, because structured
solution methods do not enumerate states and are able to
dynamically ignore some of the variables that become ir-
relevant at some point of policy construction. For instance,
when solving the MDP, they may be able to determine that
some temporal variables have become irrelevant because the
situation they track, although possible in principle, is too
risky to be realised under a good policy. This dynamic anal-
ysis of rewards contrast with the static analysis in (Bacchus
et al. 1996) which must encode enough history to determine
the reward at all reachable futures under any policy.

One question that arises is that of the circumstances un-
der which this analysis of irrelevance by structured solution
methods, especially the dynamic aspects, is really effective.
This is another question this paper will try to address.

FLTL
The approach in (Thiébaux et al. 2002), which we call FLTL,
considers state-based representations of the equivalent MDP
and targets heuristic forward search solution methods such
as LAO* or labelled RTDP. Starting from a compact rep-
resentation of the MDP and an admissible heuristic, these
methods need only explicitly generate and explore a frac-
tion of the state space to produce an optimal solution. To
gain maximum benefit from these methods, the translation
into MDP must avoid generating states and e-states that the
method would not generate. Therefore, the FLTL transla-
tion operates entirely on-line: the solution method is given
full control of which parts of the MDP are generated and
explored. This contrasts with PLTLMIN, which requires an
off-line preprocessing phase iterating through all states in S.

(Thiébaux et al. 2002) notes that when using PLTL to
specify rewards, there does not seem to be a way of de-
signing an on-line translation producing an MDP of accept-
able size.4 Instead, (Thiébaux et al. 2002) adopts a variant
of LTL with future operators called $FLTL. The syntax is
that of negation normal form propositional logic augmented
with the constant $ (rewarded) and the operators © (next)
and U (weak until). Given the forward looking character
of the language, it is best to see a formula as a recipe for
distributing rewards, starting from the current state (i.e., the
first state of the rest of the sequence). Informally, $ means
that we get rewarded now. ©φ means that φ holds in the
next state, and φ1 Uφ2 means that φ1 will be true from now
on until φ2 becomes true, if ever. From U , one can de-
fine �φ ≡ φU⊥, meaning that φ will always be true. E.g,
�(c → �(φ → �$) means that following a command c,

4PLTLSIM can be performed entirely on-line, but leads to a large
MDP.

we will be rewarded from the moment φ holds onwards.
¬φU (φ ∧ $) means that we will be rewarded the first time
φ becomes true. As in PLTL, a $FLTL formula represents a
subset of S∗. Although writing reward formulae in $FLTL
comes rather naturally, the semantics is more complex than
the standard FLTL semantics – see (Thiébaux et al. 2002)
for a formal treatment. Briefly, the interpretation of $ is not
fixed: $ is made true only when needed to ensure that the
formula holds (in the classical FLTL sense of the term) of
every sequence in Sω. The truth value of $ determines the
allocation of rewards and therefore the set of rewarded pre-
fixes represented by the formula (those that have to end in
a state in which $ is true to ensure that the formula holds in
every sequence in Sω).5 As with PLTL, a reward function
is represented by a set of pairs consisting of a formula and a
real.

The translation is based on a variant of progression (Bac-
chus and Kabanza 2000), which is to future-oriented logics
what regression is to past-oriented ones: $Prog(φ, s) tells
us what must hold next for φ to hold now, at the current
state s. Each e-state in the equivalent MDP is labelled by
a state of the NMRDP and by a set of $FLTL formulae.
The initial e-state is labelled with s0 and the set Φ0 of all
reward formulae in the description of the original reward
function. Each successor of an e-state labelled with s and
Φ is labelled by a successor s′ of s in the NMRDP and by
the set {$Prog(φ, s) | φ ∈ Φ} of the progressions of the
formulae in Φ through s. Although the MDP produced that
way is not minimal, it satisfies a weaker but still interesting
notion of minimality, called blind minimality. Intuitively,
a blind minimal equivalent MDP is the smallest equivalent
MDP achievable by on-line translations, which are not al-
lowed to look into the future.

With FLTL, the structure of the reward formulae is pre-
served by the translation and exploited by progression. This
contrasts with PLTLSIM which completely loses this struc-
ture by considering subformulae individually. One of the
purposes of the preprocessing phase in PLTLMIN is to re-
cover this structure. One question that arises is whether the
simplicity of the FLTL translation combined with the power
of heuristic search compensates for the weakness of blind
minimality, or whether the benefits of true minimality as in
PLTLMIN outweigh the cost of the preprocessing phase. Fur-
thermore, with FLTL, similarly as with PLTLSTR, the analy-
sis of rewards is performed dynamically, as a function of
how the search proceeds. Another question we will try to
answer is therefore whether the respective dynamic analyses
are equally powerful.

The NMRDP Planner

The first step towards a decent comparison of the differ-
ent approaches is to have a framework that includes them
all. The non-Markovian reward decision process planner,
NMRDPP, provides an implementation of the approaches in

5Because present rewards should not depend on the future,
not all $FLTL formulae describe valid allocations of rewards, see
(Thiébaux et al. 2002).
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action flip
heads (0.5)

endaction
action tilt

heads (heads (0.9) (0.1))
endaction
heads = ff
[first, 5.0]? heads and ˜prv (pdi heads)
[seq, 1.0]? (prvˆ2 heads) and (prv heads) and

˜heads

Figure 1: Input for the coin example

a common framework, within a single system, and with a
common input language.

The input language enables specification of actions, initial
states, rewards, and control-knowledge. The format for the
action specification is essentially the same as in the SPUDD
system (Hoey et al. 1999). When the input is parsed, the
action specification trees are converted into ADDs by the
CUDD package (Somenzi 2001). The reward specification
is one or more formulae, each associated with a a name and
a real. These formulae are in either PLTL or $FLTL and are
stored as trees by the system. Control knowledge is given
in the same language as that chosen for the reward. Con-
trol knowledge formulae will have to be verified by any se-
quence of states feasible under the generated policies. Initial
states are simply specified as part of the control knowledge
or as explicit assignments to propositions.

For instance, consider a simple example consisting of a
coin showing either heads or tails (¬heads). There are two
actions that can be performed. The flip action changes the
coin to show heads or tails with a 50% probability. The tilt
action changes it with 10% probability, otherwise leaving it
as it is. The initial state is tails. We get a reward of 5.0
for the very first head (this is written heads ∧ ¬ � ♦- heads
in PLTL) and a reward of 1.0 each time we achieve the se-
quence heads, heads, tails (�2heads ∧ �heads ∧ ¬heads in
PLTL). In our input language, this NMRDP is described as
shown in Figure 1.

The common framework underlying NMRDPP takes ad-
vantage of the fact that NMRDP solution methods can, in
general, be divided into the distinct phases of preprocess-
ing, expansion, and solving. The first two are optional. For
PLTLSIM, preprocessing simply consists in computing the
set Sub(Φ) of subformulae of the reward formulae. For
PLTLMIN, it also includes computing the labels l(s) for each
state s. For PLTLSTR, it involves computing the set T of tem-
poral variables as well as the ADDs for their dynamics and
for the rewards. FLTL does not require any preprocessing.
Expansion is the optional generation of the entire equivalent
MDP prior to solving. Whether or not off-line expansion
is sensible depends on the MDP solution method used. If
state-based value or policy iteration is used, then the MDP
needs to be expanded anyway. If, on the other hand, a heuris-
tic search algorithm or structured method is used, it is defi-
nitely a bad idea. In our experiments, we often used expan-
sion solely for the purpose of measuring the size of the gen-
erated MDP. Solving the MDP can be done with a number
a methods. Currently, NMRDPP provides implementations

of classical dynamic programming methods, namely state-
based value and policy iteration (Howard 1960), of heuristic
search methods: state-based LAO* (Hansen and Zilberstein
2001) using either value or policy iteration as a subroutine,
and of one structured method, namely SPUDD (Hoey et al.
1999).

Altogether, the various types of preprocessing, the choice
of whether to expand, and the MDP solution methods, give
rise to quite a number of NMRDP approaches, including,
but not limited to those previously mentioned.6 For in-
stance, we obtain an interesting variant of PLTLSTR, which
we call PLTLSTR(A), by considering additional preprocess-
ing, whereby the state space is explored (without explicitly
enumerating it) to produce an ADD representation of the e-
states reachable from the start state. This is done by starting
with an ADD representing the start e-state, and repeatedly
applying each action. Non-zero probabilities are converted
to ones and the result “or-ed” with the last result. When no
action adds any reachable e-states to this ADD, we can be
sure it represents the reachable e-state space. This is then
used as additional control knowledge to restrict the search.
It should be noted that without this phase PLTLSTR makes
no assumptions about the start state, while in many cases
however, taking advantage of a start state can be beneficial.
Similar techniques have been used in the symbolic imple-
mentation of LAO* (Feng and Hansen 2002). An important
aspect of what we do here is that temporal variables are also
included in the ADD, and that we are therefore able to ex-
ploit reachability in PLTL space, similarly as PLTLMIN does
in the state-based case.

NMRDPP is controlled by a command language, which
is read either from a file or interactively. The command lan-
guage provides commands for the different phases (prepro-
cessing, expansion, solution) of the methods, commands to
inspect the resulting policy and value functions, e.g. with
rendering via DOT (AT&T Labs-Research 2000), as well
as supporting commands for timing and memory usage. A
sample session may be as in Figure 2.

NMRDPP is implemented in C++, and makes use of a
number of supporting libraries. In particular, the struc-
tured algorithms rely heavily on the CUDD library for repre-
senting ADDs. The non-structured algorithms make use of
the MTL—Matrix Template Library for matrix operations.
MTL takes advantage of modern processor features such as
MMX and SSE and provides efficient sparse matrix opera-
tions. We believe that our implementations of MDP solu-
tion methods are comparable with the state of the art. For
instance, we found that our implementation of SPUDD is
comparable in performance (within a factor of 2) to the ref-
erence implementation (Hoey et al. 1999). On the other
hand, we believe that data structures used for regression and
progression of temporal formulae could be optimised.

6Not all combinations are possible. E.g., state-based process-
ing variants are incompatible with structured solution methods (the
converse is possible in principle, however). Also, there is at present
no structured form of preprocessing for $FLTL formulae.
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> loadWorld(’coin’) load coin NMRDP
> preprocess(’sPltl’) PLTLSTR preprocessing
> startCPUtimer
> spudd(0.99, 0.0001) solve MDP with SPUDD(β, ε)
> stopCPUtimer
> readCPUtimer report solving time
1.22000
> iterationCount report number of iterations
1277
> displayDot(valueToDot) display ADD of value function

Expected value heads

(prv heads) (prv heads)

(prv (prv pdi heads)) (prv (prv pdi heads)) (prv^2 heads)

(prv pdi heads)18.87 23.87 18.62 23.62 (prv pdi heads)

18.25 23.15 19.25 24.15

> displayDot(policyToDot) display policy

Optimal policy heads

(prv heads)

flip tilt

> preprocess(’mPltl’) PLTLMIN preprocessing
> expand completely expand MDP
> domainStateSize report MDP size
6
> printDomain ("") | display postcript
’show-domain.rb’ rendering of MDP

-
Reward=0

flip(0.5) tilt(0.9)

heads
Reward=5

flip(0.5) tilt(0.1)

heads
Reward=0

flip(0.5) tilt(0.9)

-
Reward=0

flip(0.5)tilt(0.1)

flip(0.5) tilt(0.9)

-
Reward=1

flip(0.5)tilt(0.1)

tilt(0.9)flip(0.5)

heads
Reward=0

tilt(0.1) flip(0.5)

flip(0.5)tilt(0.9)

flip(0.5) tilt(0.1)

flip(0.5)tilt(0.9)

flip(0.5) tilt(0.1)

> valIt(0.99, 0.0001) solve MDP with VI(β, ε)
> iterationCount report number of iterations
1277
> getPolicy output policy (textual)
...

Figure 2: Sample session

Experimental Observations
Altogether, we are faced with three substantially different
approaches which are not easy to compare, as their perfor-
mance will depend on domain features as varied as the struc-
ture in the transition model, reachability, the type, syntax,
and length of the temporal reward formula, the availability
of good heuristics and control-knowledge, etc, and on the
interactions between these factors. In this section, we try to
answer the questions raised above and report an experimen-
tal investigation into the influence of some of these factors:
dynamics, reward type, syntax, reachability, and presence of
rewards irrelevant to the optimal policy. In some cases but
not all, we were able to identify systematic patterns. The re-
sults were obtained using a Pentium4 2.6GHz GNU/Linux
2.4.20 machine with 500MB of ram.

Preliminary Remarks
Clearly, FLTL and PLTLSTR(A) have great potential for ex-
ploiting domain-specific heuristics and control-knowledge;
PLTLMIN less so. To avoid obscuring the results, we there-
fore refrained from incorporating these features in the exper-
iments. When running LAO*, the heuristic value of a state
was the crudest possible (the sum of all reward values in the
problem). Performance results should be interpreted in this
light – they do not necessarily reflect the practical abilities
of the methods that are able to exploit these features.

We begin with some general observations. One ques-
tion raised above was whether the gain during the expan-
sion phase is worth the expensive preprocessing performed
by PLTLMIN, i.e. whether PLTLMIN typically outperforms
PLTLSIM. We can definitively answer this question: up to
pathological exceptions, preprocessing pays. We found that
expansion was the bottleneck, and that post-hoc minimisa-
tion of the MDP produced by PLTLSIM did not help much.
PLTLSIM is therefore of little or no practical interest, and we
decided not to report results on its performance, as it is of-
ten an order of magnitude worse than that of PLTLMIN. Un-
surprisingly, we also found that PLTLSTR would typically
scale to larger state spaces, inevitably leading it to outper-
form state-based methods. However, this effect is not uni-
form: structured solution methods sometimes impose exces-
sive memory requirements which makes them uncompeti-
tive in certain cases, for example where �nφ, for large n,
features as a reward formula.

Domains
Experiments were performed on four hand-coded domains
(propositions + dynamics) and on random domains. Each
hand-coded domain has n propositions pi, and a dynamics
which makes every state possible and eventually reachable
from the initial state in which all propositions are false. The
first two such domains, SPUDD-LINEAR and SPUDD-EXPON
were discussed in (Hoey et al. 1999). The intention of
SPUDD-LINEAR was to take advantage of the best case be-
haviour of SPUDD. For each proposition pi, it has an action
ai which sets pi to true and all propositions pj , 1 ≤ j < i
to false. SPUDD-EXPON, was used in (Hoey et al. 1999) to
demonstrate the worst case behaviour of SPUDD. For each

6



proposition pi, it has an action ai which sets pi to true only
when all propositions pj , 1 ≤ j < i are true (and sets pi

to false otherwise), and sets the latter propositions to false.
The third domain, called ON/OFF, has one “turn-on” and one
“turn-off” action per proposition. The “turn-on-pi” action
only probabilistically succeeds in setting pi to true when pi

was false. The turn-off action is similar. The fourth do-
main, called COMPLETE, is a fully connected reflexive do-
main. For each proposition pi there is an action ai which
sets pi to true with probability i/(n + 1) (and to false oth-
erwise) and pj , j 6= i to true or false with probability 0.5.
Note that ai can cause a transition to any of the 2n states.

Random domains of size n also involve n propositions.
The method for the generation of their dynamics is out of
the scope of this paper, but let us just mention that we are
able to generate random dynamics exhibiting a given degree
of “structure” and a given degree of uncertainty. Lack of
structure essentially measures the bushiness of the internal
part of the ADDs representing the actions, and uncertainty
measures the bushiness of their leaves.

Influence of Dynamics
The interaction between dynamics and reward certainly af-
fects the performance of the different approaches, though
not so strikingly as other factors such as the reward type
(see below). We found that under the same reward scheme,
varying the degree of structure or uncertainty did not gener-
ally change the relative success of the different approaches.
For instance, Figures 3 and 4 show the average run time of
the methods as a function of the degree of structure, resp.
degree of uncertainty, for random problems of size n = 6
and reward �n¬ � > (the state encountered at stage n is
rewarded, regardless of its properties7). Run-time increases
slightly with both degrees, but there is no significant change
in relative performance. These are typical of the graphs we
obtain for other rewards.

Clearly, counterexamples to this observation exist. These
are most notable in cases of extreme dynamics, for instance
with the SPUDD-EXPON domain. Although for small values
of n such as n = 6, PLTLSTR approaches are faster than the
others in handling the reward �n¬�> for virtually any type
of dynamics we encountered, they perform very poorly with
that reward on SPUDD-EXPON. This is explained by the fact
that only a small fraction of SPUDD-EXPON states are reach-
able in the first n steps. After n steps, FLTL immediately
recognises that reward is of no consequence, because the
formula has progressed to >. PLTLMIN discovers this fact
only after expensive preprocessing. PLTLSTR, on the other
hand, remains concerned by the prospect of reward, just as
PLTLSIM would.

Influence of Reward Types
The type of reward appears to have a stronger influence on
performance than dynamics. This is unsurprising, as the
reward type significantly affects the size of the generated
MDP: certain rewards only make the size of the minimal
equivalent MDP increase by a constant number of states or

7©n$ in $FLTL

a constant factor, while others make it increase by a factor
exponential in the length of the formula. Table 1 illustrates
this. The third column reports the size of the minimal equiv-
alent MDP induced by the formulae on the left hand side.8

A legitimate question is whether there is a direct corre-
lation between size increase and (in)appropriateness of the
different methods. For instance, we might expect the state-
based methods to do particularly well in conjunction with
reward types inducing a small MDP and otherwise badly in
comparison with structured methods. Interestingly, this is
not always the case. For instance, in Table 1 whose last
two columns report the fastest and slowest methods over the
range of hand-coded domains and 1 ≤ n ≤ 12, the first row
contradicts that expectation. Moreover, although PLTLSTR
wins in the last row, for larger values of n (not represented
in the table), it aborts through lack of memory unlike the
other methods.

The most obvious observations arising out of these exper-
iments is that PLTLSTR is nearly always the fastest—until
it runs out of memory. Perhaps the most interesting results
are those in the second row, which exposes the inability of
methods based on PLTL to deal with rewards specified as
long sequences of events. In converting the reward formula
to a set of subformulae, they lose information about the order
of events, which then has to be recovered laboriously by rea-
soning. $FLTL progression in contrast takes the events one
at a time, preserving the relevant structure at each step. Fur-
ther experimentation led us to observe that all PLTL based
algorithms perform poorly where reward is specified using
formulae of the form �kφ, ∨k

i=1
�i φ, and ∧k

i=1
�i φ (φ has

been true k steps ago, within the last k steps, or at all the last
k steps).

Influence of Syntax

Not surprisingly, we find that the syntax used to express re-
wards, which affects the length of the formula, has a major
influence on the run time. A typical example of this effect
is captured in Figure 5. This graph demonstrates how re-
expressing prvOut ≡ �n(∧n

i=1
pi) as prvIn ≡ ∧n

i=1
�n pi,

thereby creating n times more temporal subformulae, alters
the running time of all PLTL methods. FLTL is affected too
as $FLTL progression requires two iterations through the re-
ward formula. The graph represents the averages of the run-
ning times over all the methods, for the COMPLETE domain.

Our most serious concern in relation to the PLTL ap-
proaches is their handling of reward specifications contain-
ing multiple reward elements. Most notably we found that
PLTLMIN does not necessarily produce the minimal equiv-
alent MDP in this situation. To demonstrate, we consider
the set of reward formulae {φ1, φ2, . . . , φn}, each associ-
ated with the same real value r. Given this, PLTL ap-
proaches will distinguish unnecessarily between past be-
haviours which lead to identical future rewards. This may
occur when the reward at an e-state is determined by the

8The figures are not necessarily valid for non-completely con-
nected NMRDPs. Unfortunately, even for completely connected
domains, there does not appear to be a much cheaper way to deter-
mine the MDP size than to generate it and count states.

7



Structure (0:Structured, ... 1:Unstructured)
0.1 0.3 0.5 0.7 0.9 1.1

A
ve

ra
ge

 C
P

U
 ti

m
e 

(s
ec

)

5

10

15
20
25
30

Fig 3: Changing Degree of Structure
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Fig 4: Changing Degree of Uncertainty
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Fig 5: Changing the syntax
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Fig 6: Effect of Multiple Rewards on MDP Size
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Fig 7: Effect of Multiple Rewards on Run Time
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Fig 8: Guard with Unachievable Goal
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Fig 11: Guard with Unrewarding Condition

PLTLMIN

PLTLSTRUCT

FLTL

PLTLSTRUCT(A)

type formula size fastest slowest
first time all pis (∧n

i=1pi) ∧ (¬
��� - ∧n

i=1 pi) O(1)||S|| PLTLSTR(A) PLTLMIN

pis in sequence from start state (∧n

i=1

� i pi) ∧
� n¬

�
> O(n)||S|| FLTL PLTLSTR

two consecutive pis ∨n−1

i=1 (
�

pi ∧ pi+1) O(nk)||S|| PLTLSTR FLTL
all pis n times ago

� n ∧n

i=1 pi O(2n)||S|| PLTLSTR PLTLMIN

Table 1: Influence of reward type on MDP size and method performance

truth value of φ1 ∨ φ2. This formula does not necessarily
require e-states that distinguish between the cases in which
{φ1 ≡ >, φ2 ≡ ⊥} and {φ1 ≡ ⊥, φ2 ≡ >} hold; however,
given the above specification, PLTLMIN shall make this dis-
tinction. For example, taking φi = �pi, Figure 6 shows
that FLTL leads to an MDP whose size is at most 3 times
that of the NMRDP. In contrast, the relative size of the MDP
produced by PLTLMIN is linear in n, the number of rewards
and propositions. These results are obtained with all hand-
coded domains but SPUDD-EXPON. Figure 7 shows the run-
times as a function of n for COMPLETE. FLTL dominates
and is only overtaken by PLTLSTR(A) for large values of n,
when the MDP becomes too large for explicit exploration
to be practical. To obtain the minimal equivalent MDP us-
ing PLTLMIN, a bloated reward specification of the form
{� ∨n

i=1
(pi ∧

n
j=1,j 6=i ¬pj) : r, . . . ,� ∧n

i=1
pi : n ∗ r} is

necessary, which, by virtue of its exponential length, is not
an adequate solution.

Influence of Reachability

All approaches claim to have some ability to ignore vari-
ables which are irrelevant because the condition they track is
unreachable: PLTLMIN detects them through preprocessing,
PLTLSTR exploits the ability of structured solution methods
to ignore them, and FLTL ignores them when progression
never exposes them. However, given that the mechanisms
for avoiding irrelevance are so different, we expect corre-
sponding differences in their effects. On experimental in-
vestigation, we found that the differences in performance
are best illustrated by looking at guard formulae, which as-
sert that if a trigger condition c is reached then a reward
will be received upon achievement of the goal g in, resp.
within, k steps. In PLTL, this is written g ∧ �kc, resp.
g ∧ ∨k

i=1
�i c, and in $FLTL, �(c → ©k(g → $)), resp.

�(c→ ∧k
i=1

©i(g → $)).
Where the goal g is unreachable, PLTL approaches per-

form well. As it is always false, g does not lead to be-
havioural distinctions. On the other hand, while construct-
ing the MDP, FLTL considers the successive progressions of
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©kg without being able to detect that it is unreachable until
it actually fails to happen. This is exactly what the blind-
ness of blind minimality amounts to. Figure 8 illustrates the
difference in performance as a function of the number n of
propositions involved in the SPUDD-LINEAR domain, when
the reward is of the form g ∧�nc, with g unreachable.

FLTL shines when the trigger c is unreachable: the for-
mula will always progress to itself, and the goal, however
complicated, is never tracked in the generated MDP. In this
situation PLTL approaches still consider �kc and its subfor-
mulae, only to discover, after expensive preprocessing for
PLTLMIN, after reachability analysis for PLTLSTR(A), and
never for PLTLSTR, that these are irrelevant. This is illus-
trated in Figure 9, again with SPUDD-LINEAR and a reward
of the form g ∧�nc, with c unreachable.

Dynamic Irrelevance
(Bacchus et al. 1997; Thiébaux et al. 2002) claim that one
advantage of PLTLSTR and FLTL over PLTLMIN and PLTL-
SIM is that the former perform a dynamic analysis of re-
wards capable of detecting irrelevance of variables to par-
ticular policies, e.g. to the optimal policy. Our experiments
confirm this claim. However, as for reachability, whether the
goal or the triggering condition in a guard formula becomes
irrelevant plays an important role in determining whether a
PLTLSTR or FLTL approach should be taken: PLTLSTR is
able to dynamically ignore the goal, while FLTL is able to
dynamically ignore the trigger.

This is illustrated in Figures 10 and 11. In both figures,
the domain considered is ON/OFF with n = 6 propositions,
the guard formula is g∧�nc as before, here with both g and
c achievable. This guard formula is assigned a fixed reward.
To study the effect of dynamic irrelevance of the goal, in
Figure 10, achievement of ¬g is rewarded by the value r (i.e.
we have ¬g : r in PLTL). In Figure 11, on the other hand,
we study the effect of dynamic irrelevance of the trigger and
achievement of ¬c is rewarded by the value r. Both figures
show the runtime of the methods as r increases.

Achieving the goal, resp. the trigger, is made less at-
tractive as r increases up to the point where the guard for-
mula becomes irrelevant under the optimal policy. When
this happens, the run-time of PLTLSTR resp. FLTL, exhibits
an abrupt but durable improvement. The figures show that
FLTL is able to pick up irrelevance of the trigger, while
PLTLSTR is able to exploit irrelevance of the goal. As ex-
pected, PLTLMIN whose analysis is static does not pick up
either and performs consistently badly. Note that in both
figures, PLTLSTR progressively takes longer to compute as
r increases because value iteration requires additional itera-
tions to converge.

Conclusion and Future Work
NMRDPP proved a useful tool in the experimental analysis
of approaches for decision processes with Non-Markovian
rewards. Both the system and the analysis are the first of
their kind. We were able to identify a number of general
trends in the behaviours of the methods and to provide ad-
vice as to which are the best suited to certain circumstances.

We found PLTLSTR and FLTL preferable to state-based
PLTL approach in most cases. If one insists on using the
latter, we strongly recommend preprocessing. In all cases,
attention should be paid to the syntax of the reward formulae
and in particular to minimising its length. FLTL is the tech-
nique of choice when the reward requires tracking a long
sequence of events or when the desired behaviour is com-
posed of many elements with identical rewards. For guard
formulae, we advise the use of PLTLSTR if the probability of
reaching the goal is low or achieving the goal is very risky,
and conversely, of FLTL if the probability of reaching the
triggering condition is low or if reaching it is very risky.

For obvious reasons, this first report has focused on arti-
ficial domains. It remains to be seen what form these results
take in the context of domains of more practical interest.
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