

A Decision Support System for a Real-Time Field Service Engineer Scheduling Problem with Emergencies and **Collaborations**

Never Stand Still

Faculty of Engineering

School of Civil and Environmental Engineering

Hanna Grzybowska1, Charles Gretton2,3, Philip Kilby2 and S. Travis Waller1,2

1School of Civil and Environmental Engineering, UNSW Australia 2NICTA

3Griffith University, Gold Coast

Abstract

We treat a dynamic routing and scheduling problem by repeatedly re-planning using a heuristic for solving a variety of the Vehicle Routing Problem. The problem we treat occurs in the situation when Field Service Engineers are assigned a sequence of jobs to attend. The jobs
are geographically distributed and not all jobs to be undertaken are known in advance o is stochastic. Jobs are assigned an Emergency Level, which is the highest for the repair jobs involving a person in danger. In addition some
jobs require two engineers to attend. We refer to such jobs as collaborative. Our manner. The event-driven scheduling process ensures that jobs of high importance, with a high emergency level, are completed promptly. The proposed Decision Support System assists in the decision making concerning the management of Field Service Engineers, in the case
when real-time information is available. Its architecture includes two main modules: Sim heuristic based on an Adaptive Large Neighborhood Search. We find that our approach of event-driven re-planning is able to plan for realworld scenarios using significantly fewer resources than are employed in practice

Index Terms – Field Service Engineer; Staff Scheduling; Dynamic Vehicle Routing Problem; Simulation; Decision Support System

Real-Time Field Service Engineer Scheduling Problem with Emergencies and Collaborations

Given a set of known jobs, determine for the smallest possible number of FSEs, a set of routes with a corresponding schedule, so that: each non-attended job location is visited exactly once; each route
starts and ends at a

All static route planning and scheduling uses a flexible heuristic based on an Adaptive Large Neighborhood Search implemented in Indigo

Experiment Design

We consider three main experimental design levels:

- number of repair jobs
- emergency levels of repair jobs collaborations when a job needs to be attended in parallel by two FSEs

8 420 5% EXP(109.5) 180 5% EXP(38.5) 20 5% EXP(41.9) number of FSEs is constant and equal to 10

-
- scheduling horizon is 20 work-days (8 hours long) half of the FSEs start work at 7am and half starts at 9am
- \div job duration was modelled using exponential distribution:
	-
	- \checkmark λ =0.00913 for jobs with low EL (420 jobs)
 \checkmark λ =0.026 for jobs with medium and high EL (200 jobs)
- length of time intervals between call-in times of repair jobs was modelled using exponential distribution:
	- \checkmark scenarios containing only repair jobs with medium EL λ =0.00547 \checkmark scenarios containing both medium and high EL repair jobs:
	- $\ge \lambda = 5.4532E 4$ for jobs with high EL
	- $\ge \lambda = 0.00492$ for jobs with medium EL
- \div collaborations correspond to 5% of the total jobs number
- travel time and distance are real-life values plus noise

Policy

- The policy defines additional constraints regarding job's priority
- which reflect the *emergency level*:
- *high* repair jobs to be performed immediately

Problem Definition

 $\sum_{t \in T} \sum_{k \in K} \sum_{j \in N} x_{ijkt} = 1$ $\forall i \in N$

 $\sum_i \sum_{j \neq i} x_{jikt} \leq |S| - 1$

Subject to:

 $w_i \geq 0 \,\forall i \in N$ $z_i \geq 0 \,\forall i \in N$ $\begin{aligned} a_i &\geq 0 \; \forall i \in N \\ x_{i \, jkt} &\in \{0,1\} \end{aligned}$

 $\sum_{i \in N} x_{ijkt} - \sum_{i \in N} x_{jikt} = 0$ $\forall j \in N, k \in K, t \in T$

 $z_i + s_i = z_{p(i)} + s_{p(i)}$ $\forall i \in N, p(i) \in N$

 $x_{i j k t} (z_i + s_i + c_{i j} - z_j) \leq 0 \quad \forall i \in N, j \in N, k \in K, t \in T$ $E_H \le E_{kt} \le e_i \le z_i \le l_i$ $\forall i \in N, k \in K, t \in T$ $z_i + s_i \le l_i \le L_{kt} \le L_H$ $\forall i \in N, k \in K, t \in T$ $w_i = \max\{0, e_i - a_i\}$ $\forall i \in N$ $z_i = max\{ a_i + w_i, 0 \}$

 $\min \sum_{t \in T} \sum_{k \in K} \sum_{(i,j) \in A} c_{ij} x_{ijkt} + \sum\nolimits_{i \in N} w_i$

 $\forall S \in N_{cl} |S| \geq 2 k \in K, t \in T$

 $\forall i \in N, i \in N, k \in K, t \in T$

- *medium* repair jobs to be performed the same day the machinery failed
- *low* maintenance jobs
- \cdot repair jobs have priority over maintenance jobs
-
- maintenance jobs can be suspended suspended job always has to be finished by the same FSE who started it

Experiment Results

• The Simulation Engine was developed using Python 2.7.3 [MSC v.1500 64 bit (AMD64)] on win32 • The Indigo Solver was implemented in C++

 \div all the high and medium EL jobs were attended in all the scenarios

- travel time values are the highest in the scenarios considering dynamic requests
- waiting time appears only in the scenarios considering dynamic requests (~20 per cent of the total solution cost) consideration of collaborative jobs has big impact on the travel time values

Summary

In sum, we define and computationally explore on a basis of simulation a methodological proposal for a DSS to assist in the decision making concerning the management of FSEs, when real-time information is available. We provide a model for the Real-Time FSEEC problem trying to carefully emulate the real-life case. We consider collaborative jobs and define different emergency levels.
Our approach rebuilds the c requests have on the solution and the benefits which might be provided by the event-driven re-planning and re-scheduling. Our reactive re-planning approach is able to schedule engineers for all
emergencies and satisfies th

Notation

- $G = (N, A)$ complete graph, where:
 $\checkmark N = \{0, 1, ..., n\}$ set of jobs
- \checkmark *A* = {(*i*, *j*): *i*, *j* \in *N*, *i* \ne *j*} set of arcs • *cij* - nonnegative cost associated
-
- with arcs $c_{ij} \neq c_{ji} \ \forall i, j \in N$
• $[E_H, L_H]$ bounded scheduling
- horizon consisting of *T* work-days
• $[E_{kt}, L_{kt}]$ hard availability TW of
- FSE $k \in K$ at particular work-day $t \in T$
- $[e_i, I_i]$ hard TW of job *i* • *si* - service time duration of job *i*
- *ai* - arrival time at the job *i*
- *wi* - waiting time at the job *i*
- z_i service start time at the job *i*
- *p*(*i*) collaboration part of job *i ^j* - time instant when a new repair job *j* is called-in

