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Let Z,, be the ring of integers modulo m. The m-rank of an integer matrix is the largest
order of a square submatrix whose determinant is not divisible by m. We determine the
probability that a random rectangular matrix over Z,,, has a specified m-rank and, if it is square,
a specified determinant. These results were previously known only for prime m.

1. Introduction

Let m be an integer. The m-rank of an integer matrix A is the greatest integer
k such that A has a k Xk submatrix (not necessarily contiguous) whose
determinant is nonzero (mod m), or 0 if there is no such submatrix. If m is a
prime, the m-rank is equivalent to the usual rank over the field GF(m). In this
paper we investigate the m-rank when the entries are chosen at random,
independently and uniformly, from Z, ={0,1,..., m —1}. Our results appear
to be new except for the case when m is a prime. For corresponding results when
A is constrained to be symmetric, see [3].

We begin with some notation. For integer n =0 and indeterminate g, define
IL(g)=(1-g)(1—¢%---(1—g"). In particular, ITy(g) =1. For integers 0<
k =<n, define

[Z] T Hk(g;;f—)k(q) '

The polynomials [;] are called Gaussian coefficients or q-binomial coefficients
and have many combinatorial interpretations. For example, [?] is the number of
sub-spaces of dimension k in a vector space of dimension n over a field of g
elements. Gaussian coefficients are also of interest as generalizations of ordinary
binomial coefficients, since [¢]— (%) as g—1. Expositions of the theory of
Gaussian coefficients can be found in [1], [2] and [5].

For integers n=1, A=0, 0<6=<n and m=1, define P4 s(n, m) to be the
probability that a random (n + A) X n matrix over Z,, has m-rank n — 8. It will
also be convenient to define P4 o(0, m) =1.
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The value of P, s(n, m) has previously been determined for prime m, as shown
by the following theorem [4, 6].

Theorem 1.1. Let n=0, A=0, 0<<6<n and let p be a prime. Define q =1/p.
Then

1T,.4(9)
A,l5( p) q S H6+A(q)

Theorem 1.1 is also true if, instead of Z, with p prime, we use any field of p
elements, whether or not p is prime. Note that Theorem 1.1 disproves the result
claimed by [7].

When m is not a prime, the evaluation of P, s(n, m) becomes more involved
because we are no longer working over a field. However, it is not difficult to show
that we can restrict our attention to the case when m is a prime power. For
—1< 8 =n, define

n

Qa4 s(n, m)= 2 P, ;(n, m).

j=6+1

Lemma 1.1. Suppose m =p{'ps*---pkx, where pi, p,,...,py are distinct
primes. Then

«
Qa,s(n, m)= 1;11 0 4,5(n, pt).

Proof. The m-rank of a random matrix over Z,, is less than n — § if and only if

the pi-rank is less than n— 6 for i=1, 2, ..., k. By the Chinese Remainder
Theorem, the latter events are independent. O

2. The full rank case

In this section we consider the case 8 =0, i.e., we consider the probability
P 4,0(n, p*) that a random (n + A) X n matrix over Z,. has full p*-rank, where p is
a prime. Results for a general modulus m = p4' - - - pk* are easily deduced from
the multiplicative property of Q stated in Lemma 1.1.

The principal tool for this section and the next will be Gaussian elimination.
We begin with a simple lemma which has enough generality to cover both cases.

Lemma 2.1. Let A be an N X n integer matrix with rows R, R,, ..., Ry. For
some integers i, j, o where 1<i, j<N and i #j, form the N X n matrix A’ from
A by executing the row-operation R;:=R; — aR;. Then, for any integers m =1 and
t=1, A has a t Xt submatrix with nonzero determinant mod m if and only if A’
has such a submatrix.
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Proof. Suppose that B=A[r, r,, ..., r;¢y, ¢, - - ., ¢] is such a submatrix of A,
where the notation indicates that B = (b,,), where b, = a,. forl<su, vst

The determinant of B’ =A'[r, 1y, ..., 1561, €, . . ., ¢,] is the same as that of
Bifije{r,n, . ...,n}ori¢{rn,n,..., r.}. Suppose instead that r, =i but
jé{n,...,n}. Define B"=A'[jr,...,1c,ca..., ¢;] Then we have
detB'=det B—adetB". Since detB#0 (modm), we must either have
det B’ # 0 (mod m) or det B" # 0 (modm). O

Lemma 2.1 can be used to derive a 3-term recurrence from which P aoln, p¥)
can be determined, using the boundary conditions P, (0, p*) =1 (u=1) and
P,0(n, 1) =0. Here and below we write g = 1/p.

Lemma 2.2. If n>0, A=0 and u =0, then
Po(n, p*h) = 1-q™ A)PA,O(n =Ji; PMH) +q"" APA,O(": p"). 2.1

Proof. Let A be a random (n + A) X n matrix over Z,w+1. There are two cases.
With probability g”*4, the first column of A is divisible by p. In this case, we may
obtain a random matrix A’ by dividing the first column of A by p and adding
random multiples of p* to that column. Clearly A has full p“*l-rank if and only if
A’ has full p*-rank. The (conditional) probability of this is P ao(n, p¥).

The remaining case, which occurs with probability 1 —q"*4, is that the first
column of A is not divisible by p. Since p is prime, we can apply a row
interchange (if necessary) and a sequence of row operations of the form
considered by Lemma 2.1, until A is reduced to the form

by by---b,
0 A” ’
where b; # 0 (mod p). By Lemma 2.1, A has full p**'-rank if and only if A” has

full p**-rank. Since A” is clearly a random (n + A — 1) X (n — 1) matrix over
Zp+, this happens with probability P, o(n — 1, p#*1). The result follows. O

From Lemma 2.2 we can obtain several explicit expressions for P, o as sums of
polynomials in g.

Theorem 2.1. If n=1, A=0and u=0, then

,,, K n+k—1

,,.(q) & k(uﬂ)[n +k— 1]
=——== 2.3
m,(q) 2° k @3)

g+DE+) a1 "M (@), . (q)

I(@)T,(q) & I(q) (2.4)
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Proof. Expression (2.2) gives the correct values for u =0 or n = 1. Furthermore,
foru=1,

II5.0(q) ﬁ: qk(A+1)[n +k- 1] -(1- qn+A) asn-1(q) i qk(A+1)|:n' +k— 2]

IIA(g) k=0 k ITA(q) <o k
_ "+AHA+n(q) =t k(A+1)[n+k—1]
ITA(q) i=o k
HA+n(q) < S k(A+1) Hn+k—l(q) k —1\ ki Hn+k—2(q)
=< il e P AN 1—g* (A+1) _ntk—2 1/
Lo @ \&? g &

— g :20 gk+a+y Hr};:(—(;§‘1)>
_ 4. 0(q) & karty(q _ k-1 _ (1 _ ety nek—2(q)
Fora@ (ST G- - - s
ne1 9 wearry Hnre—2(g)
1 k§=:1q( ) IL_.(q) )
— HA+n(q)q"_1 S _ A,k k(A+1)Hn+k—2(q)_ S k(A+1) Hn+k—2(q)
T (2 (- e 2l - 5 )

=0,

so (2.1) is satisfied as well. Equation (2.2) follows by induction.
To establish (2.4), note from (2.2) and (2.1) that

HA+n(Q)Hn+u—1(q)
I 4(9)IT ()T, —+(q)’
PA,o(n, P‘H-l) - qn+APA,o(n; pH)= (1 - q"+A)PA,0(n -1, P"H)-
Eliminating P 4 o(n, p*) yields

P so(n, p**Y) = Pao(n, p) = g**+)
and

1L, 4 a-1(@), 4 —1(q)
P o(n, py+1) =P o(n— 1, pnt+1y _ qn+A+u+Au + 22 ,
el L \(q)1,(@) T, (9)

from which (2.4) follows by induction.

Noting that (2.4) is symmetric in A and u, (2.3) follows immediately from
22). O

Note that the identity (2.2) = (2.4) is also true if A is not an integer, provided
that we interpret IT,.,(q)/IL(q) = (1—g¢"*"")(1 —g**?) - - - (1 — ¢***) for integer
t=0. The proof is the same. One of the referees has noticed that the identities
(2.2) = (2.3) = (2.4) can also be derived from Heine’s Transformation (see [8, eq.
4.7] and [1, p. 19]).

Comparison of (2.2) and (2.3), or examination of (2.4), reveals the following
interesting symmetry, for which we do not have a direct combinatorial
explanation.
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Corollary 2.1. For n=0, A=0 and u =0, we have

Pao(n, p**') =Py o(n, p**).
Corollary 2.2. Let A be a random n X n matrix over Z,.. Then, for 0<i<p*—1,
w1=9" 1L, 1(q)

1-q II,
Prob(detA =] (modp#)) = q k(q)
1- M

I, .(q) ’

Proof. By multiplying the first row of A by numbers prime to p*, it is easy to
show that two determinant values (mod p*) are equally likely if they are divisible
by the same powers of p. The corollary now follows from (2.3). O

, fori#0, ged(i, p*) = p*,

fori=0.

The Chinese Remainder Theorem can be used to extend Corollary 2.2 to
arbitrary moduli.

3. The general case

In this section we determine P, s(n, p*) where p is prime. As in Section 2, the
result for general modulus follows from Lemma 1.1.

In order to derive a recurrence for Q4 5(n, p*), we need to generalize it. For
0=<d=n, define Q%(n, p*) to be the probability that an (n + A) X n random
matrix A over Z,« has p*-rank less than n — §, subject to the event that the first
n —d columns of A are divisible by p. In particular, Q%y(n, p*) = Q as(n, p*).
Let g = 1/p as before.

Lemma 3.1. Suppose that A=0, u=0,0<8d<nand 0sd=<n. Then

0, if 6 =n, (3.1)

0D, ) = 1, fé<n, u+dé-n+d=<0, (3.2)

2PN 0@, prre ), fd=0,6<npu+6-n>0,  (3.3)
4" 4QYTm, p*) + (1= "0~ 1, p¥),  othermise.

(3.4)

Proof. (3.1) follows from the definition of Q. To obtain (3.2), note that, since at
least n —d columns of A are divisible by p, any (n — 8) X (n — 8) submatrix of A
has at least n — 6 — d columns divisible by p. To obtain (3.3), divide every matrix
entry by p.

Under the stated conditions for (3.4), there are two possibilities. With
probability g"*#, the (n — d + 1)th column is divisible by p. If not, we can choose
an element which is not divisible by p in the (n —d + 1)th column and perform
one phase of Gaussian elimination, just as in Lemma 2.2. O
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Our next task is the elimination of the variable d. For notational convenience,
define Q4 s(n, p*) =1 for u <0. The following theorem generalises Theorem 1.1.

Theorem 3.1. For A=0, u=1,n=1,and —-1<d=<n,

n

Hn+ (q) n -
n, 2y — t(t+A) a [ ] t n+é .
QA,6( D ) ‘=§+1 q H1+A(q) t QA,B( p t)

Proof. Define

R(d)(nx P“) = g‘si—igzg (1 - Q(Ad,)é(n: P“))

Equations (3.1)—(3.4) can now be written thus:

1, if6=n, 3.5)
) ifo<n,u+6-n+d=<0, (3.6)

R(d)(n’ p“) - (n) p+d—n Y3
R™(n, p ) ifd=0,8<n,u+6-n>0, (3.7)
q" *R“ V(n, p*)+ R V(n -1, p*), otherwise. (3.8)

In Fig. 1, A is the line segment from (6, 0) to (8, 6), B is the semi-infinite ray
n=u+6+d(d=0), and C is the line segment from (6 +1,0) to (6 + u — 1, 0).
A, B and C are places on the (n, d) plane where (3.5), (3.6) and (3.7) are
applicable.

-
>
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Application of (3.8) to the evaluation of R™(n, p*) corresponds to enumerat-
ing a family of paths L = (n,, d,), (n,, dy), ..., (ng, d.), where (n, do) =(n, n)
and, for 1<i =<k, either (n;, d;) = (n;,—y, d;_, — 1) or (n, d)=(;_y—1,d,_, —1).
It is required that (ny, d,) is the first point on L which belongs to AU B U C. The
weight of L is defined to be g% ™+, where I(L) = {i |0<i <k, n,= Ri1}.

Let W, be the total weight of all the paths whose last point belongs to A. For
8+1s<t<6+pu—1, let W, be the total weight of all paths whose last point is
(¢, 0). Then, by (3.5)-(3.8),

S+u—1

RP(n, p*) =W+ 3 WRO(, pr+o-), (3.9
1

t=5+

To determine W,, notice from the diagram that it is independent of u. Thus,
by (3.9), Wy = R™(n, p).

Next consider W,. If t>min(é + u — 1, n) then clearly W, =0, so suppose that
t<min(é +pu —1,n). Let L=(no, dy), ..., (n, d,) be a path with (n,, d,)=
(¢,0), and let i; <i,<---<i,_, be the values of dyforje{0,1,...,n—1} —
I(L). In other words, iy, iy, ..., i,_, are (in reverse order) the values of d at the
points from which L moves down diagonally. The weight of L is
g im0 A+ Gy mine 1= DA+ A=)+ (1= D+ 4) P O )

Therefore, the total weight of all such paths is

u/t - q(n+A)t+(n—-:)(n—r+1)/2an,‘(q),

where
1, if =0,
CVn,r(Q) = 2 q—(i1+i2+"'+in—l),

1i) < <y S0

ifls¢t<n,
= the coefficient of x*in [] (1 +¢7')
i=1

_ —(n—t)(n—H-l)/Z—(n—t)t[n]
=q ¢ »

by [S, Exercise 2.6.10(b)]. Therefore, W, = g***4)[?], and so

min(é+u—1,n)

RO p)=ROmp)+ > " q [ |RO@ pro. a.10)

t=8+1

The theorem follows on applying the definition of R and Theorem 1.1. [

If care is taken to avoid unneccessary repetition of computation, either Lemma
3.1 or Theorem 3.1 can be used to compute P a,6(n, p*) using a number of
arithmetic operations bounded by a polynomial in # + A and u.

We are now equipped to develop expressions for Q a,6(n, p*) and P, s(n, p*).
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Theorem 3.2. Let A=0, u=1, n=1and 0<6<n. Then
P, s(n, p*) =I1(q)T,+4(q)

( > flay,...,¢)— f(wl,...,ar,)) (3.11)

An-5(1) B_s(1)
and
QA B(n: “) H (q)Hn+A(q) CE f(a'/lx C QU D a’r): (312)
n-(t)
where
quﬂ (o +8)(a;+6+4)
f X1y ..., (Y,-) = ]
( i Hﬂ’l‘*‘5(q)Hﬂf1+5+A(q)Haz—nt1(q) Tt Ha,—a,_l(q)nn—b—nr,(q)
A, s)={(en,..., &) |0say<---<a,<n-6, r=1,
amt o ta,<p-r<a+---+asp-1},
B s(w)={(ar,...,a)|0sa<---<a,<n-6, r=2,
p—r+l<sa+--+e,sp-1<au+---+a,},
and

Cos()={(ay, ..., &) |lsy<---<a,<n-8,

mt - tasp—1<a+---+a}.

Proof. Consider the computation of Q, s(n, p*) by repeated application of
Theorem 3.1, with the boundary conditions Q 4 s(n, p*) =1 if 4 <0. We see that
0 4,5(n, p*) thus has the form

E ——H"+A(q) I:n:ll:tl] 500 I:t’_l]qgfﬂ L(ti+ A) (313)
@1ty (n, 6,0 i a(q) Lty Lty t ’

.....

where T'(n, 6, u) is the set of all possible sequences of values of the summation
index ¢ (in Theorem 3.1). A particular vector (f;,...,¢) occursif n=t=..-=
t=z06+1, 1+ -+t spu+(r—-1)6—-1 (if r=2) and t,+---+t,=pu+rb.
Equation (3.12) now follows on substituting a; =¢,_,,., — dfor 1<i=<r.
To prove (3.11) note that, for 0sd <n,
T(n,6—1, u)\T(n, 6, u)={(t, . .. ,t,)|n>t1>- cezt =0,
t1+' ,_1\M+r5 6—r (r>2)
ptré—r<t;+---+t,<p+ré-1},
and
T(n) 6: ”’)\T(nl 6 - 1: l't)
={(ts,....t) |n=H=- ==, r=2,t,+ - - +t,=p+rd
ut+ré—0—-r+lspy+---+t,_<spu+ré6-6-1}.
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Since the summand in (3.13) is independent of 8, we can find P4 s(n, p*) =
Q4,5-1(n, p*) — Q 4,6(n, p*) by subtracting the sum over T'(n, 8, u)\T(n, 6 — 1, u)
from the sum over T(n, 6 —1, u)\T(n, 6, ). Equation (3.11) now follows on
substituting o; =¢,_; ., — O forl<i<r 0O

A similar evaluation of R™(n, p*) for 6 =0 by applying (3.10) yields the
following identity when compared to (2.2). It may also be proved by induction on
u from the g-Vandermonde identity ([5, Exercise 2.6.3(c)]).

Corollary 3.1. If n=1 and u =1, then

B 4 g R Y
(a1, @) €Pn(u) o lla, o, 1 ’

2w ={(ar, a2, ..., %) |1<says <o, <na+a,+---+a,=pu}.

where

4. Asymptotics and bounds

Lemma 1.1 and Theorem 3.1 enable us to obtain various bounds on Q , s(n, m)
and, using Corollaries 4.3 and 4.4 below, it is easy to deduce corresponding
bounds on P, s(n, m) and 8(A, n, m) = X3_o 6P 4 s(n, m). The last quantity is n
minus the average m-rank of random (n + A) X n matrices over Z,,.

Throughout this section we assume that m = pf{ip5?- - - p¥ where p,<p, <
-+ - < py are distinct primes, u;=1 and k =1. We define g;=1/p;forj=1,... ,k
and qo =TI, q;. If k =1 we may write m = p*, g = 1/p for simplicity.

We also define h =T, (p;/(p; — 1)). Although A is unbounded, it increases
very slowly. In fact, it may be shown that A=<e”In(4.441lnm), where y=
0.5772. .. is Euler’s constant.

Define

Hn+A(q) n _ © .y
TIZX{)[:] and HE(CI)—J_I;II(l 7).

The proof of the following lemma is straightforward and will be omitted.

f(4,q,n,0)=

Lemma4.1. If A=0, 1st<snand 0<g =<}, then
1<f(4, g, n, t)<1/I1.(g),
0<f(A,q,n+1,1)-f(4, q,n,t)<sq""'"/I1.(q),
and q'“*¥f (4, q, n, t) is a monotonic increasing function of q.
Theorem 4.1. O, s(n, m) is a monotonic increasing function of n=1, and a

monotonic decreasing function of A=0, 6=0, ;=1 and prime p; (j=
1,...,k).



44 R.P. Brent, B.D. McKay

Proof. By Theorem 3.1 and Lemma 4.1,

Qasn+1,p= 3 g “f(A, g, n+1,004.6t p***™)

t=56+1
n

= D g (A, g, n, Q46 pPET

t=8+1

= Q04 s(n, p*),

so monotonicity in n follows from Lemma 1.1. Monotonicity in A is obvious as
adding a row to a matrix cannot decrease its m-rank. Monotonicity in & is also
obvious, as Qa s(n, m) — Q4 s+1(n, m)=P, 5.1(n, m)=0. Monotonicity of
Q4,s(n, p*) in u follows by induction on u from Theorem 3.1, and monotonicity
in p = 1/q follows from Theorem 3.1 and the last part of Lemma 4.1. O

Corollary 4.1. Q4 s(°, m) =1im,_,.. Q 4 5(n, m) exists.
The following theorem sharpens the monotonicity results of Theorem 4.1.

Theorem 4.2. If A=0,6=0and n=1, then

Qa,5+1(n, m)<E(8+2)g8 4+ Q psa,5(n — 1, m), (4.1)

QA+1,5("'1 m) = C(é + A + 2)q8+1QA,6(n: m): (42)
and

Qas(n +1, p*) — Qa,6(n, p¥) <2.20¢"+1+C+DE*D/(1 — g), (4.3)

where {(x) is the Riemann zeta function.

Proof. To prove (4.1) it is sufficient to prove by induction on u that

S+A+2

Qs 5ot )= ({553 Quavn ol ~ 1, P (“.4)

Using the inequality [,Z;]<[*7']/(1 — ¢"*!) and Theorem 3.1, the induction
hypothesis gives

Q (n P“)= nil q(t+1)(t+A+1) Hn+A(q) |: n ]Q (t+1 u+6—t)
A,6+1\1, A H_r+A+1(q) t41]2a8t ' P

(q6+A+2) "E_:l t(t+A+1) 11, A(q) [” -1
1_q6+2 1=6+1 I, a+1(q) t

i

] Qav1,s(t, p*°7,

so (4.4) follows.
To prove (4.2) it is sufficient to prove by induction on u =1 that

d+1

Qv o, 2 < (7L 55572) Q7). ®3)
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The proof of (4.5) is similar to that of (4.4), using Theorem 3.1 and the inequality

I, 1(q) = IT,. A(q)
Hx+A+1(q) Ht+A(q)(1 = q'+A+l)

To prove (4.3), we have from Theorem 3.1 and Lemma 4.1 that

Qas(n+1,p*) = Qasln, p)< 2 g7 I1(q)

t=86+1
< qn+1+(6+1)(6+A) 21 q"("_”/Hm(q)
j=
< 2.20qn+1+(6+1)(6+A)/(1 _ q)’

where the constant 2.20 arises in the worst case g =3. 0O

Corollary 4.2.

4
J
Q a,5+1(n, m) g% q3‘5+A+3Q4,a(n, m). (4.6)

Proof. This is immediate from (4.1), (4.2), the monotonicity of Q4 s(n, m) in n,
and the fact that (6 + A+2)<{(6+2)<f@R)=%x% O

Corollary 4.3. If 6 =1 then

n4
(13 48°%) Qus st )< Py o, m) < Qs ).

Proof. This is immediate from Corollary 4.2 with 6 replaced by 6 —1. O

Corollary 4.4. 6(A, n, m) is a monotonic increasing function of n=1, and a
monotonic decreasing function of A=0, u;=1 and prime p; (j=1, ..., k). Also,

J'|14

Qao(n, m)<8(A, n,m)<Q, o(n, m) / (1 - 3—6q€+3)-
Proof. This is immediate from Theorem 4.1 and Corollary 4.2, as
8(A, n,m)= 62 QOas(n,m). O
=0

We now give some upper and lower bounds on Q, s(r, m). Corresponding
bounds on P, 5(n, m) and 6(A, n, m) may easily be deduced from Corollaries 4.3
and 4.4.
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Theorem 4.3. If A=0, 6=0, n=1and 1=V5(6 + A), then

QA,O(n: m) = 2‘30h/mA+1; (47)

0 4,5(n, m) <12.09hg5C* 4P /m4*1, (4.8)
and

QA,a(n: m) < h7.66/m26+A+2r_ (49)

Also, if n=0+1, then

Qa,6(n, m) =1/m@+DETaTD, (4.10)

Proof. The lower bound (4.10) is trivial, as
Qa,8(n, m)=04,5(8 +1, m)=1/m@TDE+4TD,
To prove (4.7), observe that from Theorem 2.1,
Q 4,01, p*) =1— P4 o(n, p¥)
< gt '_il q'/11(q)
S q“(”“’/ll_;.._l(q) <g"“*D/I1(g).
Thus, from Lemma 1.1,

) Q a,0(n, m) < coh/m**?, (4.11)
wnere

8

k
C0=H
j=1¢

say, and computation shows that ¢ <2.30.
To prove (4.8), observe that for 6 =1

Qas(n,m)<&(S+1)E(6+A+1)qg3% Q4 6-1(n, m),
from (4.1) and (4.2). Thus, by induction on é we have

2(1—q,~-1<ﬁ i (1—p-‘)-1=£[2:(t)=c,

t=2 primep

é
Q..o m) < ([T £G4 DG+ A+D)g8®+42Q 1o, m).

Thus, from (4.11),
QA é(n) m) < c3hqg(§+A+2)/mA+1’

where ¢ <12.09.
To prove (4.9) it is sufficient to show that

Qa,5(m, p*)<q®+a2M/(1 - )%, (4.12)
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where a < 7.66. Define

1, if u <0,
K(n, p)=q & ; . [ .
Zl q(]_t)zK(]J u —])/H,._,-(q), if u> 0.
=
Then, by induction on u, we have from Theorem 3.1 that
QA,a(n + 9, pu) < q(26+A+21)yK(n, M),

so it is sufficient to show that K(n, u) <1/(1 — g)* We shall only sketch the proof
here.

Let o be an integer such that —0.5<e=71—0=<0.7 and B,=0q"*’ <1,
where 6 = £7,4’9*2*29)/I1(q). By induction on y we find that n < o — 1 implies
that K(n, p) < (Bq(“"‘)z)f’”"]. Thus, by induction on p, we have K(o, p)<f;,
where

1+s/(1-p8,), ife=0,
fb:

max m;, if e#0,
j=0

where mo=1, m;,,=Bom; + Bis, Bo=q* and s = Yie1 q(f+5)2/17j(q). Now, for
all integers j >0, we have K(o +j, u) <f;, where

il o

,§0 q U f/;_(q) + El gt ;. (q)
G—9?

fi=max|\ 1, -4

and f, = lim,_,., f; satisfies

IS ey ©  (i+e)?
La"fi+L4q

= i=

fo<max| 1, ,

o

n(q)- % q“

i=j

for all j = 3.

Since K(r, p) is a monotonic increasing function of n, we have the uniform
bound K(n, u)<f.. Moreover, using the result that ¢=* + g~ <1+ 27¢/16, it
is easy to see that fy, fi, . . ., fo are uniformly 1+ O(g), so K(n, u)<1/(1—¢q)*
for some constant a. To show that we can take « <7.66, choose ¢ such that
—1<e=t-o0<iforp=3, and g<e=71—-0<1+¢, for p=2, where g,=
—0.3006 . . . is defined by ¥, 27 U*%"/IT,_,(3) = 1. This concludes our sketch of
the proof of (4.12). O

We can now show that the convergence of Q4 s(n, m) to Q4 s(®, m) as n— o
is rapid.
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Corollary 4.5. If A=0, 6=0and n=1 then
Qas(n+1,m)— Q4 s(n, m) <26.6hkq;~2qP+DE+a+1)

Proof. Suppose n =6, for otherwise the result is trivial. From Theorem 4.1 we
have

k
Qasn+1,m)—Qnsn m)s< 21 (Qas(n+1, pt)

r QA,&("’! P}Li))QA,a(” + 1: m/p;‘l)
so the result follows from (4.3) and (4.8). O

From Theorem 1.1 and Corollary 4.3, the lower bound (4.10) is almost attained
if m is a large prime. On the other hand, if 7 is a positive integer which divides pu,
n=6+1, and m=p* for prime p, then Q, s(n, m)=1/m?**4*2* Thus,
although the bounds (4.9) and (4.10) differ widely, the exponents of m are the
best possible. However, the exponent 7.66 of 4 in (4.9) is not the best possible.
From numerical evidence we conjecture that lim sup,,.. Q4 5(®, p*)p@2+4+2# js
maximal when A=0 and 6 =2 (if p <3) or 6 =1 (if p=5). This leads to the
following conjecture, in which the constant n*/36 is best possible (since
lim sup,,.. Qo,1(n, p¥)p* = ["3'P).

Conjecture 4.1.
4

Qa4s(n, m)< ;—6 h max(h, 8.81)/m2°+4+2*

2,y 2
< (n 4 In(16 In m)) [m2o+a¥zT,

6
Table 1
Fo,5(%, m)

m 6=0 5=1 6=2 6=3 6=4 6=5 5(0, =, m)
2 0.28878810 0.57757619 0.12835026 0.00523879 0.00004657 (—8)9.691 0.850179 83
3 0.56012608 0.42009456 0.01969193 0.00008739 (—8)4.096 (—12)2.10 0.45974076
4  0.57757619 0.40911647 0.01325045 0.00005680 (—8)9.762 (—11)4.88 0.435788 15
5 0.76033280 0.23760400 0.00206253 (-7)6.707 (—12)8.61 (—18)4.41 0.24173108
6 0.68715643 0.31020034 0.00264277 (-=7)4.621 (-12)1.91 (—19)2.03 0.31548726
7 0.83679541 0.16271022 0.00049435 (—8)2.959 (—14)3.60 (—22)8.91 0.163 69900
8 0.77010159 0.22883878 0.00105935 (-=7)2.775 (—11)5.16 (—15)6.06 0.23095832
9 0.84018912 0.15948034 0.00033050 (—8)4.540 (—12)2.10 (—-17)1.19 0.160 14147

10 0.82954583 0.17017845 0.00027571 (=9)3.545 (-16)4.02 (—25)4.28 0.17072989

11 0.90083271 0.09909160 0.00007569 (—10)4.71 (—17)2.42 (~26)1.02 0.099242 99
12 0.81418678 0.18555001 0.00026321 (—9)4.974 (—15)4.00 (—22)1.02 0.18607643
13 0.91716247 0.08279939 0.00003814 (—10)1.03 (-18)1.64 (—28)1.55 0.08287567
14 0.88392695 0.11600698 0.00006607 (—10)1.56 (—18)1.68 (-29)8.64 0.11613912
15 0.89457665 0.10538254 0.00004081 (—11)5.86 (—19)3.53 (—30)9.26 0.105464 16
16 0.88011610 0.11980552 0.00007838 (—9)1.530 (—14)1.08 (—19)1.87 0.11996229
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In Table 1 we give some values of Py s(®, m) and 8(0, =, m). The notation
“(—9)1.23” means 1.23-107°.
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