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ABSTRACT. We show that in a %connected cubic planar graph a cycle 
can be found through any given 19 vertices. This is unlikely to be the best 
possible. However there do exist %connected cubic planar graphs for which 
there are 24 vertices which do not lie on a cycle. 

1. Introduction. 

In [3] it was shown that any 17 vertices in a 3-connected cubic planar 
graph lie on some cycle. The largest k for which every set of k vertices 
lies on cycle in such graphs is at most 23. There are several graphs with 
24 vertices which do not lie on a cycle. Examples can be found in Bosak 
[l] and Griinbaum and Walther [2]. We give another example in Figure 
1.4. 

In this paper we show that k is at least 19. The proof technique used is 
basically that of [S]. We now know a little more about the hamiltonicity 
of the graphs involved. For instance, the following two theorems have 
been proved recently. 

THEOREM 1.1. If G is a 3-connected cubic bipartite planar graph on 
n vertices, then for n < 64, G is hamiltonian. 

The proof of this result is in [4]. 

THEOREM 1 . 2 .  JfG is a 3-connected cubic planar graph on n vertices, 
then for n < 36, G is hamiltonian. 

There are precisely six non-isomorphic non-hamiltonian cyclically 3- 
coimected cubic planar graphs on 38 vertices. 

This result is proved in [S]. The six non-hamiltonian graphs referred 
to are precisely those of [I]. 

The proofs of both theorems rely on computer generated knowledge 
of "small" graphs. Using various reduction techniques, larger graphs 
are shown to be hamiltonian by extending hamiltonian cycles from the 
smaller graphs. The model for these proofs can be found in [7]. 

We need the following result from [3]. (It is stated incorrectly there.) 
The graphs of the theorem are shown in Figure 1.1. 
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THEOREM 1 . 3 .  Let G be a 3-comected cubic planar graph. Let A 
VG be such that [A1 < 12 and Jet e l  6 EG. Then there is a cycle C in 
G with A VC and e' $ E C  unless there is a contraction <f> : G + T 
with <fi{A) 2 {I, 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,  lo} and <f> (e l )  = e ,  or a contraction i f )  : 
G -> Di, for i = l , 2  ,..., 7 with d (A)  = {1,2,3,4,5,6,7,8,9,10,11,12} 
and <f> (e l )  = e. o 

Figure 1.1 
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Figure 1.1 (continued) 



An a-edge is an edge which is on every hamiltonian cycle in a graph. 
The edges e of Figure 1.1 are all a-edges. A 6-edge is an edge which is on 
no hamiltonian cycle in a graph. Figure 1.2 shows the unique smallest 
3-connected cubic planar graph which has a 6-edge (both (0,3) and (4,7) 
are 6-edges). There are 7 graphs with a 6-edge on 26 vertices. 
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Figure 1.2 

If E is a cutset of a graph G consisting of three independent edges, 
then the graphs Gi,G2 obtained from G by contracting a component 
of G - E to a vertex are called 3-cut reductions of G. These 3-cut 
reductions are shown diagrammatically in Figure 1.3. 

The graph B of Figure 1.2 has the property that there is no cycle 
through the 6-edge (0,3) and all of the vertices 1,2,4,5,6,7,8,10,12,13,14, 



Figure 1.3 

15,18,22,23. Neither is there a cycle through the 6-edge (4,7) and all of 
the vertices 0,1,2,3,5,6,8,10,12,13,14,15,18,22,23. Hence we may join B 
and the graph T of Figure 1.1 t o  give a graph H so that (i) B sad  T 
are the 3-cut reductions of H and (ii) a b-edge of B corresponds to the 
a-edge of T (see Figure 1.4). 

Now H has the property that it contains 24 vertices which do not lie 
on a cycle. These vertices are either of the two sets of 15 vertices listed 
in the previous paragraph and 9 of the 10 labelled vertices of T. 

This can be seen by noting that if we avoid the edge "en of Figure 1.4 
we cannot find a cycle through the 9 vertices of "T" and an arbitrary 
vertex of "B" (Theorem 1.3). On the other hand if we use "en we must 
use "bn and then we cannot find a cycle through the 15 vertices of "5" 
specified earlier. 

I l l  



Figure 1.4 

2. The main result. 

In this section we prove the following theorem. 

THEOREM 2 . 1 .  Let G be a 3-connected cubic planar graph and let 
A C VG such that [A1 < 19. Then there exists a cycle C in G such that 
A C VC. 

PROOF: The method of proof closely follows that of Theorem 1 in [6]. 
We proceed by induction. By Theorem 1.2 we may assume that \VG\ > 
38. 

Case 1. G is cyclically 3-connected but not cyclically 4-connected. Thus 
G has an edge cut E with three edges. Form the edge cut reduction 
defined in Section 1 to give graphs GI  and G2. Let Ai = (AnVG;)u{ui} 
for i = 1 ,2  where v; 6 VG; - VG. Assume without loss of generality 
that \Ail 5 /A21. Hence lAll <. 10. Since IVG21 < \VG\ there exists a 
cycle C2 in Ga through the vertices At .  This cycle will not include one 
of the edges, e2, of EG2  - E G .  Let el  be the edge of E G l  - E G  which 
corresponds to 62. 

If 1A2 1 < 9, then by Theorem 1.3 there exists a cycle Cl in Ga through 
the vertices of Al and avoiding el. Cycles corresponding to C l  and C2 
in G can be combined to give the cycle C required by the theorem. 

Suppose lAil = 10. Then we can repeat the argument of the last 
paragraph unless GI  is contractible to T. In this case let Cl be a cycle 
in Gl such that Ai C VCl and let e l ,  e[ â ECl U (EGl  - E G )  where 
el corresponds to the a-edge in T. Further let e2, et, be the edges of 
EG2 - E G  corresponding to el ,  e\.  Now IA21 = 11, so there is a cycle 
C2 in GI through Aa and e2, e i  unless G2 is also contractible to T. 



Hence if e! is the third edge of EGy - EG,  then this must correspond to 
the a-edge in T. Thus G must be contractible to the graph J of Figure 
2.1. Since 3 is hamiltonian there exists a cycle in G through all the 
vertices of A. 

(The labels on the vertices of J correspond to those of T in Figure 
1.1. The arrows on edges of J indicate the hamiltonian cycle.) 

Figure 2.1 

Case 2. G is cyclically 4-connected. If G contains an edge f whose end 
vertices are not incident with a vertex of A then perform the f-reduction 
of Figure 2.2. Since Gf is 3-connected then there exists a cycle in Gf 
through the vertices of A which may be extended to a cycle in G through 
A. 

- 
f-reduction 

Figure 2.2 

Hence we may assume that every edge of G is incident with some 
vertex of A. Therefore \VG\ < 38. But \VG\ > 38 by Theorem 1.2. 
Thus \'VG\ = 38 and G is bipartite. The theorem now follows since 
Theorem 1.1 shows that G is hamiltonian. o 
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