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We report on a high-temperature perturbation expansion study of the superQuid-density spatial
correlation function of a Ginzburg-Landau-model superconducting 61m in a magnetic 6eld. We have
derived a closed form which expresses the contribution to the correlation function from each graph
of the perturbation theory in terms of the number of Euler paths around appropriate subgraphs. We
have enumerated all graphs appearing out to 12th order in the expansion and have evaluated their
contributions to the correlation function. Low-temperature correlation functions, obtained using
Fade approximants, are in good agreement with Monte Carlo simulation results and show that
the vortex liquid becomes strongly correlated at temperatures well above the vortex solidi6cation
temperature. We have also evaluated the high-temperature expansion for the free energy of the
Ginzburg-Landau model to 13th order, two orders further than in previous work.

I. INTRODUCTION

Because of the combination of high transition temper-
atures, strong anisotropy, and short coherence lengths
which occurs in high-temperature superconductors,
strong thermal fluctuations are present over a wide tem-
perature interval in these materials. Thermal fluctua-
tions are especially important in a magnetic field where
they are responsible for the melting of the Abrikosov
vortex lattice at temperatures below the mean-field crit-
ical temperature giving rise to a vortex liquid state. In
this paper we report on a study of correlations in the vor-
tex liquid in the extreme anisotropy limit of decoupled
layers. We have evaluated the leading terms in the high-
temperature perturbation expansion of the superfluid-
density spatial correlation function for the Ginzburg-
Landau model of a superconductor film.

The thermodynamics of this system is unusual be-
cause of Landau quantization of the order parameter
fluctuations; our calculations are carried out within the
lowest Landau level approximation in which only the low-
est gradient energy fluctuations are retained. This ap-
proximation is valid near the mean-field transition tem-
perature and is ordinarily valid throughout the vortex
liquid state, although fluctuation effects may be strong
enough in some high-temperature superconductors to
drive the solidification transition outside of its range of
validity. High-temperature perturbation expansions for
the kee energy of this model, even when evaluated to high
order, ' exhibit little evidence of the Abrikosov vortex
lattice state which is expected to occur at low tempera-
tures. Recent Monte Carlo simulations, en the ether
hand, generally obtain results indicative of a weak first-
order phase transition between the two states. (See, how-
ever, Ref. 9 where a difFerent conclusion is reached. ) We
find that the perturbation expansion for the superfluid-
density correlation function, unlike that for the average

superfluid density studied by previous workers, 4'5 pro-
vides clear evidence of strong correlations in the vortex
liquid which presage the appearance of an ordered state
at low temperatures.

The paper is organized as following. In Sec. II we in-
troduce the quantity we study, (~b.(qg ~ ) which is propor-
tional to the Fourier transform of the superfluid-density
spatial correlation function. In Sec. III we outline the
high-temperature perturbation expansion for this quan-
tity and present our closed form result for the contribu-
tion to it &om individual diagrams which appear in the
expansion. In Sec. IV we discuss our evaluation of all
terms out to twelfth order in this expansion and discuss
some comparisons with expansions for the &ee energy
performed by earlier workers which allow us to check our
results. Extrapolations of our finite-order results to low
temperatures using Pade approximants are presented and
compared with Monte Carlo simulations. In Sec. V we
discuss our results on the high-temperature expansion for
the free energy. We have evaluated the coefficients of this
expansion exactly out to 13th order, two orders further
than in the most recent prior work. ' Previous workers
speculated on the basis of existing results that the zero-
temperature limits of Pade approximants to the &ee en-
ergy series extrapolated to the exact zero-temperature
&ee energy in the limit of infinite-order approximants.
Our results allow us to determine an approxixnant of one
higher order than was previously possible and do not sup-
port this speculation. Section VI contains a brief sum-
mary.

II. SUPERFLUID-DENSITY CORRELATION
FUNCTION

The &ee energy per unit area of the Ginzburg-Landau-
model superconducting film in a perpendicular magnetic
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field is given by

f [~] = n(T) I@I'+ —I@l'+ I(—i« —2eA) @I' (1)
2 2m

transition temperature by pinning. The Fourier trans-
form of ySFD(r) is

where 4(r) is the order parameter. 4(r) is proportional
to the wave function for the center of mass of the Cooper
pairs and B = V x A. [We employ the Landau gauge so

that A = (0, Bx,0).] The quadratic terms in Eq. (1) are
minimized by order parameters which correspond to a
lowest Landau level (LLL) wave function for the Cooper
pairs. In using Eq. (1) we are neglecting screening so that
B is the external magnetic field. This approximation is
valid for type-II superconductors near the upper critical
field, the regime of interest in this article. The mean-
field-theory superconducting instability occurs when the
quadratic terms in Eq. (1) become negative for the LLL,
i.e., at T, where n~(T, ) = 0 (n = n+ heB/m').
In the LLL approximation we assume that Huctuations
in higher Landau level channels can be neglected or at
least absorbed in a renormalization of n(T).4 s ii i2 Then
the order parameter 4'(r) can be expanded as

1
XSFD(qg =

y

—(l@(r)I'&(l@(r ') I'&] exp['q ' (" " )]

We evaluate ysFD(q) by expressing it in terms of

x exp[ —iE q (pi + p2)/2],

so that

N2
QsFD(q) = [exp( —q e'/2)(l&(q)l'&

x y

(6)

( ) 1/4

4(r) = ) CF(L„) '~' e'""e
-(&(q = o))'1.

A(g satisfies the following informative sum rule for
each configuration of the Ginzburg-Landau system,

where the number of terms in the sum over p is N@ ——

L L„/2xE2 = L L„(eB/mh). This expansion leads to the
following expression for the Ginzburg-Landau model free
energy:

f[@ld = ).I& I'+ — ).
p P1P2PSP4

x exp ——$ y; —— ) X;
i=1 i=1

where n~ = n(T) [1 —H/H, 2(T)]. Fluctuation effects in
the model are regulated by the dimensionless parameter
g = n~(7rl2/Pk~T)'l2

The central quantity in our work is the superHuid-
density spatial correlation function which we define by

N ).[I&(RI' —1/N~] = o

(@~I' =
( (10)

where A(qQ—:A(q)/60 and Ao = A(q = 0) is propor-
tional to the integrated superfluid density. i [Note that
A(q) is invariant when the order parameter is multiplied
by an overall constant. ] (Ib, (q) I2) is a particularly reveal-
ing quantity to examine in studying correlations in the
vortex liquid. Equation (9) guarantees that (for large

Ny) lim~~ N~lb, (q)l = 1 for any vortex liquid config-
uration. For example, in the high-temperature (vortex
gas) limit (IA(q) I ) = 1/Ny for all q P 0. On the other
hand it is easy to show that in the low temperature limit
the mean-field Abrikosov lattice configuration of the or-
der parameter gives

(4)

Translational invariance of the system guarantees that
the right hand side of Eq. (4) is independent of r. The
modulation of the average superBuid density when the
homogeneous system is disturbed by weak pinning can
be expressed in terms of ysFD(B):

where bn(r"') reflects the modulation of the mean-field

where G is any reciprocal lattice vector. Thus
N~(lb, (qual ) = s~(q) shows exactly the behavior which
would be expected for the static structure function of a
classical Quid with Ny particles in both low-temperature
(solid) and high-temperature (gas) limits. It seems clear
that sv(q) must be closely related to the static structure
factor of the zeros of the order parameter, the vortices,
although we do not believe that they are identical at all
temperatures. For the purposes of the present study it
is sufficient to observe that hv(q)—:sv (q) —1, which
we call the vortex correlation function, is a convenient
measure of the degree of correlation in this system.
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III. HIGH-TEMPERATURE PERTURBATION
EXPANSION

~a T
J' d"!+!

where Z is the partition function

(12)

Z = dCpdC„e "~ "' ! x e '"s~ I "' (l3)
h ~

p

by expanding the contribution to thermal weighting
factors from the quartic contribution to the Landau-
Ginzburg &ee energy. The perturbation series can most
easily be handled in terms of Feynman diagrams. 4' 4 At
nth order, there are contributions &om diagrams with
(n+ 1) vertices and 2(n+1) edges in which the edges rep-
resent the Gaussian approximation correlation functions,
n vertices represent I@I~ terms proportional to P, and the
additional "external" vertex corresponds to lb, (qual . An

I

lb, (q)l can be expressed in the form

l&(RI' = Np
' ) . C~, C~.C~.C~ b~. +~.,~.+~.

pl p2p3p4

x(b e'r'~-(s 4 —s~))pi ~p4+qy

At high temperatures we can evaluate its thermal average

(l&(el') -=f —«e«el&(sll" '- '""'

important consequence of the Landau quantization of or-
der parameter Quctuations is the fact that the Gaussian
approximation correlation functions,

(Cp C„) = bp ~k~T/nH, (i4)

are independent of the momentum p. Each vertex has
two directed outgoing lines to represent the factors of Cp
associated with it and two incoming lines to represent the
factors of Cp. All diagrams containing single-loop dress-
ings of edges or vertices (except the external vertex) can
be eliminated by following Ruggeri and Thouless4 and ex-
panding in terms of "Hartree-Fock" approximation cor-
relation functions. This renormalization replaces n~ in
Eq. (14) by n = 2nH—/(g 6 [g~ + 4g ] ~2). [The +
(—) sign applies for g ( 0 (g ) 0).] n remains positive
for all temperatures so that the renormalized expansion
parameter of the high-temperature perturbation expan-
sion, z—:(Pk~T)/(4m gn2), remains finite at all temper-
atures. [n = nH for g )) 0, n = In~I/g for g && 0;
n = nH(l —4z) ', g2 = (4z —1)2/4z and z = 1/4 at
T, .] When the expansion is performed in terms of the
Hartree-Fock correlation functions, (IA(qgl2) is the sum
of all the connected diagrams without single-loop dress-
ings except at the external vertex.

It is convenient to label the external vertex as vertex 1
and to label the incoming momenta at vertex i as p2; and
p2; q. Then the contribution to (lb, (q)l ) from an nth-
order diagram is given by (k&T/n) ( z)"N& I—(q)/n!
where

I(q) = e *' ~" ~ +'~"
I

—
I ) dpi' dp2„+2(g2)

ra+ 1

b ) (M„, —N„;)p;
p=2

2 n+1

x(bz, + „+b„,+ )e ' i *+' " "' exp ——) (p2„—p2„q)
@=2

p~ and p2 are the two outgoing momentum labels at ver-
tex 1, p labels the vertices, and M„; is unity if i goes into
the vertex p and is zero otherwise, while N„, is unity if
i comes out of p and is zero otherwise. 4 To obtain this
result we have noted that the integral is invariant under
a shift of all momenta, set pq

——0, and multiplied by
N~. It turns out that the integral I(q) can be evaluated
exactly and expressed in terms of the number of Euler
paths in the two subgraphs obtained by deleting the ex-
ternal vertex and making the possible contractions. The
two contractions correspond to the two b functions which
fix either pz or p2 in Eq. (15). We denote the Euler path
numbers for the two subgraphs by T and T . The fol-
lowing result is derived in the Appendix A:

I(q) = ~ exp — ~q /

exp — ~q 8 (16)

if T+ x T+ g 0, and

I(q) = (N~bq o + 1)/(T + T )

ifT" xT~=0
Using the above result for I(q) and writing the number

of appearances of a given graph as 4"+~n!/G„+q we ob-
tain the following formally exact expression for (IA(qg I ):

(l&(q)l') =
N ) .) .o-,g(q)( —4z)"i f'k~T

=o u

i (k~T& q2$2 q2$2
1 + Nybq, o —4z exp +4z exp

Np( n 2 2

+Sz (1 + Nybq o) + 16z 0.5 exp2 + exp[ q'P] + . ), —
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where g labels graphs and the sum at nth order is over (n+ 1)-vertex graphs. a g(q) is given by

a,g(q) =
&

2 ( 1 n)gexp —T' g
n)g n, g

(T„~g )
(1 + Npbg o )

+ T+ ex1
n, g

TA—~' q2E2 if T~ x T„j0,
)

ifT xT =0n, g n, g

(19)

»m (l&(HI') = (&o)iN~.
[qt —+oo

(20)

This result was claimed earlier on the basis of the sum
rule [Eq. (9)].

The real space correlation function is given by

(l~(r)l'l~(r+ R)l') =

where

, f &f(~l~(8~I')

x exp[ —
q E /2]exp[ —iq R] (21)

( N, l (k T'l

~'*') & )
x ) ) a„g(R)(—4z)";

n=0 g

where Tn and Tn are the number of the Euler paths
of the two contracted n-vertex graphs and Gn+1 g is the
number of automorphisms of the (n + 1)-vertex graph
with one external vertex. The diagrams which appear up
to second order in the series and their associated prop-
erties are listed in Table I. The explicit expression in
Eq. (18) can be confirmed from the entries in this table.

We observe in Eq. (19) that contributions which sur-
vive to the large-]ql limit come only from graphs where

Tn g equals zero or Tn equals zero and that the only

terms in ([A(qual ) which are independent of Ny come
from the same set of diagrams. The contribution inde-
pendent of N~ is (b,o)bg o. The remaining contributions
to (lA(q)l ), which are proportional to N&, contribute
to QSFD (q) and are due to correlations in the thermally
fluctuating superfluid density. We thus obtain explicitly
from the perturbation expansion that

In Eq. (23) T„+1g
——T„+T„ is the number of Euler

paths in the uncontracted (n + 1)-vertex graph. We see
again here that only graphs with T„=0 or T+ = 0
remain Rnite for B ~ oo where correlations vanish. The
contribution of this subset of graphs is (liII(r")l ) .

IV. FINITE-ORDER RESULTS AND
EXTRAPOLATION TO LOW TEMPERATURES

We have developed a fast graph-generation computer
program which generates all relevant graphs represented
by their adjacency matrices. s (The description of the
algorithm is given in Appendix B.) From the adjacency
matrices we calculate the number of Euler paths for the
subgraphs (T+ and T„)and from the graph-generating
algorithm we calculate the symmetry factor Gn+1 g. In
Fig. 1, we show one of the graphs which appears at sec-
ond order in the expansion, the two graphs which re-
sult &om the deletion of its external vertex, and the
adjacency matrices of all three graphs. (The number
of Euler paths equals the determinant of the minor of
the matrix appropriately formed from the correspond-
ing adjacency matrix. ) In this way, we have evaluated
the series exactly up to 12th order. We have checked
our results for (l6(q) l2) by confirming that the sum rule
Eq. (9) is satisfied and that the results for both (lAol2)
and P lA(qQlg exp( —zq2E ) are correct order by order
in perturbation theory. The latter two quantities can be

2
a„g(R) = exp

n+1,g n+1,g

(R'l
+ exp

T„+,, Ee)

(Rl
2Tn+i, g ( ~ j

(23)
o

I1 1 0J

0&

d.18gZBLIl

n J7

nsQ

G„+1,g

,
2 2 2
2 1 0
8 2 2

TABLE I. All diagrams up to second order in the
high-temperature perturbation expansion. The open circle
in each diagram represents the external vertex.

FIG. 1. Example of the adjacency matrix representation of
a graph which appears at second order in the expansion and
of the calculation of Euler path numbers of the graph. The
graph is represented by an adjacency matrix A with elements

a,~ where a,~ is equal to the number of edges going from
vertex i to vertex j. The number of Euler paths is equal to
the determinant of the minor of the matrix B with elements
defined by b,~

= 8,i Pz a,z —a,~. The open circle in the
uncontracted graphs represents the external vertex. The two

graphs on the left result from the two possible contractions
after deletion of the external vert .x. The contribution of this

graph to the series is ag(q) = 0.5 xp( qE /4) + exp(——q P).



49 CORRELATIONS IN TWO-DIMENSIONAL VORTEX LIQUIDS 15 267

related to derivatives of the free energy. The &ee energy
is given by

(see Sec. V). Differentiating Eq. (24) once with respect
to P we find that

F = —k Tl Z = k TN&[l ( / k T)+ f ( )], (24) ).(I&(RI'} p(--,'q'~')

where the perturbation expansion for f2D(z) was first
evaluated to order x by Ruggeri and Thouless. The ex-
pansion was extended to order x by Brezin, Fujita, and
Hikami and is extended to order x in the present work

t

(kg) T l 4 + (1 —4z) f2D (z)x
) 1+4z

Similarly, difFerentiating twice with respect to aH gives

2
1 ~k~T~ (1 —4z)[1 —2zf2D(z)] 4z[f2D(z) + zf2D)

(1+4*) (1+4

where (Ao) = (kgyT/6) [1 —2zf2&(z)]/(I + 4z).
The following two expressions give the explicit expansions for (IA(G)I2) and (Ibol2), where IGI = 2.6935471 is

the smallest reciprocal vector for the triangular lattice:

and

(IA(G)l ) = (1 —0.1063198410615574z+9.4218926855002021z
1 (k T&'

Ny( n )
—98.684 577 215 755 340 x + 1222.173413973 232 8x —17509.235 550 184 578 x
+284 197.095 063 13049x —5 152 806.531339371 6x + 103259 468.748 14105x
—2 267 805 862.815430 6x + 54 203 017441.510056 x —1 401 439 349 032.462 2x

+38 992 399883 388.438 z 2) (27)

(l&ol'} = 1+8x — x + x —13639.131890331891x

+214 140.34P 471 362 Q8x —3 763 359.335 8QQ 620 3x + 73 253 246.076 QP8 394 x
—1 565 815 099.394 278 5x + 36 491 644 165.736 839 x —921 480 933812.921 26x

+25 075 334 330 238.250 x (28)

The asymptotic high-temperature expansion of (IA(qual )
can be extrapolated to low temperatures using Pade ap-
proximants to describe the x dependence at each value
of q. Comparisons between Pade approximants of the
series and our Monte Carlo simulation results are given
in Fig. 2 for different temperatures. sv(q) shows a well-

defined peak for q near IGI, where G is a reciprocal lattice
vector of the vortex solid. Such a peak is characteris-
tic of a strongly correlated liquid. Quantitative agree-
ment with Monte Carlo simulation results is obtained
for temperatures above TM and for temperatures below
T with g ( 10. A continuous phase transition to
a vortex solid state at low temperatures would be indi-
cated by the divergence of s~(q) at q near IGI and hence
by a pole in the Pade approximant to (IE(q)l ) along
the positive real x axis. We find that poles do occur
in some Pade approximants to (IA(qual ) at values of z
near those at which Monte Carlo simulations find a weak

I

I

first-order phase transition. However, the poles do not
appear consistently in approximants of difFerent order so
the high-temperature perturbation expansion does not
provide any reliable information about the temperature
and the nature of the phase transition. Nevertheless we
believe that the structure seen in sv (q) is a precursor
of the solidification of the vortex lattice at lower tem-
peratures. The proximity of the vortex lattice state is
apparent in the perturbation theory for s~(q) but is hid-
den in the perturbation theory for the &ee energy be-
cause of the weakness of the thermodynamic singularity
associated with the solidification phase transition.

V. ANALYSES OF THE FREE ENERGY
EXPANSION

By developing a fast graph-generation algorithm, we
were able to extend the expansion for the f2D(z) up to
13th order which is given by

f2D(z) = —2z —z + —z — z +471.39659451659446z —6471.5625749551446z
38 3 1199 4 5 6

9 30
+101279.327845 970 63x —1 779 798.787 594 752 2x + 34 709 019.614363 678 x
—744 093 435.668 222 3lx" + 17399454123.559 521 x"
—440 863 989 257.285 10x 2 + 12 035 432 945 204.531 x
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FIG. 2. Comparisons of the perturbation calculation and
Monte Carlo simulations. The y-axis label is ([A(qQ! ), while

the x axis is wave vector in the units of the inverse magnetic
length E . The upper-left panel is for a temperature above

T, , while the other panels are for temperatures below T,
The arrows in the plots indicate the location of reciprocal
vector [G[ of the vortex lattice state. The Pade approximants
sometimes behave poorly at small wave vectors due to the ex-
istence of the defect poles around qE 1.0. We have "clipped"
anomalous small-wave-vector behavior in some of these figures
so as not to obscure the behavior for q near G.

The Abrikosov ratio P~, which measures the average
smoothness of the superfluid density, can be obtained
in term of f2D(z) as

[4+(1—4*)fl ( )](1+4*)
[1-2 f,'.(*)]'

In the low-temperature (large-z) limit, the f2D(z) is lin-
ear in z, f2D(z) = —az, and the Abrikosov ratio P~ is
given by 4/a. The high-temperature expansion results for

f2D(z) can be extrapolated to the large-z limit by using
the [n, n —1] Pade approximants for the expansion series.
The resulting low-temperature limits for the Abrikosov
ratio P~ obtained by [4,3], [5,4], [6,5], and [7,6] Pade ap-
proximants are 1.398 94, 1.298?2, 1.25667, and 1.240 57,
respectively. The [7,6] approximant requires the high-
temperature expansion to be known to order x and so
was not previously available. Figure 3 shows the low-
temperature limits of the approximants. The dashed line
shows an extrapolation of the low-temperature limits of
the [n, n —1] approximants for n = 4, n = 5, and n = 6
to n = oo, which suggests that the high-temperature
expansion if carried out to suKciently high order could
provide an accurate estimate of the zero-temperature P~
and hence the zero-temperature free energy as has been

I

1.1Q

1.05—
1 QQ

0.00 0.02 0.04 0.06 0.08 0.10 0.12
1/(n-1)

FIG. 3. The extrapolation of the Abrikosov ratio P~ by

[n, n —1] Pade approximants (n = 4, 5, 6, and 7).

argued by Hikami, Fujita, and Larkin. (At zero temper-
ature P~ 1.16.) However the newly available n = 7
[n, n —1] approximant clearly deviates from this extrap-
olation.

VI. SUMMARY AND CONCLUSIONS

We have studied the superfluid-density spatial corre-
lation function (!b, (qQ! ) using high-temperature pertur-
bation expansions and extrapolated our results to tem-
peratures below the mean-Geld transition temperature
by means of Pade approximants. Good agreement with
Monte Carlo simulation data is obtained for g ) —~10.
Our results demonstrate that the vortex liquid is strongly
correlated below T, . A result argued for previously
on the basis of a sum rule which related the large-wave-
vector limit of the correlation function to the average
superfluid density was obtained explicitly from the per-
turbation expansion. We argue that these perturbation
expansion studies give clear indications of the phase tran-
sition to a two-dimensional vortex solid that is believed
to occur at lower temperatures, although they cannot at
present provide reliable information about the nature of
the phase transition or the temperature at which it oc-
curs. We have also evaluated two more orders in the
high-temperature expansion of the &ee energy. These
results demonstrate that caution needs to be exercised
when extrapolating low-temperature results because of
the slow convergence of the series.
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APPENDIX A

The integral to be evaluated has the form

—ni2 n+i j
I(qg

—= e ' " +* "
!
—

! ) dps. dp2„+2 b ) (M„, —N„,)p;
)

2 n+I
x (b~ iq + 6~ ~q )e ' ~ +'~" ~' exp

I
——1 (pz p~ —i)

gL:2

(A1)
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Of the (2n + 1) variables p; only n are independent be-
cause of the (n + 1) b functions. It is convenienti to
choose s„=p2„—p2„ i (p = 2, . . . , n + 1) as the n in-

dependent variables. We label the contributions to I(q)
&om the two choices for the b function at the external
vertex as I (q) and I (q) respectively. We use this b

function to eliminate the sum over p2
——si which can

then be expressed as a linear function of the independent
variables. For I =A or B

n+1

+) tA'

@=2
(A2)

The integral over the independent variables can then be
expressed in terms of these coefficients. The Jacobian
for changing variables &om p„ to 8»q is independent
of q„; at q„= 0 the change of variables is identical to
that required for the diagram obtained by deleting the
external vertex and contracting the two outgoing edges
at that vertex with the two incoming edges. [The two
ways of doing the contraction correspond to I+(q) and
I+(q) respectively. ] Following the work of McCauley and
Thouless we note that the inverses of the required Jaco-
bians equal the number of Euler paths for the n-vertex
graphs which results &om the deletion of the external
vertex and the two possible contractions. We denote the
Euler path numbers by T . The integral over the 8„ is
then elementary and we obtain

(A3)

know that Ix(q) is real, which leads to the requirement
that nxi ——0 and implies that I (q) = exp[—q P(n
I)/2]/Tx. The value of nx can be inferred by noting
that g exp( —q P/2)I (q) is proportional to an inte-
gral which appears in the expansion of the &ee energy
and equals N~/T where T is the number of Euler paths
in the original graph before deletion. It follows that
nx = T/Tx and hence that

I(q) = exp — q I

f T~, ,~
p — q E (A4)

I(q) = (Nybq 0+ 1)/(T + T ). (A5)

(Note that T + T = T.) This analysis fails in the
special case where T+ x T = 0. For that case we have
Ix(q) = nlrb~ o or I (q) = n and a similar analysis
gives the corresponding nx = Ny/T or nx = 1/T, and
so

APPENDIX B

In this appendix we give a description of the algorithm
used to generate the required diagrams. Define a basic

digruph to be a directed graph with each vertex having
two incoming edges and two outgoing edges. Loops are
forbidden, but parallel edges (edges with the same head
and tail) are permitted. Connectivity is not required at
this stage, nor is there a vertex distinguished &om the
others.

Our first task is to generate representatives of the iso-
morphism classes of basic digraphs with at most 13 ver-
tices. Since there are more than 200 million such classes,
we need a method which does not require storage of all
the graphs at once. The necessary tools are provided by
a computer program developed by one of us. ~ For an
arbitrary digraph, this program can assign a canonical
labeling to the vertices and find a set of generators for
the automorphism group.

Let g be a basic digraph. Let v be a vertex of g, with
incoming edges (ui, v) and (u2, v) and outgoing edges

(v, ioi) and (v, iv2). We can form a smaller digraph by
deleting v and replacing the four incident edges by either

(ai) ioi) and (u2, ivy), or (ui, ur2) and (u2, ioi). These
unmelding operations will be called legal if they do not
create loops. The inverse of an unwelding is, of course,
a melding. It consists of taking two edges and welding
their midpoints together to form a new vertex.

The idea is to generate the basic digraphs by per-
forming welding operations on smaller basic digraphs,
beginning with those which admit no legal unweldings.
The latter class, called primitive, are easily identified as
those whose connected components all lie in the class

(Pi, P2, . . . ). Here, P is the basic digraph with vertices
vo, . . . , v2~ i and edges (v;, v;+i) for i = 0, . . . , 2m —1
and two each of the edges (v2;, v2; i) for i = 1, . . . , m,
where v2~ = vg.

Let g be a basic digraph which is not primitive. In or-
der to avoid generation of many isomorphs of g, we define
a set U(g) of major unwelding operations. The required
properties are that U(g) is an equivalence class of legal
unweldings under the automorphism group of g, and that
U(g) is independent of the labeling of g in the sense that
U(g~) = U(g)~ for every relabeling p. For reasons of
efficiency, we defined U(g) by first choosing those legal
unweldings which maximized a combinatorial invariant
based on distances, then, in the exceptional cases where
this failed to identify a single unwelding, used NAUTY

to choose canonically a first legal unwelding and defined

U(g) to be its equivalence class. The defining properties
ensure that, if gi and g2 are isomorphic basic digraphs
with major unweldings Pi e U(Gi) and P2 E U(g2), then

Pi(gi) and $2(g2) are isomorphic.
We can now describe the generation process. Suppose

we have representatives of the isornorphism classes of ba-
sic digraphs of order n. For each such digraph g, we

perform exactly those weldings whose inverses are major
unweldings. This restriction ensures that isomorphic ba-
sic digraphs can only appear within the set of offspring
of the same g, so we can eliminate them by comparing
the new digraphs only to their siblings. (In fact, such iso-
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TABLE II. Number of connected basic digraphs for each order up to 13.

6
59

7
285

8
1987

9
16057

10
149430

11
1551863

12
17747299

13
221015026

morphs only arise &om the symmetries of g, but we chose
not to use that fact. ) After this local isomorph rejection
is complete, we have exactly one representative Rom each
equivalence class of basic digraphs of order n+ 1, except
for the primitive digraphs. The latter are easily added
separately. The number of connected basic digraphs of
each order up to 13 are shown in Table II.

The diagrams required for the expansion are easily
made &om the basic digraphs. Recall that the diagrams
are connected, have a distinguished "external" vertex la-
beled separately (and allowed to carry a loop), and have
an ordering specified for the two incoming edges at each
vertex and for the two outgoing edges. Suppose g is a
connected basic digraph with automorphism group hav-

ing order G (including interchange of parallel edges) and
vertex orbits Oq, . . . , Oq. We can make diagrams with
n+ 1 vertices in two distinct ways.

To make diagrams with no loops, choose any g with
n + 1 vertices. Then choose any orbit 0; and desig-
nate an arbitrary vertex of that orbit to be the external
vertex. The number of labeled diagrams in this class is
n! [0;[4"+'/G.

To make diagrams with the external vertex carrying
a loop, choose g to have n —j + 1 vertices for some

j ) 1 and delete some edge e = (v, ui). Append new ver-
tices ui, . . . , us and new edges (v, ui), (ui, ui), (u;, u;+i),
(u, +i, u, ) (1 ( i & j —1), and (u~. , us). Vertex u~ be
comes the external vertex. The number of correspond-
ing labelled diagrams depends on the action of the au-
tomorphism group of g on the edge e. However, since
the number of Euler paths in the resulting diagram does
not depend on e, we can group together all the diagrams
derivable from g in this manner. The total number of
labeled diagrams in this class is 2(n + 1)!4"+i/G.
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