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Abstract

We establish that if A is a set of at most 23 vertices in a 3-connected

cubic planar graph G, then there is a cycle in G containing A. This result is

sharp.

AMS Classification: 05C38

Let G be a 3-connected cubic planar graph and let A ⊆ V (G). It was shown in
[4] that if |A| ≤ 19 there is a cycle C in G such that A ⊆ V (C). In this paper we
show that if |A| ≤ 23, then G contains a cycle through A. The sharpness of this
result is apparent, as it was demonstrated in [4] that there are 3-connected cubic
planar graphs in which there is a set of 24 vertices that do not lie on a common
cycle.

Before proceeding we include some definitions and terminology from the existing
literature, as we shall make use of them in the rest of the paper. By a k-gon we
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mean a face of a plane graph bounded by k edges. Note that a k-cycle is not
necessarily a k-gon. By a k-cut we mean a set of k edges whose removal leaves
the graph disconnected and of which no proper subset has that property. The two
components (and clearly there are only two) formed by the removal of a k-cut are
called k-pieces. A k-cut is non-trivial if each of its k-pieces contains a cycle and
essential if it is non-trivial and each of its k-pieces contains more than k vertices.
A cubic graph is cyclically-k-connected if it has no non-trivial t-cuts for 0 ≤ t ≤ k−1,
and has cyclic connectivity k if in addition it has at least one non-trivial k-cut. We
denote by λ′(G) the value of k such that the C3CP G has cyclic connectivity k.

Let G be a cubic graph and let S = {uivi : 1 ≤ i ≤ 3} be a non-trivial 3-cut
of G. Suppose that u, v 6∈ V (G) and that L and R are the two 3-piecess of G − S
with ui ∈ V (L), i = 1, 2, 3. Then the graphs

H = L ∪ {u, uu1, uu2, uu3} and J = R ∪ {v, vv1, vv2, vv3}

are called the 3-cut reductions of G with respect to the 3-cut S. Note that if G is
3-connected, then so are its 3-cut reductions. If e = xy ∈ E(G), x has neighbours
{x1, x2, y} and y has neighbours {y1, y2, x}, then the graph

Ge = (G− {x, y}) ∪ {x1x2, y1y2}

is called the edge reduction of G using the edge e.
A set of vertices A ⊆ V (G) is called cyclable if there is a cycle in G containing

A. If, for each A ⊆ V (G), |A| ≤ m, there is a cycle in G containing A, then G is
said to be m-cyclable. If A is a cyclable subset of V (G) and e ∈ E(G) is contained
in every cycle in G through A, then e is said to be an unavoidable edge given A.

Cycles in 3-connected cubic planar graphs have been extensively studied since an
early hope that all such graphs would turn out to be hamiltonian and thus provide
a proof of the Four Colour Conjecture. Of course, it is now known that there are
non-hamiltonian 3-connected cubic planar graphs. The smallest such graphs were
determined by Holton and McKay in [7] where they proved the following result.

Theorem 1. Every 3-connected cubic planar graph of order at most 36 is hamil-

tonian. Moreover, there are precisely six non-hamiltonian 3-connected cubic planar

graphs of order 38.

Insisting that graphs also be cyclically 4-connected increases the likelihood of
hamiltonicity but cannot guarantee a hamiltonian cycle, as is indicated by the
following result from [1].
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Theorem 2. There are precisely three non-hamiltonian cyclically 4-connected cu-

bic planar graphs of order 42 and none smaller. Furthermore, there is precisely one

non-hamiltonian cyclically 5-connected cubic planar graph of order 44 and none

smaller.

It has been conjectured by Barnette that all bipartite 3-connected cubic pla-
nar graphs are hamiltonian. In support of that conjecture is the following result
obtained in [5].

Theorem 3. Every 3-connected cubic planar bipartite graph of order at most 64

is hamiltonian.

In establishing the above results, it was noted that when a hamiltonian cycle
exists in a 3-connected cubic planar graph, then it is frequently possible to find
hamiltonian cycles which either avoid or include specified edges. Dropping the
requirement of hamiltonicity and concentrating on smaller cyclable sets of vertices,
the following results are proved in [4] and [2] respectively.

Theorem 4. Let G be a 3-connected cubic planar graph and let A ⊆ V (G) with

|A| ≤ 9. If e ∈ E(G), then there is a cycle in G− e containing A.

Theorem 5. Let G is a 3-connected cubic planar graph and let A ⊆ V (G) with

|A| ≤ 14. If e ∈ E(G), then there is a cycle in G containing A and e.

We now present our main result.

Theorem 6. Every 3-connected cubic planar graph is 23-cyclable.

Proof. Suppose, by way of a contradiction, that the statement is false and that G
is a 3-connected cubic planar graph which is not 23-cyclable. Suppose further that
G is such a graph of minimum order and that A is a set of 23 vertices in G which
do not lie on a common cycle. By Theorem 1 we know that G has order at least
38. We distinguish two cases.

Case 1. Assume that G contains a non-trivial 3-cut, S = {u1v1, u2v2, u3v3}
and let H and J be the corresponding 3-cut reductions of G. Let AH = A ∩ V (H)
and AJ = A ∩ V (J). We may assume that |AH | ≤ |AJ | and thus |AH | ≤ 11.

(1.1) Suppose A ⊆ V (J). Then, by the minimality of G, there is a cycle CJ in
J containing A. If v 6∈ V (CJ), then CJ lifts to a cycle in G through A, so we may
assume that v ∈ V (CJ). Without loss of generality, we may assume that the edge
vv1 is not in E(CJ). By Theorem 4, there is a cycle CH in H containing u and
avoiding the edge uu1. Then (CH − u) ∪ (CJ − v) is a cycle in G through A.
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(1.2) If 1 ≤ |AH | ≤ 8, then, by the minimality of G, there is a cycle CJ in J

through AJ ∪ {v}. Without loss of generality, CJ does not contain the edge vv1.
By Theorem 4, there is a cycle CH in H through AH ∪ {u} avoiding the edge uu1.
Again, (CH − u) ∪ (CJ − v) is a cycle in G through A.

(1.3) Hence we may assume that 9 ≤ |AH | ≤ 11 and thus |AJ | ≤ 14. By
Theorem 5, for each i = 1, 2, 3 there is a cycle in J through AJ ∪ {vvi}, and so at
most one of vv1, vv2, vv3 is unavoidable in J given AJ ∪{v}. Similarly, at most one
of uu1, uu2, uu3 is unavoidable in H given AH ∪ {u}. From this we conclude that
there is a cycle in G through A.

Case 2. From the above, G must be cyclically 4-connected. If there is an edge
e = xy with x, y 6∈ A, then let Ge be the edge reduction of G using e (note that Ge

must be 3-connected). Since x, y 6∈ A, A ⊆ V (Ge). By the minimality of G, there
is a cycle in Ge through A which lifts to a cycle in G through A.

Hence every edge of G is incident with a vertex of A. This means in particular
that |V (G)| ≤ 46. If |V (G)| = 46, then G is bipartite and, by Theorem 3, hamilto-
nian. If |V (G)| ≤ 40, then G is hamiltonian by Theorem 2. In the case of order 42,
we need only consider the three non-hamiltonian graphs indicated in Theorem 2.
Each of these contains at least 24 hamiltonian vertex-deleted subgraphs and hence
is 23-cyclable. Thus it remains only to consider the 44-vertex case. Here we have
a near-bipartite graph in which the partition of V (G) into two sets, A (as used
throughout the proof to date) and B = V (G)−A is such that B is an independent
set and there are precisely three edges with both endvertices in A. Consequently, G
has at most six odd faces. Furthermore, the minimality of G implies that G contains
no pair of 4-gons with an edge in common. To see this, suppose that there is such a
pair of 4-gons in G sharing the edge e = xy, say. If f and g are the edges opposite
e in each of the 4-gons, then Gf,g, the graph obtained from G after edge reductions
by f and g successively, is 3-connected cubic and planar on 40 vertices and is thus
23-cyclable. Without loss of generality, we may assume that x ∈ A and at least two
other vertices in the adjacent 4-gons must be in A. Thus Af,g = (A∩V (Gf,g)∪{y})
contains at most 22 vertices and Gf,g contains a cycle through Af,g. It is easy to
see that such a cycle lifts to the desired cycle in G through A. Using the method
of Brinkmann and McKay [3], we generated all cyclically 4-connected cubic planar
graphs with at most six odd faces and no pair of adjacent 4-gons. There are 8568483
such graphs. These were then checked for hamiltonicity using the method in [9].
All are hamiltonian and hence there is a cycle in G through A. This completes
the proof.
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