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Abstract

No snark has a 4-flow. A snark G is 4-edge-critical (or 4-vertex-critical) if, for every
edge e (or pair of vertices (u, v)) of G, the graph obtained after contracting e (or
identifying u and v) has a 4-flow. It is known that to determine whether a graph
has a 4-flow is an NP -complete problem. In this paper, we present an improved
exponential time algorithm to check whether a snark is 4-edge-critical (or 4-vertex-
critical) or not. The use of our algorithm allowed us to determine the number of
4-edge-critical and 4-vertex-critical snarks of order at most 36.
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1 Introduction

Let G = (V,E) be an undirected graph. A k-edge-colouring of G is an assign-
ment of at most k colours to E such that no two adjacent edges are assigned the
same colour. It is known that a cubic graph either has a 3-edge-colouring or a
4-edge-colouring (see [1, Theorem 17.4]). Holyer [8] showed that to determine
whether a cubic graph has a 3-edge-colouring is an NP -complete problem.

A snark is, in essence, a cubic graph that does not admit a 3-edge-
colouring. However, to avoid graphs that can be easily reduced to smaller



snarks, most authors define a snark as a cubic, cyclically 4-edge-connected
graph with girth at least five and that does not admit a 3-edge-colouring. A
graph is cyclically k-edge-connected if at least k edges must be removed in
order to obtain at least two connected components with cycles. We will use
the later definition.

Let D be an orientation of E and let f be a weight function that assigns
integer weights to E. The net-outflow at vertex v, denoted f(v), is the sum of
the weights of the edges oriented leaving v minus the sum of the weights of the
edges oriented entering v. A vertex v is said to be balanced if f(v) = 0. A pair
of functions (D, f) is a (nowhere-zero) k-flow ofG if none of the integer weights
assigned by f is a multiple of k and every vertex of G is balanced. A (nowhere-
zero) mod k-flow is defined similarly with the distinction that every vertex of
G must be balanced modulo k, i. e. f(v) ≡ 0 (mod k). Tutte showed that a
graph G has a k-flow if and only if it has a mod k-flow (see [11, Proposition 3]
for a proof). Tutte also proposed the following celebrated conjecture, which
motivates our research.

Conjecture 1.1 (Tutte’s 5-Flow Conjecture [10]) Every bridgeless graph
has a 5-flow.

A famous theorem of Tutte states that a cubic graph has a 3-edge-colouring
if and only if it has a 4-flow (see [1, Theorem 21.11] for a proof). It is known
that a minimum counter-example to the 5-Flow Conjecture must be cubic and
Jaeger [9, Theorem 9.3] showed that it must be a snark.

In 2008 [6], Silva and Lucchesi presented a study of k-(flow)-edge-critical
and k-(flow)-vertex-critical graphs. A graph G without a k-flow is k-edge-
critical (or k-vertex-critical) if, for every edge e (or for every pair (u, v) of
vertices) of G, contraction of e (or identification of u and v) yields (without
simplifying multiple edges) a graph that has a k-flow. Every k-edge-critical (or
k-vertex-critical) graph has a (k+1)-flow (see [5]). Therefore, no 4-edge-critical
(or 4-vertex-critical) snark is a counter-example to Tutte’s 5-Flow Conjecture.
Silva, Pesci and Lucchesi [7] observed that every snark has a 4-edge-critical
snark as a minor. One approach towards resolving the 5-Flow Conjecture
can be to attempt to extend to a non-4-edge-critical snark G the 5-flow of a
4-edge-critical snark minor H of G. As one first step in that direction Silva,
Pesci and Lucchesi [7] identified the 4-edge-critical snarks of order at most
28, which was, until 2012, the largest database of snarks publicly available.
In 2013, Brinkmann et al. [3] were able to generate a database of all snarks
of order at most 36, a massive computational task, given the fact that the
number of snarks grow exponentially with the order. The larger database can



be found in [2]. In this paper, we present the number of 4-edge-critical and 4-
vertex-critical snarks in the larger database as well as the improved algorithm
that allowed us to process the larger database despite its much greater size.

2 Algorithm and Results

As observed by Tutte, in order to determine whether a graph has a k-flow it
suffices to determine whether it has a mod k-flow. Given a mod k-flow for
a graph G, by reversing the orientation of some edge e = (u, v) and com-
plementing its weight f(e) modulo k, the net-outflow at u is decreased by k

and that of v is increased by k; thus resulting in another mod k-flow for G.
Therefore, G has a mod k-flow for a given orientation D if and only if G has
a mod k-flow for any orientation.

A (u, v)-k-flow is defined similarly to a mod k-flow with the difference
that precisely two vertices, u and v, are not balanced modulo k (and the
net-outflow at u and v complement each other). In [6, Theorems 3.1 and 3.2],
Silva and Lucchesi observed that determining that a graph G without a k-flow
is k-edge-critical is equivalent to finding a (u, v)-k-flow in G for every pair of
adjacent vertices, and to finding a k-flow in G− e for every edge e. Similarly,
determining that G is k-vertex-critical is equivalent to finding a (u, v)-k-flow
in G for every pair of vertices u, v, and to finding a k-flow in G + (u, v) for
every pair u, v (adding a new edge even if there is one there already).

The computer program due to Silva [4] used by Silva, Pesci and Luc-
chesi [7] for determining whether a snark is 4-vertex-critical is essentially a
backtracking algorithm that fixes an orientation for the edges of the graph
and recursively generates all possible weight functions checking for each one if
precisely two vertices u and v are left unbalanced. If during the generation of
all weight functions, a (u, v)-4-flow is found for every pair (u, v), the graph is
4-vertex-critical. Even though Silva’s algorithm uses few pruning strategies,
its perfomance was good enough in order to deal with the database of snarks
of order at most 28. However, a rough estimate of the computer time needed
to extend the computation to the database of snarks of order at most 36 using
this same algorithm, even if 72 different instances were processed in parallel
in a cluster, indicated nearly 6 months of computation. That observation lead
us to investigate good pruning strategies to speed up the computation.

The third author observed that some simple pruning strategies shortened
the total computation time to determine the number of 4-edge-critical snarks
in this database to less than 2 days. Later, the first and second authors ob-
served some extra simple pruning strategies that shortened the total compu-



tation time a little further. Both implementations were adapted to determine,
among the 4-edge-critical snarks, which ones are 4-vertex-critical, which took
around 2 hours for each implementation. In Table 1 we show the number of
4-edge-critical and 4-vertex-critical snarks of order at most 36. The results
given by the two independent implementations agree. The description of these
graphs can be found at [4].

order 10 18 20 22 24 26 28 30 32 34 36

snarks 1 2 6 20 38 280 2.900 28.399 293.059 3.833.587 60.167.732

4-edge-critical 1 2 1 2 0 111 33 115 29 40.330 14.548

4-vertex-critical 1 2 1 2 0 111 33 115 13 40.328 13.720

Table 1
Number of 4-flow-critical snarks for each order

Next we describe the improved algorithm implemented by the first and
second authors (which is not, in essence, much different than the one imple-
mented by the third author). Like Silva’s algorithm, the improved algorithm is
a backtracking algorithm that looks for a (u, v)-4-flow for several pairs (u, v),
but it uses some effective pruning strategies. To begin with, unlike Silva’s
algorithm, our algorithm assumes that the input graph is a snark, therefore
cubic. For a cubic graph, there are not many ways in which we can specify
the weights of the edges incident to one particular vertex w so as to balance
w modulo 4. First observe that the fixed orientation D must either direct
all edges incident with w in one same direction or direct all but one in the
same direction. For each of those cases, there are six combinations of weight
assignments that balance w modulo 4, as depicted in Figure 1.
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Figure 1. Weight possibilities

If the weight of one of the edges incident with w has already been fixed by
the backtracking algorithm, then there are only two combinations of weight
assigments to the remaining edges that balance w modulo 4; and if the weight
of two edges of w have already been fixed, then either there is only one way
to balance w or it cannot be balanced any longer.



Before triggering the backtracking algorithm that seeks a (u, v)-4-flow, we
first specify an order O in which the vertices of V −{u, v} must be tentatively
balanced modulo 4. The order O specified is such that the next vertex to be
balanced by the backtracking algorithm is one of the unbalanced vertices in
V − {u, v} with the least possible number of combinations of weight assign-
ments that balance it. One such order O can be trivially found in polynomial
time. As we attempt to balance vertices for which there are less combinations
of weight assignments first, the breadth of the nodes in the search tree tends
to be narrowed as well as the depth of some branches of the search tree.

The first vertex w in the order O is chosen arbitrarily and will be the
only one with all three incident edges without fixed weights. Notice that by
multiplying the weights of all edges of a (u, v)-4-flow by 3 modulo 4 we obtain
another (u, v)-4-flow in which the edges of weight 3 become edges of weight
1 and vice-versa, while the edges of weight 2 do not change. Therefore, only
the three leftmost combinations depicted in Figure 1 (which three depend on
how the edges are directed) must be considered when we balance vertex w.

This improved backtracking algorithm to find a (u, v)-4-flow can be used
to check if a snark is 4-edge-critical or 4-vertex-critical. To check for 4-edge-
criticality of a snark is much faster than to check for 4-vertex-criticality as
every cubic graph has just O(n) edges. Since no non-4-edge-critical graph can
be 4-vertex-critical, we first check for 4-edge-criticality in the whole database
and only for the 4-edge-critical snarks do we check for 4-vertex-criticality.

Finally, observe that it may be possible to modify a (u, v)-4-flow so as to
obtain a (u, y)-4-flow for some vertex y adjacent to v by edge e. If e is directed
from v to y (or from y to v) and f(e)−f(v) 6≡ 0 (mod 4) (or f(e)+f(v) 6≡ 0
(mod 4)) then it is possible to balance vertex v modulo k, and consequently
unbalance y modulo k, by changing the value of f(e). The result is a (u, y)-
4-flow. A tree Tv, rooted at v, and containing all vertices y for which a
(u, y)-4-flow can be obtained after a series of such modifications are applied
can be computed in polynomial time. Similarly, a tree Tu, rooted at u, can
be found. Once these trees are found, we know that for every pair of vertices
(x, y) such that x ∈ V (Tu), y ∈ V (Tv) and x 6= y there is a (x, y)-4-flow.
Despite the extra (polynomial) cost in computing such trees, this process will
potentially greatly reduce the number of executions of the exponential time
backtracking algorithm. Experimentally, we observed that the computation of
such trees nearly halved the total execution time to test for 4-vertex-criticality
in the whole database.



3 Concluding Remarks

In this paper we described several simple pruning strategies that led to a con-
siderable improvement of the exponential time algorithm to determine whether
a snark is 4-edge-critical (or 4-vertex-critical). Such improvement allowed us
to determine which snarks of order at most 36 are 4-edge-critical (or 4-vertex-
critical) much faster than expected. We also discovered the first examples of
4-edge-critical snarks that are not 4-vertex-critical: there are 837 in total of
order at most 36 and the smallest ones have order 32 (see Table 1). Having
some database of 4-edge-critical and 4-vertex-critical snarks is an important
first step towards the investigation of how non-critical snarks can be built from
the critical ones and also of how the 5-flow of a critical snark may or may not
be extended to a 5-flow of non-critical snarks built from it.
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of interesting graphs, Discrete Applied Mathematics 161 (2013), pp. 311–314, Available
at http://hog.grinvin.org.
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