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ABSTRACT: In this paper, strong negative results are obtained 
concerning the feasibility of identifying a tree by the spectral 
properties of certain associated matrices. In particular, we show 
that, in a precise sense, hardly any tree is identified by the 
characteristic polynomial of its distance matrix, thus disproving 
a conjecture of Edelberg, Garey and Graham [U]. At the other 
extreme, we prove constructively that every tree is uniquely 
determined by the spectrum of every polynomial function of its 
adjacency matrix and the diagonal matrix of vertex degrees.

1. Introduction

During the past 20 years, a considerable amount of research has 

been done on the relationship between the structure of a graph and 

the spectral properties of its adjacency matrix and other associated 

matrices. Surveys of this research can be found in [3] or [6]. It is 

well known that the spectrum of the adjacency matrix does not always 

characterise a graph, the smallest pair of "cospectral" graphs having 

only 5 vertices [2]. More recently, A.J. Schwenk [11] has proved that 

"hardly any" tree is thus characterised; the proportion dropping to 

zero as the number of vertices increases. In 1975, Godsil and McKay [71 

showed that this result is still true if we require cospectral trees to 

also have cospectral complements. In this paper we demonstrate, aided 

by a computer, that (for example) we may also require the trees to have 

cospectral linegraphs and cospectral distance matrices. We then 

approach the characterisation problem from the opposite direction and 

show by an algorithm that, if the spectrum of every polynomial function 

of the adjacency matrix and the diagonal vertex degrees matrix is given, 

we can in fact determine the tree.
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2. Matrix Theory

All matrices will have entries from the real numbers. Suppose M 

is an n x n matrix. The transpose of M will be denoted by M' and the 

(i, k)th entry of M by M.^. The matrix M+ is defined to be the 

(n + 1) x (n + 1) matrix ?t---- > where j is the (column) vector of
I J i M |

length n with each entry equal to one. The symbols I and J denote the 

identity matrix and the square matrix with every entry one, respectively. 

In each case, the size will not be stated if it is obvious from the 

context. The characteristic polynomial of M, <j>EM; x], is the value of 

the determinant |xl - M| . We will usually write <(>[M; x] as <J>EMJ, in 

which case the variable is assumed to be x.

LEMMA 2.1. For any t * 0, <j>>[M^J = t</>[M + pl] + (a: - t)<|>EM-

In the first determinant on the right-hand side, add — of the first row 

to every other row. The result is immediate.

and d

will be denoted

by EM>a, b|c d]

Suppose that a, b, c

by EM!a, b], and the doubly bordered matrixa
M

are column vectors. The bordered matrix

bl
bf

Ot Oi___a’
oEoE___c'
hTdl" M

LEMMA 2.2. Let M and N be square matrices of order m and n respectively.

Let a, 6, y, S be scalars; a, c, a, c be m-vectors and b, d, b, d be

n-vectors. Define

Pl =
a f^_a’_\b_'_ 
? _ E 4 JL _ 
b [ 0 "} N

and
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Proof. Expand the determinants <f> CPj ; x] and <j> C P2 ; x] by brute force.

3. Matrices associated with a graph

Let G be a graph with vertices {1, 2, •••, n}. We assume that 

0 < n < °° and that G has no loops, directed edges or multiple edges. 

Graph theoretic concepts not defined here can be found in Behzad and 

Chartrand [1]. In particular, G denotes the complement, and L(G) the 

linegraph of G. The cone G of G is the graph formed by adjoining a new 

vertex adjacent to every vertex of G.

From the graph G, several matrices can be defined.

(1) A(G) is the adjacency matrix of G:

rl if i is adjacent to k
A.. = ik I '■0 otherwise.

(2) D(G) is the distance matrix of G (G connected):

D„ - 3(i, k), where 3(i, k) is the distance from i to k in G. ik

By convention 3(i, i) - 0.

(3) A(G) is the diagonal matrix diagCdj, d?, , d^) , where d^ is the

degree of vertex i.

(A) Q(G) is the (n + l)th order matrix [A(G) - A(G) Iq_, q], where q is 

the n-vector whose i-th entry is 2 - d..
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We shall find it convenient to write <f>(H; x) instead of <(>TA(H); x] for 

a graph H.

THEOREM 3.1. Let G be a graph with n vertices and s - (^) - s edges.

Define

LetBbe the incidence matrix of G. Then B'B - A(L(G)) + 21 and 

BB' = A(G) + A(G). Since 4>TB'B] - xe n<t>[BB'], [91, we obtain (ii). 

Part (iii) is obtained by applying part (ii) to G and using part (i).

To prove (iv), let C = EJ I B], where B is the incidence matrix

of B and j is a vector of ones. Then CC' = J + A(G) + A(G) and

0'0 n | _ 2 j '
2j ! A(L(G))+2I A tedious calculation using (i) and (ii)

produces the equation (iv). Applying this equation to G gives (v).
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Proof. Noting that A(G ) - A(G) , part (i) comes immediately from 

Lemma 2.1, with t - -1. Since D(G) = J + A(G) - I when G has diameter 

2, part (vii) follows similarly.



Part (vi) can be easily derived from Fact 4 of [8].

4. The major results

Let I be a rooted tree with vertices {0, 1, , n}. We will always

assume in such cases that vertex 0 is the root. The n-vertex forest 

formed by removing the root of T will be denoted T*.

Define A*(T) to be the n x n diagonal matrix diagfd^, d?, , d^)

where d^ is the degree of vertex i in T (not T*). Similarly, define 

two n-vectors a*(T) and q*(T) thus:

Let Tj and Tj be the rooted trees shown in Figure 1.

The following lemma can be established by a direct computation.

LEMMA 4.1. Let z and j denote the 15-vectors with each entry 0 and I, 

respectively. Let e\, g\, hy e {z, j, a*(Ty), q*(T\)}, not necessarily
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distinct, and let e2, f2, g2, h2 be the corresponding elements of 

{z, j, a*(T2), q*(T2)}. Let k e {-1, 0, 1}.

We are now able to present our major theorem. Suppose that S and T 

are rooted trees with m + 1 and n + 1 vertices respectively (m, n > 1). 

The coalescence S*T of S and T is the (m + n + 1)-vertex tree formed by 

identifying the roots of S and T. The rooted trees S and T are called 

limbs of S-T.

THEOREM H.2. Let - S'T^ (i = 1, 2), where S is any rooted tree with 

2 or more vertices, and Tp T2 are the rooted trees of Figure 1. Then 

§ 1 and S2 are not isomorphic, but

-Uli-

Proof. The trees Sj and S2 are not isomorphic, since S2 has the rooted 

tree of Figure 2, more times as a limb than does Sj.



Parts (i)-(iv) can be proved by elementary calculation from Lemma

2.2, Theorem 3.1 and Lemma U.l. We illustrate the method by proving 

the first part of (ii). Let S be the degree of the root of S.

By Theorem 3.1,

Hence, by Lemma 2.2, <}>(L(S1); x - 2) = |{<(>[r1 ]<|>[rg| ag, a ]

+ 4> C r 11 aj, - (x + 6 + 2 )<t>ET 1 Z^EI^Z ) , with a similar formula

for 4>(L(S2); x - 2).

However by Lemma U.l, <f> E f x Zl - <f>Er2] and (JiEfj I aT, aT] = <f>Er2la2, a2],

from which we have <f> (L( Sj )) - ch(L(S2)) immediately.

The following lemma (see E1OZ! and E11Z) actually only requires that

Tj and T2 have the same size.

LEMMA U.3. For m > 1, i = 1, 2, let pAm) be the proportion of trees on

m vertices which have T. as a limb. •z.

Then (i) pi(m) - p2(m) for all m, and

(ii) pi(m) -> 1 as m -»•

COROLLARY U.4. Let p(m) be the proportion of trees T on m vertices which 

are characterised (amongst trees) by the characteristic polynomials of 

any or all of the following matrices. Then p(m) •+ 0 as m -+ =>.
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For the matrix A(T) only, this result was first proved by Schwenk 

[111. The matrix A(T) was added by Godsil and McKay [?]. The other 

additions are new. In particular, it was not previously known whether 

<)>ED(T) J characterised T, for the solution of which problem the author 

grudgingly accepted the $100 prize offered by R.L. Graham. A computer 

search has found that the only trees with 18 or fewer vertices having 

cospectral distance matrices are those given by Theorem U.2.

5. Functions of A(T) and A(T)

The generality of Lemma U.l allows quite a few extra matrices to 

be added to the list of Corollary U.U, but we have merely selected a 

few with simple interpretations. Unless we can find a simple matrix 

whose characteristic polynomial determines the tree, there seems to be 

little motivation for extending the list. Nevertheless, there is 

certainly room for research into more general classes of matrices and 

their relationship to graph structure. As a small contribution in this 

direction, we look at the characteristic polynomials of functions of 

A(T) and A(T) for a tree T.

To begin with, note that by Lemma 2.1 and Theorem 3.1, the 

characteristic polynomials of each of the matrices of Corollary h-.U 

are determined by the characteristic polynomials of the matrices A(T), 

J + A(T), A(T) + A(T), J + A(T) + A(T) and D(T). The next lemma E5J 

shows that each of these matrices is a polynomial function of A(T) 

and A(T).

LEMMA 5.1. Let T be a tree on n vertices. For each non-negative 

integer r define the n x n matrix D (T) by

1 if 3 Ct, k) = r

0 otherwise.

(Dr(T))ik = {
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COROLLARY 5-2. D(T) and J are polynomial functions of ACT) and K(T).

n n
Proof. D(T) = 1 rD (T), and J = £ D (T). 

r=l r r=0 r

This observation might tempt one to suspect that any polynomial 

functions of A(T) and A(T) might be added to the list of matrices in 

Corollary h.U. In fact, the situation is quite the opposite.

THEOREM 5.3. Let S and T be any two non-isamorphic trees. Then there 

is a two-variable real polynomial p such that <|>[p(A(S), A(s))J

- <t>Lp(A(T), A(T))l.

Proof. We establish the theorem by giving a constructive proof of 

the contrapositive. Specifically, we give an algorithm for reconstructing 

T from Tp(T), where ip(T) is the family of two-variable real polynomials 

p such that p(A(T), A(t)) has non-zero trace. Since the trace of a 

matrix is the sum of its eigenvalues, it is obviously determined by the 

characteristic polynomial.

Let T be a tree with n vertices (n L 1). For each integer m

(0 < m < n) define to be any real (one-variable) polynomial such that

for integers L (0 < L < n, L - m), e (L) - 0, but that e (m) - 1. m m

Finally, let II indicate the set of real polynomials in two non­

commuting variables.

ALGORITHM 5. ^. Reconstruct T from ip - ip (T) .

(1) Define a, X e II by a(x, y) - x, X(x, y) - y for all x, y.

Set E {(Kj, i)} where Kj is the rooted tree with one vertex,
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and i e N has i(x, y) - 1 for all x, y.

(2) If X | ip, go to step (6).

If X2 - X 4 ip, go to step (7).

(3) Select any (S, a) e E such that n e ip, where n - aej (X).

Define g -> ana

X *■ X - n - E

a +■ (1 - n)a(l - n)

A +- {(R, ir) e E |ir 5 e ip J

E + E\A.

(1+) Choose any (R, ir) e A and delete it from A.

(5) For each k (0 < k < n) such that US^(^) e ip, add (Q, ns^(?)) to E, 

where Q is the rooted tree formed from R and k copies of S by 

joining the root of each copy of S by an edge to the root 

of R and rooting at the root of R.

If A is empty, to to step (2); otherwise, to go step (U).

(6) There is exactly one (S, 6) e E such that S has n vertices. T is

isomorphic (as an unrooted tree) to S.

Stop.

(7) Let (Sj, di), . , (S , Ofc) be the elements of E such that a.X e ip.

If t = 1, T is (§) (Z) •

If t = 2, T is d d ‘

Stop.
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Let V - {1, 2, , n} be the vertex set of T. For any U £ V, the

characteristic matrix x(u) of U will be defined to be the diagonal 

matrix diag(u,, uo, , u ), where u. = 1 if i e U, u. =0 otherwise.1 z n 1 i

Suppose F is a spanning subforest of T which has no two-vertex com­

ponents and let ev(F) be the set of its end-vertices. The following 

lemmas can easily be verified.

(a) tr(x(U)) - IU1 for any U £ V, where tr denotes the trace.

(b) If U15 U2 £ V, x(Ui n U2) = x(Ui)x(U2).

(c) x(ev(F)) = e1(A(F)).

(d) If W £ ev(F), then A(F)x(W)A(F) = diag(wj, w2, , w ), where w

is the number of vertices in W adjacent in F to vertex i.

(e) Let G be the spanning subforest of F formed by removing the edges

incident with vertices in W, where W £ ev(F).

Then A(G) = (l - x(W))A(F)(l - x(W))> and 

A(G) = A(F) - X(W) - A(F)x(W)A(F) .

Rather than presenting a general proof of the correctness of

Algorithm 5.^, it will be more instructive to work through an example.

Suppose that T is the tree in Figure 3, so that n = 7, and define 

A = A(T), A = A(T). 

1 2
o---- 1----- 1----- o----- o

3 4 5 6 7

Figure 3.

Step 1. a(A, A) - A, X(A, A) = A, and E - {(Kj, i)}, where 

i(A, A) = I = X(V).

Step 2. Both of the polynomials X and X2 - X are in .

Step 3. S = Kj, Q = i . Thus n(A, A) - diag(l, 1, 1, 0, 0, 0, 1) by (c).
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By (d) and (e), after redefining g, a and X we have

a(A, A) = A(o---- o—o) (the other vertices are isolated)

A (A, A) - A(o----- o----- o)

5(A, A) = diag(0, 0, 0, 2, 1, 1, 0).

Finally we find A - {(Kj, x)}, E - 0.

Step 4. R = Ki,ir=i,A = 0.

Step 5. When k = 0, ir(A, A)e (?(A, A)) = x(<l, 2, Z, ?}) and so we add 

(Kj, ASg(E)) to -.

When k = 1, ir(A , A)ek(g(A, A)) = x( {5, 6}) and so we add 

(J, irei (5)) to E.

When k = 2, ir(A, A)efc( E(A, A)) - x(W) and 30 we add 

rre2( 5)) to E.

{Notice that for each k, the polynomial ire^fg) selects those 

vertices which were adjacent to k of the end-vertices which were 

"isolated" at step (3). At the present stage, the elements of B 

associate the rooted tree Kj with the vertices 1, 2, 3 and 7, the 

rooted tree with vertices 5 and 6, and the rooted tree Q\^> with 

vertex U. We can think of the rooted tree associated with a particular 

vertex as a record of the way that particular vertex was connected to 

vertices that have been previously isolated. The Algorithm works by 

repeatedly isolating end-vertices until at most one edge remains. The 

polynomials a and X keep track of the adjacency matrix and the diagonal 

matrix of degrees.}

Step 2. Both X and X2 - X are in i|i.

Step 3. A possible choice of (S, a) is (J, a), where a(A, A) - x((5, 6}). 

Thus n(A, A) - x((6})» and we find
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Step 4. R = ^, ?r(A, A) - x((5, 6}), A = 0.

Step 5. When k = 0, tt(A, A)e (?(A, A)) = x({6}) and so we add

(£, ire0(5)) to S.

When k = 1, tt(A, A)e (5(A, A)) = x(<5)) and so we add

ire1(5)) to 5.

At this stage we have

- {(Ki, ttT ) j (J, ir2), ( , where

tt j (A, A) = x({l> 2, 3, ?}),

tt2(A, A) - x({61),

ir3(A, A) = X({M), and

(A, A) - x( {5} ) -

Step 2. Since X(A, A) = diag(0, 0, 0, 1, 1, 0, 0) , we find that

Step 7. The required elements of H are

Consequently, I is
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