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Abstract.

We show that, in any coloring of the edges of K
38

with two colors, there ex-

ists a triangle in the first color or a monochromatic K
10
−e (K

10
with one edge

removed) in the second color, and hence we obtain a bound on the corresponding

Ramsey number, R(K
3
,K

10
−e) ≤ 38. The new lower bound of 37 for this number

is established by a coloring of K
36

avoiding triangles in the first color and K
10
−e

in the second color. This improves by one the best previously known lower and

upper bounds. We also give the bounds for the next Ramsey number of this type,

42 ≤ R(K
3
,K

11
−e) ≤ 47.

1. Introduction.

We shall only consider graphs without multiple edges or loops. For graphs G

and H, the two-color Ramsey number R(G,H) is the smallest integer n such that,

for any graph F on n vertices, either F contains G or F contains H, where F

denotes the complement of F . In this paper we consider the case where G = K
3

and H is a complete graph with one edge deleted.

∗ Supported in part by RIT/FEAD grant, 2001.
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A graph F is called a k-graph if F is triangle-free and F does not contain

a Kk−e, where Kk−e is a complete graph on k vertices with one edge deleted.

Such graphs F can be interpreted as colorings of the edges of the complete graph

without a triangle in the first color and without a Kk−e in the second color. We

define a (k, n)-graph as a k-graph on n vertices, and a (k, n, e)-graph as a (k, n)-

graph with e edges. Let R(k), R(k, n) and R(k, n, e) denote the set of all k-

graphs, (k, n)-graphs and (k, n, e)-graphs, respectively. Note that R(K
3
,Kk−e)

is the least n > 0 such that there is no (k, n)-graph. Any (k,R(K
3
,Kk−e)−1)-

graph will be called critical for the corresponding Ramsey number, or simply k-

critical. Let us also note that the definition of Ramsey numbers directly implies

R(K
3
,Kk−1

) ≤ R(K
3
,Kk−e) ≤ R(K

3
,Kk), for all k ≥ 2.

Table I presents all known values (and lower and upper bounds for k ≤ 11)

of this type of Ramsey number. The main result of this paper is an improvement

over the bounds 36 ≤ R(K
3
,K

10
−e) ≤ 39 established in [12]. In addition, for

k = 8 we enumerate all critical graphs, and for k = 9 we find five new ones, though

there might be more. The uniqueness of the critical graph for k = 7 was shown in

[12]. The upper bound for k = 11 is discussed for the first time here. The census of

Ramsey numbers R(K
3
, G) for all connected graphs of orders up to 9 was completed

by Brandt, Brinkmann and Harmuth in [1]. For values and bounds on classical and

other types of Ramsey numbers, see the regularly updated dynamic survey by the

third author [13].

year reference k R(K3,Kk−e) critical graphs

- trivial 3 5 1, C4

1972 [2] 4 7 4, including K3,3

1977 [3] 5 11 2, including Petersen graph

1980 [4] 6 17 1, Kalbfleisch graph

1982 [6] 7 21 1

1990 [12] 8 25 9

1990 [12] 9 31 ≥ 6

2001 this work 10 37-38 unknown

1998 [16], this work 11 42-47 unknown

Table I. Progress on computing R(K
3
,Kk−e)
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2. Graph Extensions and Upper Bound on R(K
3
,K

10
−e).

Let G ∈ R(k, n) and v ∈ V (G). Since the neighborhoods of vertices of G are

independent sets, the maximum degree of G is at most k − 1. Furthermore, if we

denote by G−

v the subgraph of G induced by the set of vertices V (G)−Nv(G)−{v},

then it is clear that G−

v ∈ R(k − 1, n̂) for n̂ = n − degG(v) − 1 ≥ n − k. Denote

by e(k, n) and E(k, n) the minimum and maximum number of edges in any (k, n)-

graph, respectively.

A collection of algorithms and their implementations to construct all graphs in

R(k, n, e) was described in [11, 14] and used extensively in [12, 15]. This technique

requires previous knowledge of all (k − 1, n̂, ê)-graphs, for n̂ and ê ranging over a

set of values which can be determined by the the above observations and by the

method of Graver and Yackel [5]. The principle of the latter is contained in the

following variation of proposition 4 of [5].

Lemma 1. For any graph G ∈ R(k, n, e),

ne−
k−1∑

i=0

ni(e(k − 1, n− i− 1) + i2) ≥ 0,

where ni is the number of vertices of degree i in G, and

n =

k−1∑

i=0

ni, 2e =

k−1∑

i=1

ini.

Lemma 1 gives reasonable lower bounds for e(k, n) provided good lower bounds

for e(k − 1, n − i − 1) are given. Furthermore, it permits the design of efficient

extension algorithms reconstructing the graph G from G−

v for some v, following the

ideas originated by Grinstead and Roberts [7] (where they used them to evaluate

R(K
3
,K

9
) = 36), and those employed by the authors in computations estimating

other triangle Ramsey numbers [11, 12, 14, 15]. For this work we have implemented

similar algorithms for the case of k-graphs, and they have produced the results

gathered below. In this paper, by an extension algorithm we will understand an

application of the methods referenced in this paragraph, which construct graphs G

from H, such that there exists a vertex v ∈ V (G) for which G−

v is isomorphic to H.

Clearly, if G ∈ R(k, n) and degG(v) = d, then H ∈ R(k − 1, n− d− 1).

Our starting set of graphs consisted of R(6), which contains 5017 nonisomorphic

graphs as found in [12]. By extending appropriate subfamilies of R(6), we first
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obtained R(7, n) for all n ≥ 16. Table II includes some data about these constructed

graphs, confirming and extending the previous results about R(7) presented in [12].

Because of the very large number of graphs in R(7, 15), we did not attempt their

exhaustive generation.

n 16 17 18 19 20

|R(7, n)| 158459 4853 225 1 1

e(7, n) 30 37 43 54 60

E(7, n) 48 50 51 54 60

Table II. Statistics of (7, n)-graphs for n ≥ 16

The next stage consisted of the generation of complete sets R(8, n) for n ≥ 23

and R(8, 22, e) for e ≤ 65. Any (8, 23)- or (8, 24)-graph must be an extension of

a (7, n̂)-graph for some n̂ ≥ 16. Using simple vertex degree counting arguments

and/or Lemma 1 one can easily see that the graphs reported in Table II are also

sufficient to obtain all (8, 22, e)-graphs, for e ≤ 65, by applying an extension algo-

rithm.

n 22 23 24

|R(8, n)| ∗80219 36 9

e(8, n) 59 70 80

E(8, n) 74 77 84
∗only graphs with e ≤ 65

Table III. Statistics of (8, n)-graphs for n ≥ 22

The computations produced graphs reported in Table III, which again confirmed

and extended the previous results about R(8) presented in [12]. In particular, now

we claim that there are exactly 9 nonisomorphic 8-critical graphs; one with 80

edges, and eight 7-regular 8-critical graphs in R(8, 24, 84). The one with the largest

automorphism group, with 84 edges, and one with 80 edges, have been previously

reported in [12].
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For k = 8 and lower values on n we have found the sets of graphs with

the minimum number of edges, namely: |R(8, 19, 37)| = 20 for e(8, 19) = 37,

|R(8, 20, 44)| = 169 for e(8, 20) = 44, and |R(8, 21, 51)| = 7 for e(8, 21) = 51.

We have also obtained e(8, 17) = 25 and e(8, 18) = 30.

Lemma 2. The following bounds on the minimum number of edges hold:

71 ≤ e(9, 26) ≤ 73,

81 ≤ e(9, 27) ≤ 83,

91 ≤ e(9, 28) ≤ 95,

101 ≤ e(9, 29) ≤ 106,

113 ≤ e(9, 30) ≤ 117.

Proof. The lower bounds 71, 80, 90, 100 and 111, respectively, can be obtained by

applying only Lemma 1 to the known values of e(8, n̂), as in [12]. We can improve

all but the first bound by performing further computations which reconstruct graphs

G from known G−

v ∈ R(8, n̂) with minimal number of edges. For each n̂ ≥ 19, we

computed all extensions of (8, n̂, e(8, n̂))-graphs to (9, n)-graphs, and none with the

number of edges smaller than a corresponding lower bound of Lemma 2 was found.

Now, if we apply Lemma 1 with k = 9 and 27 ≤ n ≤ 30, but using the values of

e(8, n̂) each increased by 1, then in all cases there are no integral solutions with e

smaller than the corresponding lower bound. Thus the lower bounds for n ≥ 27

are valid. The bound 71 ≤ e(9, 26) follows from an application of Lemma 1 to the

true values of e(8, n̂). The upper bounds are equal to the smallest number of edges

in the graphs constructed by running an extension algorithm on graphs other than

edge-minimal (3,8)-graphs, and by some heuristic searches.

The first 9-critical graph, an 8-regular circulant graph on 30 vertices and 120

edges, with the vertices connected iff they are in distance 1, 3, 9 or 14, was con-

structed in [12]. During the computations described above five further (9, 30)-graphs

were found, three with 117, 118, and 119 edges, respectively, and two regular of de-

gree 8 having automorphism groups with 2 orbits.

Theorem 1. R(K
3
,K

10
−e) ≤ 38.

Proof. As observed in [12], the facts that 90 < e(9, 28), the lower bounds on e(9, n)

for n ≥ 27 listed at the start of the proof of Lemma 2, and Lemma 1, imply that
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R(K
3
,K

10
−e) ≤ 38. The theorem follows since in Lemma 2 we have established

that 91 ≤ e(9, 28).

Further improvement of the upper bound on R(K
3
,K

10
−e) would require very

large scale computations, despite the fact that the data we gathered here about

R(8) and bounds in Lemma 2 are well beyond what was needed in the proof of

Theorem 1. It is possible, however, that some method similar to the linear pro-

gramming techniques used in other Ramsey computations by the authors [10] could

lead to a better algorithm in this case, and thus to the exact value of R(K
3
,K

10
−e),

which we conjecture to be 37.

3. Construction.

In order to improve the lower bound on R(K
3
,K

10
−e) we have applied re-

peatedly the following reduction/extension process. Given a (10, n)-graph G we

first delete one or more vertices then extend it in all possible ways to larger 10-

graphs. Using as a starting graph the only known critical graph for R(K
3
,K

9
) on

35 vertices, which clearly is a (10, 35)-graph, after considerable computations we

have constructed 40 nonisomorphic graphs in R(10, 36). This improves by one the

easy lower bound R(K
3
,K

10
−e) ≥ 36 implied by R(K

3
,K

9
) = 36. The number

of edges in the constructed graphs is ranging from 156 to 162. Six of them are

9-regular graphs of which four are vertex transitive. One of the latter is presented

in Figure 1.

Theorem 2. R(K
3
,K

10
−e) ≥ 37.

Proof. The lower bound is established by a (10,36,162)-graph whose adjacency

lists are presented in Figure 1.

0: 1 2 4 8 12 18 20 23 24 1: 0 3 5 9 13 19 21 22 25
2: 0 3 6 10 14 16 21 22 26 3: 1 2 7 11 15 17 20 23 27
4: 0 5 7 10 13 19 27 32 34 5: 1 4 6 11 12 18 26 33 35
6: 2 5 7 8 15 17 25 32 34 7: 3 4 6 9 14 16 24 33 35
8: 0 6 9 11 13 19 27 33 35 9: 1 7 8 10 12 18 26 32 34
10: 2 4 9 11 15 17 25 33 35 11: 3 5 8 10 14 16 24 32 34
12: 0 5 9 13 15 16 27 28 31 13: 1 4 8 12 14 17 26 29 30
14: 2 7 11 13 15 18 25 28 31 15: 3 6 10 12 14 19 24 29 30
16: 2 7 11 12 17 19 25 29 30 17: 3 6 10 13 16 18 24 28 31
18: 0 5 9 14 17 19 27 29 30 19: 1 4 8 15 16 18 26 28 31
20: 0 3 21 25 26 29 31 32 35 21: 1 2 20 24 27 28 30 33 34
22: 1 2 23 24 27 29 31 32 35 23: 0 3 22 25 26 28 30 33 34
24: 0 7 11 15 17 21 22 25 26 25: 1 6 10 14 16 20 23 24 27
26: 2 5 9 13 19 20 23 24 27 27: 3 4 8 12 18 21 22 25 26
28: 12 14 17 19 21 23 29 32 35 29: 13 15 16 18 20 22 28 33 34

6



30: 13 15 16 18 21 23 31 32 35 31: 12 14 17 19 20 22 30 33 34

32: 4 6 9 11 20 22 28 30 33 33: 5 7 8 10 21 23 29 31 32

34: 4 6 9 11 21 23 29 31 35 35: 5 7 8 10 20 22 28 30 34

Figure 1. An example of a vertex-transitive 9-regular (10,36,162)-graph

4. Bounds on R(K
3
,K

11
−e).

We conclude this paper with a section noting the bounds on the next Ramsey

number of this type, R(K
3
,K

11
−e). First we need an estimate on the number of

edges in (10, 36)- and (10, 37)-graphs.

Lemma 3. 146 ≤ e(10, 36), and if a (10, 37)-graphs exist, then 160 ≤ e(10, 37).

Proof. Using lower bounds from Lemma 2, the inequality in Lemma 1 for k = 10

has no solutions for n = 37 and e < 160, nor any solutions for n = 36 and e < 146.

Hence the lower bounds hold.

Theorem 3. 42 ≤ R(K
3
,K

11
−e) ≤ 47.

Proof. The lower bound was established by Wang, Wang and Yan in [16], who

constructed a cyclic graph with the vertex set Z
41

, in which 1, 4, 10, 16, 18 are

the distances between vertices connected by edges. For the upper bound, assume

G ∈ R(11, 47). Note that G can have only vertices of degree 9 and 10. Applying

bounds from Lemma 3 in Lemma 1 leads to a contradiction.

Further improvements of the upper bound in Theorem 3 are possibly not very

hard to obtain with the methods of this paper, in contrast to the current bounds on

R(K
3
,K

10
−e), which would require a new approach or a much larger computational

effort.

For completeness, we note the current state of knowledge for the next few values

of k. We found many thousands of (12, 45)-graphs, so R(K
3
,K

12
−e) ≥ 46. The

paper [16] contains circulant (13, 53)-graphs, (14, 58)-graphs and (15, 68)-graphs.

We found an additional 14 (14, 58)-graphs, all of them 13-regular, but did not

improve any of these lower bounds.
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All the computations needed for this work were done at least twice, by algo-

rithms implemented independently by different authors. Two general utility pro-

grams for combinatorial computing, written by the first author, were used exten-

sively: nauty [8] for graph isomorph rejection, and autoson [9] for distributing jobs

over local area networks.
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