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Abstract

Many planning systems operate by performing a heuristic for-
ward search in the problem state space. In large problems
that approach fails, exhausting a computer’s memory due to
the burden of storing problem states. Moreover, it is an open
question exactly how that approach should be parallelized to
take advantage of modern multiple-processor computers and
the proliferation of massively parallel compute clusters. This
extended abstract proposes an answer to this second question,
while also going some way to addressing the memory prob-
lems.
We present AYALSOPLAN, our entry in the Multi-Core Track
of the 2011 International Planning Competition (IPC-2011).
Our approach is to run many independent and incomplete
state-based searches in parallel. Our approach deliberately
exploits hashing collisions to limit the set of states an individ-
ual search can encounter. Also, none of the parallel searches
store all expanded states, each corresponding to a memory ef-
ficient state-based reachability procedure, albeit incomplete.
As soon as a search determines reachability, the parallel pro-
cessing ceases, and a single-core computer can efficiently
construct the plan.
Because the 2011 IPC evaluation environment of the Se-
quential Multi-Core Track is not a massively parallel com-
puter, and moreover because it imposes a very limited time-
out, we have limited expectations regarding how AYALSO-
PLAN might be ranked in that evaluation. Therefore, this ex-
tended abstract commits some space to presenting empirical
data we collected when evaluating our approach on our local
cluster, without any runtime restrictions – i.e., searches can
only fail when memory is exhausted. It is in that setting that
we demonstrate the positive characteristics of our approach.

1. Introduction
Most of the fastest modern planning systems – including
LAMA (Richter and Westphal 2010), the winner of the Se-
quential Satisficing track of the 2008 IPC – implement a
best-first search of the state space. Those searches oper-
ate by maintaining an open list of states that have been vis-
ited but not completely expanded, and a closed list of states
which have been visited and completely expanded. The stor-
age burden associated with keeping track of visited states is
a major hindrance to the scalability of modern systems. This
is the case for both frontier variants of best-first search (Korf
et al. 2005), and more classical implementations. Indeed,

we are unaware of any planning system that can solve all
IPC benchmark problems, including the big ones, given un-
limited processing time and reasonable limitations on avail-
able memory.

Bitstate hashing (Courcoubetis et al. 1992; Holzmann
1998) is a memory-efficient technique for keeping track of
visited states in state-based searches. The technique tracks
the visitation status of a state using a single element, usu-
ally a single bit, in an integer indexed array. When a state s
is visited during search, the evaluation of a hash function at
s maps that state to an index in the array. That s has been
visited is recorded by the status of the indexed bit.1 Bitstate
hashing thus trades storage required to record visited states
against the probability of collisions, which occur when two
different states are indexed to the same array entry and there-
fore cannot be distinguished. Bitstate hashing in a planning
context has been explored previously in (Edelkamp 2002;
Edelkamp and Jabbar 2005). In this abstract we introduce
the related technique of bitstate pruning, initially proposed
for model checking (Ernits et al. 2006; Ernits 2005), to
the planning setting. Bitstate pruning deliberately exploits
the collisions of bitstate hashing to dynamically limit the
set of states the search can encounter. Bitstate pruning can
reduce the memory requirements of search at the expense
of completeness. Also in a model checking setting, more-
recently a technique that utilises deliberately undersized bit-
state hash tables was proposed to alleviate the processing
(resp. storage) burden of computing the heuristic value of
states (resp. keeping track of states). In detail, Kupfer-
schmid et al. (2006) proposed treating states that hash to the
same entry of the undersized array to be of equal heuristic
value.

Bitstate pruning as an approach can be applied in any
planner that uses state space search to prove goal reach-
ability – constructively or otherwise – while maintaining
a collection of visited states. Moreover, the incomplete-
ness of the resulting search can be mitigated by running
multiple searches in parallel, each using a different array
size. Our competition entry, AYALSOPLAN, is based on
an implementation of bitstate pruning in LAMA. In order
to help us demonstrate the effectiveness of bitstate pruning

1Some variants use multiple bits in multiple arrays according to
a set of state hashing functions.



in planning, we have also implemented it in the straight-
forward satisficing state-based search of AYPLAN (Robin-
son, Gretton, and Pham 2008). In the remainder of this ab-
stract, when addressing a specific implementation, we write
AYALSOPLANlm if the base search procedure is LAMA,
and AYALSOPLANay for the AYPLAN implementation.

When exploiting the parallelisation that bitstate prun-
ing makes possible on a cluster of computers, both
AYALSOPLANay and AYALSOPLANlmare parallel satisfic-
ing planners that consistently solve larger problems than the
procedures of their respective base systems, AYPLAN and
LAMA. Here, it is important we clarify that our evaluation
does not impose a timeout, and therefore when we speak of
scalability, we do so where planning failure occurs solely
due to memory exhaustion – i.e., given all the time in the
world, the parallel incomplete searches of AYALSOPLANay

can solve larger problems than the serial satisficing proce-
dure of the base planner AYPLAN. Moreover, we also find
that the parallel incomplete searches of AYALSOPLANay can
often solve larger and more difficult problems than LAMA
with a 3GB memory limit and unlimited time. In this
work we have not exhaustively evaluated AYALSOPLANlm

because the many heuristics and search optimisations em-
ployed in LAMA obscure the results, and pose a massive
burden on our limited cluster resources, if we have to eval-
uate all the varieties of LAMA. Finally, we believe that our
evaluation using AYALSOPLANay already makes a clear em-
pirical case for bitstate pruning for planning on massively
parallel architectures.

This extended abstract is organised as follows: In the
next section we provide a brief introduction to the use of
search in planning algorithms. In Section 3, we then present
the bitstate pruning approach and show how the probability
of a search reaching a state can change as the size of the
hashtable changes. In Section 4, we discuss the specifics of
how we have implemented bitstate pruning in a number of
planning systems, and present an empirical evaluation of one
of those systems in Section 5. In Section 6, we summarise
our contribution, making some concluding remarks.

2. Best-First Forward Search
In the early 90s implementations of best-first search ex-
hausted “the available memory on most machines in a mat-
ter of minutes” (Korf 1992). Nowadays it continues to be
considered a memory intensive approach (Korf et al. 2005),
nonetheless the approach underlies a majority of good plan-
ning systems. Indeed, the dominant satisficing planning sys-
tems are based exactly on a best-first search of the state
space, the more successful approaches typically employ-
ing a variant of A∗ (Hart, Nilsson, and Raphael 1972).
This is evidenced by the successes at recent IPCs of such
systems. These include LAMA, SGPLAN versions 4 and
5 (Hsu et al. 2006; Chen, Hsu, and Wah 2004),2 FAST-

2For the underlying search procedure SGPLAN uses: metric-
FASTFORWARD, MCDC (a variant of Metric-FASTFORWARD),
and LPG. Only the first two can be characterised as a best-first for-
ward search. LPG is a local search procedure for planning inspired
by the Boolean SAT(isfiability) procedure WALKSAT.

DOWNWARD (Helmert 2006), FASTFORWARD (Hoffmann
and Nebel 2001), and HSP (Bonet and Geffner 2001). Over-
all, LAMA, the base procedure for our competition entry, is
one of the more recent and scalable procedures in this vein.

Although the recent success of best-first search in a plan-
ning setting might partly be attributed to the relatively vast
quantities of memory available on modern computers, it can
mostly be attributed to three important developments. First,
that of heuristics for the satisficing case, such as the FF-
heuristic hff (Hoffmann and Nebel 2001), the causal-graph
heuristic hcg (Helmert 2006), and the landmark-counting
pseudo heuristic hlm (Richter and Westphal 2010);3 sec-
ond, the development of planning-specific preprocessing al-
gorithms, such as relevance analysis methods (e.g., (Haslum
and Jonsson 2000; Bacchus and Teh 1998)) and plangraph
analysis (Blum and Furst 1997), and representational op-
timisations, such as compilations to multi-valued setting
and the related hierarchical decompositions of planning
tasks (Helmert 2006); third, search tricks, such as de-
ferred(/lazy) heuristic evaluation and preferred operators
that have been shown to drastically improve the efficiency of
some heuristic search techniques in many planning bench-
marks (Richter and Helmert 2009).

We provide a brief sketch of state-based best-first forward
search as it typically appears in the discussed planning pro-
cedures, since we will use the terms later. The search can be
described in terms of a bound ranking function from states to
numbers f : S → N, two container data-structures open and
closed, and a search graph. Here, the evaluation of the rank-
ing function at a state, f(s), maps each state to a numeric
value, thereby ranking states. Structure open contains states
encountered by the search, forward from the starting-state
s0, whose successors have not all been evaluated – i.e, there
are actions whose effects on states in open have not been
evaluated. The closed structure contains states that were pre-
viously in open, and for which all successor states have been
evaluated. Typically we say that states in closed have been
“expanded”, and that states in open are “unexpanded” (or in
some searches “partially expanded”). The search graph has
one vertex for each state occurring in either open or closed,
and a directed edge (s,s′) labelled with actions whose ex-
pansion at s induced a state transition to s′. Here, we use
the notation s to refer both to the state s ∈ S and its corre-
sponding vertex.

At the commencement of search open is a singleton con-
taining s0 and closed is empty. The search proceeds inter-
leaving the selection of a state from open to expand and its
expansion. This process executes until a goal state is reached
during an expansion, or otherwise until all promising states
have been expanded – e.g., in the case that the goal is not
reachable according to the search constraints. State selection
is done greedily according to the given evaluation function
f(s) = c(s) + βh(s). Here, c(s) is the (sometimes approx-
imated) length of the shortest path from s0 to s, while h(s)
estimates the value of expanding s. The factor β, usually
1, determines how greedy the search is with respect to h.

3Nowadays these heuristics are often used in combination in a
so-called multi-heuristic setting (Helmert 2006).



Once a state s is selected it undergoes expansion. For one or
more actions available at s, the search evaluates the succes-
sor states of s, adds them to open if they are not already con-
tained in either open or closed, and updates the search graph
to reflect node additions and/or altered connectivity. If this
step exhausts the action possibilities at s, then s is moved
from open to closed. If h is inadmissible, when expanding
a state it might be that a better, less costly path to a visited
successor s is discovered, and therefore that a better approx-
imation of c(s) is discovered. Many searches propagate that
better estimate through the search graph. For example, in
order to emphasise a laziness in computation, in some de-
scriptions a state is said to be reopened – e.g. see (Hansen
and Zhou 2007) – in the sense that when a better approxi-
mation of c(s) is found, s is added again to open, and the
c-value change starts to propagate when the reopened state
s is again chosen from open for expansion.

During the expansion of a state the search establishes
whether or not evaluated successor states are new. The de-
tails of how this is achieved are very important to our con-
tribution. In practice, all encountered states (i.e., elements
in open and closed) are stored in a sorted associative con-
tainer,4 or more commonly a hash table. When a successor
state is considered during expansion, its membership in that
container is tested to decide if a new state should be added
to open, and how the details of the search graph should be
altered. In many planning benchmarks solvers fail on large
problem instances because storage of encountered states ex-
hausts system memory.

Nowadays it remains an open question how best to exploit
modern distributed computing environments to achieve bet-
ter scalability and efficiency in state-based searches. In par-
ticular, how best to trade-off available processing and mem-
ory resources, avoiding exhaustion of system memory be-
fore search yields a solution.

3. Bitstate Pruning
Let us consider a best-first search that utilises bitstate hash-
ing to distinguish between new and already visited states.
At the beginning of search an array of bits H is initialised to
contain zeros. Whenever a state s is added to open a bit in
the hash array at the address of hh(s) is set, H[hh(s)] := 1.
Here, let hh be a state hashing function that satisfies the
standard uniform hashing assumption for analysis purposes.
When expanding the actions of a state s in open, a successor
s′ is added to open iff H[hh(s′)] 6= 1.

A hash collision occurs when several states hash into the
same address in H . In the limit as |H|, the size of the hash
array, goes to infinity, we can invoke a special hh that hashes
each distinct state to a distinct bit in that array. However,
since in practice we are constrained by available memory re-
sources, |H| is small and hash collisions occur. In previous
applications of bitstate hashing several measures are taken to
reduce such effects. For example, in Bloom filters (Bloom
1970), each state uses several bits in the hash table, and the
addresses for a state are calculated by multiple hash func-
tions. That approach decreases the probability of collisions

4This is the case in LAMA.

if the hash table contains a small number of entries. Other
analyses of bitstate hashing (Holzmann 1998; Dillinger and
Manolios 2004; Kuntz and Lampka 2004) have also been
concerned with reducing the collision/omission probability.
(Holzmann 1998) proposes a sequential multihash princi-
ple that performs hashing repeatedly using independent hash
functions. The overall effect is to reduce the probability of
collisions occurring at the same places and thus avoiding
omissions.

In our setting hash collisions are valuable, as we use them
to reduce the number of states explored by a given instance
of best-first search. In more detail, suppose the number of
reachable states n in the search graph is much larger than
|H|. Then the probability of collisions is 1 and states are
dropped by a search. That problem can be mitigated by
using sequential multihashing, but rather than reducing the
state drop-rate to increase the exhaustiveness of a search, we
use a sequential multihash idea to increase the probability of
reaching a goal state early in multiple independent searches.
We call the overall approach bitstate pruning.

To increase the probability of finding a goal according to
bitstate pruning, it is necessary to either repeat the search
with a different hash function, change the search policy,5 or
change the size of H . As such repetitions are independent
and involve no communication, they can be performed in
parallel. Essentially, we can leverage an abundance of inde-
pendent processing units to quickly (wall time) find a good
hash function and the corresponding plan.

In our approach hh(s) is a combination of two things:
a hash function that takes the bitvector of a state as input
and produces a hash value of some size, typically 32 or 64
bits, and the use of the modulo function (mod) to calculate
the address of the bit in H . Thus, changing the size of |H|
provides an easy way of changing the hash function.

A desirable side effect of bitstate pruning is that it imposes
a limit to the open data structure: there can never be more
states in open than there are bits in H . The exhaustion of
memory due to a large number of states in open is one of the
reasons why search with very large bitstate hash tables fails.
Thus, by pruning the search graph slightly differently under
each instantiation of bitstate pruning, we trade memory for
CPU, admittedly with some repeated exploration of problem
states.

Example
The Three Integer Problem has states consisting of the val-
ues of three integer variables and has three actions a1, a2 and
a3 that each increment one of those variables. The search
graph for this problem is shown in Figure 1 expanded up to
search depth 2.

We index states si in a sequence that corresponds to
depth-first exploration of the state space.

Let us assume that we start exploring the state graph in
Figure 1 using depth-first search, a depth limit of 2 actions,

5In iterative deepending, we can change the search depth, and
in A∗ we can alter β, h, and even alter how c is (approximately)
evaluated.



Figure 1: Search graph for the three integer problem. Pr(si)
denotes the probability of reaching state si, and Pc(si, ai)
denotes the probability of hash collision when executing ac-
tion ai at state si. N is the size of the bitstate hash table.

and a bitstate hash table of 2 bits. The probability of reach-
ing the initial state, written Pr(s0), is 1. The probability of
reaching s1 is Pr(s0)(1 − 1/|H|) = 1/2. When the size
of the bitstate hash table is only 2, s2 is not reachable, be-
cause to reach s2, s1 must be reached and then the hash
table is full. As a result all actions from s1 yield a colli-
sion. Although s2 is not reachable, it is possible to reach s5
with probability Pr(s0)Pc(s0, a1)(1 − 1/|H|) = 1/4 – i.e.
Pc(s0, a1) is the probability of a collision when expanding
a1 at s0, therefore overall the expression gives the probabil-
ity of reaching s0 times the probability of action a1 yielding
a collision, times the probability of a collision not occur-
ing in s5. Using a similar reasoning it is possible to reach
s8 with the probability of Pr(s0)Pc(s0, a1)Pc(s0, a2)(1 −
1/2) = 1/8. It should be noted that in the given exam-
ple there is also a 1 − 1/2 − 1/4 − 1/8 = 1/8 probability
that neither s1, s5 or s8 is reached with a bitstate hash table
size 2. With the bitstate hash table size 3 the probability of
reaching any node in the search graph in Figure 1 using a
depth-first search policy becomes nonzero.

4. Our Approach
We develop a satisficing planning approach, AYALSOPLAN,
that can leverage the processing resources of cluster com-
puting environments to obtain better scalability according to
the bitstate pruning scheme just described. Our competition
entry is based on AYALSOPLANlm, an implementation of
this approach using LAMA, and our experimental evalua-
tion is predominantly based on an implementation using AY-
PLAN. AYALSOPLAN uses multiple searches, each of which
implement bitstate pruning for a distinct array size in what
is otherwise a frontier search procedure (Korf et al. 2005).
In order to construct a plan AYALSOPLAN operates in two
phases: the first performs parallel plan existence searches,
then if a plan exists, the second constructs a plan by repeat-
ing a successful incomplete search on a single core, this time
storing all the encountered states. It is worth noting that be-
cause the frontier searches are independent, they can be run
in parallel, in sequence, or a combination thereof. Therefore,
in practice one can use several different cluster resources for
planning.

Each executed search in the first phase corresponds to a
frontier search (FS), a best-first search that uses only a frac-
tion of the memory used by ordinary best-first searches of a
state space. In detail, FS deletes states designated to closed,
implicitly removing these from the search graph. Conse-
quently FS is a sound approach to obtaining a proof of plan
existence,however it is not constructive, because there is
no data from which to extract a plan directly once a goal
state is reached. Existing varieties of FS-based systems are
rendered constructive by using them according to a divide-
and-conquer query strategy, or otherwise by keeping closed
on a secondary (slow) storage device. In this respect AY-
ALSOPLAN differs from existing FS variants. AYALSO-
PLAN deletes states designated for closed, but also, accord-
ing to bitstate pruning, an instance of search forbids multiple
states which hash to the same entry of a bitarray from being
considered. This implies two important consequences be-
yond the scalability obtained by exploiting bitstate pruning
in multiple parallel instantiations of AYALSOPLAN. First,
as with any FS variant, AYALSOPLAN uses relatively little
memory when performing plan existence proofs. Second,
a plan can be extracted relatively quickly during our post-
processing phase using relatively little memory, by using the
|H| and search depth limit from a successful bitstate pruning
FS search.

Overall, our contribution is in a similar vein to systems
such as HDA∗ (Kishimoto, Fukunaga, and Botea 2009),
which also tackle the A∗ memory consumption problem in
a parallel setting. HDA∗-like systems use a more-or-less
brute-force approach, distributing state storage over a clus-
ter of multiple independent networked machines. A key ad-
vantage of our approach is that we require no inter-process
communication. Also, because we perform a frontier search,
we have diminish memory requirements, and improved scal-
ability with the number of processors.6

5. Experimental Results
To demonstrate the efficacy of bitstate pruning, we com-
pare AYALSOPLANay with AYPLAN, a straightforward im-
plementation of best-first search that stores all the visited
states in open and closed explicitly. In this evaluation we
also include the performance results of a August 2010 ver-
sion of LAMA using the IPC-6 run script (without WA*
iteration) as a reference. That system represents a state-of-
the-art domain independent system for most of the bench-
mark problems we have considered. Finally, we also present
preliminary experimental results using AYALSOPLANlm.

It remains to discuss a few planning specific details
of AYALSOPLANay that reduce the burden on search.
Based on AYPLAN, AYALSOPLANay incorporates a prepro-
cessing phase that employs a number of computationally
cheap problem analysis techniques. In particular, following
(Haslum and Jonsson 2000), when grounding domain oper-
ators we omit from consideration actions whose precondi-

6Clarifying, this comment is not to be interpreted in the lan-
guage of “speedup factors”, rather, it is a comment about being
able to solve larger problems given many CPU-cores, each with
limited memory and unlimited time in which to solve a problem.



Table 1: Number of problems solved by of AY-
PLAN, AYALSOPLANay , and LAMA. For some problems
AYALSOPLANay proves plan existence, however a plan can-
not be extracted in phase-2 given the 2GB memory limit.
In that case we report two figures: (a) outside parenthesis,
the number of problems for which a plan could be extracted,
and (b) in parenthesis, the number of problems for which the
existence problem was solved.

Domain AYPLAN AYALSOPLANay LAMA
transport 9 30 30
pipes-tankage 23 43(44) 39
elevators 16 30 26
peg solitaire 30 30 30
scanalyzer 27 27 30
openstacks 14 17(18) 30
sokoban 12 15 (25) 25

tions are statically false. We further reduce the size of the
set of ground operators and state propositions by perform-
ing static relevance testing as described in (Bacchus and
Teh 1998). Although recent versions of AYPLAN implement
a number of useful planning heuristics, in AYALSOPLANay

and AYPLAN we rank states in open according to how many
goal propositions they satisfy. In many cases we find that
other heuristics can be detrimental to performance of bit-
state pruning on massively parallel machines in the bench-
marks we have considered – This usually occurs because a
heuristic encourages many of the parallel searches to be uni-
form, therefore the processing resources are not exploited
for coverage. In Figure 4 this problem is indicated for the
case of PIPES-TANKAGE P23, where as the bitarray becomes
large the probability of AYALSOPLANlm searches failing in-
creases.

Our evaluation compares the planners on several domains:
The IPC 2004 PIPES-TANKAGE domain that poses an NP-
Hard satisficing problem (Helmert 2006), and several of
the IPC 2008 domains. In evaluation all AYPLAN-based
processes were limited to use maximum 2GB of memory.
LAMA was run on a single core of a computer with Intel
quad core CPU Q9650 and 3GB of RAM. AYPLAN-based
processes were run on a compute cluster with 20 quad-core
Xeon E5345 CPUs totalling 80 CPU cores with 2GB mem-
ory per core. In no case do we impose any time limit. The
default search depth for AYALSOPLANay in all cases was
limited to the minimum of 100000 and |H|.

Table 1 gives a summary of the results across the domains.
Each row shows the number of problems solved (i.e. satis-
ficing plans extracted) in the domain by each planner. The
numbers in parenthesis in the AYALSOPLANay column in-
dicate the number of plan existences found as in some cases
the plan extraction step exceeded the 2GB memory limit.
Figure 2 summarizes the hash table sizes that were required
to find plans. In many of the domains the |H| values were in
the order of tens or hundreds of thousands. In those cases,
it is even feasible to run AYALSOPLANay serially on a sin-

gle core. Figure 3 reports plan costs that were obtained by
AYPLAN, AYALSOPLANay and LAMA. Here, we are re-
porting the costs of the first solution found by each planner.7
In the PIPES-TANKAGE case the plan cost is equivalent to
plan length. For that domain AYALSOPLANay usually pro-
duces better initial plans than AYPLAN. In the PEG SOLI-
TAIRE case, the plan qualities of first plans obtained are also
of good quality. We should note that it would be a simple
matter to implement a cost cutoff for AYALSOPLANay in a
manner similar to our maximum depth cutoff.

The results in Table 1 show that in all cases
AYALSOPLANay made it possible to solve more problems
than AYPLAN, and in some cases, like PIPES-TANKAGE
and ELEVATORS even more than LAMA. In SOKOBAN
AYALSOPLANay was able to detect plan existence in more
cases than AYPLAN and LAMA, but we were only able
to extract plans for 15 problem instances during phase-2
processing. In the SCANALYZER domain AYALSOPLANay

and AYPLAN found solutions to all problems that could get
through AYPLAN preprocessing.

A selection of the results (easier problems solved by
all planners are omitted) for PIPES-TANKAGE domain are
given in more detail in Table 2. As we described above,
AYALSOPLANay uses frontier search to further decrease
its memory requirements. On termination a plan is con-
structed using a second phase, that performs an ordinary
search parametrised by the array size that yields a solu-
tion. For results presented in Table 2, the time and mem-
ory recorded for AYALSOPLANay represent the time (mem-
ory) to run AYALSOPLANay in FS mode to prove the exis-
tence of a plan, in addition to the time (memory) required
to extract a plan in the second phase – by running a plan
extraction instance of AYALSOPLANay with the size of the
hash table discovered by a successful instance of FS search.
Space limitations mean that we cannot include results from
all the domains we tested in Table 2, however we present
PIPES-TANKAGE to highlight some of the interesting find-
ings. The first four and last two columns show respec-
tively the performance of AYPLAN, AYALSOPLANay and
LAMA in terms of time and memory requirements. A dash
in the memory requirements column indicates that after the
reported amount of time the planner ran out of memory
without producing a plan. Thus, AYPLAN failed on ten of
the 14 problems in the table, LAMA failed on three, and
AYALSOPLANay solved all of them. The three columns fol-
lowing AYALSOPLANay show the performance of the plan
existence (frontier search) part of AYALSOPLANay . The
hashtable size column shows the bit length of the hash ar-
ray required to find a plan, the memory column is the total
memory required by AYALSOPLANay to detect plan exis-
tence on this size array, and the time column shows the av-
erage runtime for runs of AYALSOPLANay with array sizes
close to the presented bitstate hash table size that led to a
plan. The reason we choose this measure is that the runtime
is typically much faster when a plan is found than when one
is not found, so these times represent the time for an exhau-
sive search given a hashtable of the largest size that needs to

7None of the costs are guaranteed to be optimal.



Table 2: Memory and time requirements for finding satisficing solutions for some of the problems in the PIPES-TANKAGE
domain using AYPLAN, AYALSOPLANay and LAMA. AYALSOPLANlmcould find solutions to problems P23, P26 and P28.

Problem AYPLAN AYALSOPLAN AYALSOPLAN existence LAMA
time memory time memory time memory hashtable time memory
(s) (MB) (s) (MB) (s/iter) (MB) size (bits) (s) (MB)

P16 NET2 B14 G6 T80 1747 - 10.78 89 2.69 81 31441 6 32
P17 NET2 B16 G5 T20 26.4 191 2.44 38 .1 38 3066 5 20
P18 NET2 B16 G7 T60 786 - 5.25 78 .1 78 1356 3.24 23
P19 NET2 B18 G6 T60 23.65 165 7.06 113 .17 112 2169 5.70 14
P20 NET2 B18 G8 T90 1698 - 14.49 166 .13 166 4843 12.60 26
P21 NET3 B12 G2 T60 596 - 2.74 42 0.03 42 832 2.86 6
P22 NET3 B12 G4 T60 15.2 94 3.59 42 0.323 42 5607 4.2 23
P23 NET3 B14 G3 T60 1451 - 9.69 115 1.16 115 9410 800 -
P24 NET3 B14 G5 T60 1451 - 13.0 115 2.54 115 12711 9.0 43
P25 NET3 B16 G5 T60 1717 - 407 574 151 326 510642 46.7 77
P26 NET3 B16 G7 T70 1928 - 191 506 97.9 308 384214 2280 -
P27 NET3 B18 G6 T70 698 - 112 301 81.4 233 223881 11.6 82
P28 NET3 B18 G7 T70 698 - 371 879 184 505 904270 1150 -
P29 NET3 B20 G6 T70 1204 - 1065 1560 517 827 1428472 22.1 117

Figure 2: Hash table sizes in bits required by AYALSOPLANay to find a plan in the corresponding domain.

Figure 3: Initial plan costs of plans found by AYPLAN, AYALSOPLANay , and LAMA.



be evaluated. A reasonable approximation to the total time
required to find a plan (distributed over all the parallel pro-
cessors) is the time per iteration multiplied by the hashtable
size and divided by two and divided by the number of pro-
cessors we have available. In addition, it is easy to see that
the smaller the |H| the faster the search.

Though very preliminary, in Figure 4 we explore the be-
haviour of AYALSOPLANlm in PIPES-TANKAGE problem
P23, a problem that LAMA is not able to solve and that
AYALSOPLANlm solves very quickly – in the best case in 8
seconds while using 20 MB of memory at |H| = 6834. Not
surprisingly, on the lower graph, we show that the maximum
memory consumed by search instances grows linearly with
the bitarray size |H|. The data also demonstrates the diffi-
culty of predicting the time a search at some |H| will take.
Most importantly, from the data-points we have, it is clear
that LAMA’s search guidance has a negative impact in this
problem instance, stopping goal states from being discov-
ered at larger |H| values.
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Figure 4: Above: Probability of finding a plan at a
given hash table size |H| in P23 NET3 B14 G3 T60 by
AYALSOPLANlm. Below: Time and memory consumption
for either finding a plan at a |H| value or for exhausting the
reachable state space in problem P23 NET3 B14 G3 T60
by AYALSOPLANlm.

6. Final Remarks
We described an approach to state-based planning in mas-
sively parallel systems that corresponds to an application
of bitstate pruning in domain independent satisficing plan-
ners. Our approach instantiates multiple independent and

incomplete searches in parallel on separate CPU-cores, each
of which has limited memory resources. Each individual
search can be characterised as an incomplete variant of the
one bit per state approach described in (Korf et al. 2005).
Given sufficient processors, in the limit as the number of
processes goes to infinity the overall search is sound and ex-
haustive, one of the searches eventually finding a goal state
(if reachable).

We have implemented our approach using both LAMA
and AYPLAN as base planners, the former corresponding
to our entry, AYALSOPLAN, at IPC-2011. In this ex-
tended abstract we have performed an empirical evaluation
of AYALSOPLANay , our implementation of bitstate pruning
using AYPLAN. That evaluation is over several important
IPC benchmarks, and demonstrates that given an abundance
of processor resources each with limited memory resources,
the technique of bitstate pruning can outperform the same
planner without it by a significant margin where planning
failures only occur due to memory exhaustion (resp. a time-
out). The relative memory efficiency of AYALSOPLAN al-
lows it to solve very large planning problems, some of which
cannot be solved by good serial systems, such as LAMA.

AYALSOPLAN can be used in the same way as AYPLAN
and LAMA for iterative plan refinement after the first plan
for a problem has been discovered. Indeed, our competi-
tion entry AYALSOPLANlm uses the entire evaluation pe-
riod to iteratively improve the plan prescribed in finality.
Our experiments suggest that the costs of plans produced
by AYALSOPLANay are not significantly worse than those
produced AYPLAN, in fact, in the PIPES-TANKAGE domain
the initial plans by AYALSOPLAN were better.

Finally, it is worth noting that when LAMA’s
search guidance is very useful, the performance of
AYALSOPLANlm can be worse than that of the base plan-
ner. Therefore, our entry in the Multi-Core Track runs the
August 2010 of LAMA in one thread.
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Núñez, M.; Rosu, G.; and Wolff, B., eds., Formal Ap-
proaches to Software Testing and Runtime Verification, vol-
ume 4262 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg. 85–99.
Ernits, J. 2005. Memory arbiter synthesis and verifica-
tion for a radar memory interface card. Nordic Journal of
Computing 12(2):68–88.
Gerevini, A.; Howe, A. E.; Cesta, A.; and Refanidis, I.,
eds. 2009. Proceedings of the 19th International Confer-
ence on Automated Planning and Scheduling, ICAPS 2009,
Thessaloniki, Greece, September 19-23, 2009. AAAI.
Hansen, E. A., and Zhou, R. 2007. Anytime heuristic
search. J. Artif. Intell. Res. (JAIR) 28:267–297.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1972. Cor-
rection to ”a formal basis for the heuristic determination of
minimum cost paths”. SIGART Bull. (37):28–29.
Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. In In AIPS, 150–158. AAAI Press.
Helmert, M. 2006. New complexity results for classical
planning benchmarks. In Long, D.; Smith, S. F.; Borrajo,
D.; and McCluskey, L., eds., ICAPS, 52–62. AAAI.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: fast plan generation through heuristic search. J. Artif.
Int. Res. 14(1):253–302.
Holzmann, G. J. 1998. An analysis of bitstate hashing.
Form. Methods Syst. Des. 13(3):289–307.
Hsu, C. W.; Wah, B. W.; Huang, R.; and Chen, Y. X. 2006.
New features in SGPlan for handling preferences and con-
straints in pddl3.0. In Proc. IPC5.
Kishimoto, A.; Fukunaga, A. S.; and Botea, A. 2009. Scal-
able, parallel best-first search for optimal sequential plan-
ning. In Gerevini et al. (2009).
Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search. Journal of the ACM 52(5):715–748.
Korf, R. E. 1992. Linear-space best-first search: Summary
of results. In AAAI, 533–538.
Kuntz, M., and Lampka, K. 2004. Probabilistic methods
in state space analysis. In Baier, C.; Haverkort, B. R.; Her-
manns, H.; Katoen, J.-P.; and Siegle, M., eds., Validation of
Stochastic Systems, volume 2925 of Lecture Notes in Com-
puter Science, 339–383. Springer.

Kupferschmid, S.; Hoffmann, J.; Dierks, H.; and
Behrmann, G. 2006. Adapting an AI planning heuristic
for directed model checking. In Valmari, A., ed., Model
Checking Software, volume 3925 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg. 35–52.
Richter, S., and Helmert, M. 2009. Preferred operators
and deferred evaluation in satisficing planning. In Gerevini
et al. (2009).
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. J.
Artif. Intell. Res. (JAIR) 39:127–177.
Robinson, N.; Gretton, C.; and Pham, D.-N. 2008.
Co-plan: Combining SAT-based planning with forward-
search. In Proc. IPC6.


