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W e develop a.n improved a.lgon'thm for ca.nonically la.belling a graph 

a.nd finding generators for its automorph.ism grou.p. The emphasis i, on th.e 

power of the algorithm for ,01 fling pr4ctical problem.t, rather tha.n on the 

th.eoretica.l n,iceti u of tJu algo rith.m . Th.e nsult is a.n implementa.tion wh.ich-

011.11. 11I.ccel8/w.ly hll.ndle many grll.ph.& with. II. thot/.,1a.nd or m ore vertice~, a.nd 

i& ver y likely th.e most powerful {lra.ph- is omorph-18m progra.m c1I.rrently in use. 

INTRODUCTION 

In th i s paper we discuss the design of an algorithm for canoni 

cally labelling a ver t ex - coloured graph and fo r finding genera t or s for 

its autoao r phism group. Tb is algoritha is a descendan t of one described 

in McKay(14 J , which in turn was descended fr om one which first appeared 

in McKayI121. Other algorithms which also employ some of t he ideas 

used by our algortthl'l include those of Mathon !lt}, Arlazarov, Zuev, 

Uskov and Faradzev [ 1} and Beyer and Proskurowsk i [2 ]. However , we lLTe 

con f ident that our algoritha is sIgnif icantly more power f ul than any 

other publi shed aIEorithm for the practical solution of the isomorphi sm 

probl em for gener al graphs. On t he fe~ occasions where the proof of 4 

non- t rivia l assert10n 1s not giVen here, it can be found 1n McKay [15J . 

1· 1 Set. and graphs 

In t hIs paper V w111 alWays denote t he set {l,2,···,n}. The 

set of all l abel led simpl e graphs with ver tex set lr wi ll be deno ted by 

g(V). It G e g(V) and II e V, N(v,G) is t he set of all eleaents of V 

which a re adj acent to '!I in G. Any other graph t heo reti c concep t s not 

defined he re can be f ound 1n r4J. 

Let X be II set and l e t < be a linear (to tal) order on X. 

Suppose Z is a set wbose elements are finite sequences of e l ellents of 
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X (the lenith .ay vary). Then the lezicogrtlphic ordering 0/ Z induced b~ 

< 1s the linear order < defined as fol l ows. If a=(%t.z~. " ·.Zk)EZ 

and {J = (111, 1/:;, ···.11') e Z then a < {3 e1 t her of the follo .... 1ni are true. 

(1) For some t, I <t < min{k, l}, .... e have Z; = 1I; for i < t 

and %1 < Yt· 

(11) %; = 11; for 1 < i < Ie and I > Ie. 

If X is a Itnearly ordered set; then .inX denotes the IIlni .um 

element of X. In particular, lIine = co. The function max is defined 

similarly. 

1·2 Partition.. 

A partition of the set V is a set of disj oint non-eliPty subsets of 

V whose union IS V. An ordered pa.rtit1on of V 15 a sequence (VI , V:; • ...• Y.). 
such that {VI. V~, ... • Vr} 15 a partition Clf V. The se t of al l partit10ns 

of V and the set of all ordered parti tions of V will be denoted by 

I1(V) and ll(V) respect ively. For notationAl economy we al so define 

f1"(V) = f1(V) U mV). 

The e lemen ts of a pa.rtiti on (o r ordered partition) 1r E I1"{V) 

a re usually called its c~ll •. A trivial cell of 1'1" 15 a cell of cardinality 

one j the de.ent of such a. cell 15 sa i d to be find by 11". If every ce ll 

of 11" is trivial. then 11" is a <ii.crne part ition, whtl e if there is only 

one cell, 11" is the un.it partition. 

If .... " "/I"~ e IT-(V) , we wr i te 1'1"1 ~ '1'2 if .... 1 and It~ have the sa.e 

cells, i n sOlie order. We sa.y that 1I"t 15 finer than "111" 11 , denoted 1I" t < 11"2, 

if every cell of 1I" t 1 s a subset of sOlie cell of 11"2' Under the same 

conditions , . 11 is eoa.".!!r t llan .... 1. It is \lell known that the se t n(V) 

forms a lattice under the partial orde r <. This . eans t ha t , given 11"10 

11"2 e n(V), there i s a unique coarsest partition 71"1/\ 11"~ e I1(V) SUch that 

11"1 > 11"1/\ 11"2 and "/1"2 > ..... 1/\ 11"2. and a unique finest parti tion 11"1 v ""~ e I1{V) 

such that "/1"1 < 71"1 V 11'2 and 'lf2 < .... 1 V 71"2_ Each cell of 1I't /\ .... 2 15 a non

ellPty intersection of a cell of 1'1"1 and a cell of "11"2' Each cell of "11"1 V"ll"~ 

is a minimal non-empty subset of V which 1s both a Union of cells of 

1'1"1 and a union of cells of 71"2' 

.. 



Let 'If e U-(V). Tben f1x('If) is the set of ele.ents of V wll i ch 

are fixed by 11". The &~Pporl of 'II'" is Ute set s UP p('II'") = V \ flx('II'"). The 

se t of minimum. ctll Tl!!prut nta.ti1l e& of fI' is mcr(1f) = {minY; I V; E 'II'}. 

where t he lIinl l1a are under tile na tural orderIng of V. 

1·1 ' L,mma Let '11'1, "11"2 II! n"(V) . 

(.) flX(""'1 v.,..., ) = flX(""'l ) n fix(.,) 

( b ) fix{1I"1 /I. '1'1'"2) :> fi X(111) U fix{.,) 

( 0) SUPP(1f1 \I 1f~) = SUPP('I'I'"l) U SUPP{fr2) 

(0) SUPP(1fL 11 1f2) C SUPP(1I"1) n SUPP(1I"2) 

(,) mer(.1 v 11",) C mcr(1I"1) n Ec r(lr2) 

(f) mcr('II'1 /I.. ""'2) = mcr('II'"I) U IIcr(fr2) 0 

L" 'If = (VI, V2, .. " V~) IE il(V). For each % IE V define u(%,,..) = i , 

wllere % IE Y;. If '11'1, 11"2 IE ll(V) then we say t hat 11"1 and 11" 2 are cOI'U,'dent 

if, f or any %, Y IE V, U(t,'I'I'" l ) < u(y,1I"d implies that U(:t , 1!'2) < U(y,1!'2)' 

As a relation, cons istency is sYlillet r ic but no t trans iti ve . If 11" 1 < 11" 2 

and '1f t and ,.., are consi stent, we indicate tlli s by writing 'If. -<"'2 or 

'lf2 >- ,.. •• The rel ati on -< I s transiti ve but not symmetri c. 

1·4 Groups 

For pe rlluta t ion group t heo ry not del1neated here see Wl elandt 

[19]. Let '1 be a permutation on V (1n other wo r ds 'T E S,,). The 1mage 

of U E V under '1 1.1 11 1 be denot ed by 11'1. More generally, if W C V 

t hen W" = {'W'J I 'llie W}. Similarly. if 1f = (V. , V2 , " ', V,) IE g(V). 

t hen 'If'J = (vl , V~, "', Vn Finally, tf G IE g{V) t hen G" IE Q'(V) ha s 

E(G") = {t'Jy'J I 'XII IE E(G)}. 

If Q C 8", then Q defines a partiti on 8(n) E n(V) whose 

cell s are the orbits of (0 ). t he group gene r a ted by Q . For no tati onal 

convenience we 1.1111 write B({,}) as 8b), and fix(a), supp(Q) and .er(a) 

w11 1 be used a s abbrevi a tions t or fix(8(n»), s upp(8(Q)) a nd mcr(8(Qn. 

re spec t ively. The next } " mma follow s ea sily frOIl Lellllla 1·3 . 



'·5 L.mma L flt n, IfJ C Sn. 'J'h.en 

(a) B{O U .,.) = 6(n) v 11("') 

(b) flx(n U 4'1) = fh(n) n flx(4J) 

(0) supp(O U 4» = supp(a) U supp(tP), .n' 
(d ) mer(D U "') C IIcr(O} n mcr(If». 0 

Let r < S" and l et n be any se t such that an action of each 

'J e r is defined on each element of n. Then the It a.bili8Br of {} in r 
Is the group ra = {'1 e r I w'" = w for each IJ e n}. Ele.ents of ra are 

said to fiz n. The lIIost important cases of this construction are as 

follows. 

(1) (pf)int~wi.u" stabiliser) 

If W C V then Fw = {'1' e r I :1; ' = z; fo r each :I: e W}. 

(11 ) (uHJJise stabiliser) 

If WCV t hen r{W~ = {1er l w'1 = W}. 

(111) ( partition d4biluer) 

If 'If e n·(V) has cell s Vi, V:/ , ' .. , v;. then r ., = {'1 e r I 
V7 = V. for 1 <i< r} . No te that t hi s i s quite dUferent 

froll r{:or} = {'1 e r I,..' = 'II"}, unless tI E il(V) . 

(1 v) (a.1'tomo rp/lism grClup f)f grllph) 

If G e G(V), then the automorph.ism group of G is t he 

group Aut(G) = (S,.){e} = {"I E S .. I G1 = G} . 

.. 



DEVELOPMENT OF TH E ALGOR ITHM 

In t his section ",e describe the theoretIcal basis f or t he 

algor ithm. The aore mundane as pects of i ts impl ementa tion w11l be treated 

1n Secti on 3. 

2·1 Canonital Label. 

A canonica.llab,l i s a map C: Q'(V) X aWl _ Q(V), such t.hat. 

for any G E g (V) , 11" E llWl and 7 E S" we have 

(C1) 'lG, ffl ~ Q 

(C2) e(o"', :1("1 ) = 'lQ,"') 

(C3) If C(G,ff"1) = C(O,ff) , t.hen :11""1 = 11"' f or MIme 6eAut(G) . 

The main use of II. canonical l abel is to so lve var ious graph 

isomorp his m problems as i ndicated i n t he follo wi ng theore m. 

2·2 Theorem L!t GI , O2 E .G'(V) ,:II" E mV) a.nlt '7 E Sn. Th~n C{G1, 11") = 
C(G2, "If'!" ) i.f and only if there -i.J a permutation 6 E S" ,uch that G2 = G~ a.nd 

1'I" '!" =ff~ . 

Proof: The exlstence of 6 as required implies t hat C(G\, 1I") = C(02,"II""1) by 

Property C2. Suppose conversely that C(G J ,1I") = C(G~,1I"1") . By Pr operty C1, 

O~ = G~ for some fJ e S". Tllerefor e C(G2 , :11"') = C(G~ , 1I"1 ) = C{G1 ,7I""lr).), 

by Property C2. Slnc e C(G J , 1I"} = C(G2 ,1I""I ), the re Is some a e Aut(GI ) such 

t ha t 1I""ltr' = 11" <>" , by Proper t y C3, and so 11" ' = ff <>~. But a E Aut.(G I), and. 

so O 2 = Gf = G'{~. 0 

The isomorph1 s. probl em desc ri bed i n Theo rem 2·2 can be thought 

of as that of t esting ver tex-col oured graph s f or hoao rphlsl11. Gi ven 1,..1 
col ours, ~e colour the ver tices of G1 whi ch 11e tn "the i-th cell of 

ff .... ith the i - th col our, t or 1 <i < Iffl. We then $1II11arly col our the 

vertices of G 2 i n accorc!.ance .... ith ,..'. This 101111 use the S411e colour s 

.... ith the salle fr equency. Theorem 2·2 no~ says that e(GI,1f) = C(G 2 , 11" "1) 

if ana only if "there I s II. co l our-preserving i somorphism from (iJ to (i 2. 

The most il1portant case is, of course, when 11" is t he unit 

partition (V), in which cas e Property C3 hold S tr ivially. However we 

will l18. i nta i n the more leneral setting we have created , sInce t he added 

comp l lclltions .... ill only be slight . 

.. 



2·3 Equitable Partitions 

For G E g(V). t! E V and W C V, we define dG(v, W) to be the 

number of elements of W which are adjacent in G to v. The subscript 

G will normally be suppressed. We will say that ,..- e IT-(V) is equitable 

(with respect to G) if, for all VI, V2 e,..- (not necessarily distinct) we 

have d(VI, V~) = d{1I2, V2). It is easy to show that the equitable members 

of IT{V) form a lattice which is closed under v. Since the discrete 

partition is always equitable, it follows that for every 11" E I1(V) there 

is a unique coarsest equi table partition E(,..-) E I1(V) which is finer than ., 
One of our first concerns in this section will be to study an 

efficient procedure for computing E("'-) from :rr. 

2·4 The Refinement Procedure 

The algorithm we give here is a descendant of one first described 

in McKay [12]. It actually turns out to be a generalization of an algorithm 

of Hopcroft ([S), see also [7)) for minimizing the number of states in 

a finite automaton, although it was not derived from the latter. 

The algorithm accepts a graph G E g(V), an ordered partition 

,..- E LI(V) and a sequence a = (Wi, W2, "', WM) of distinct cells of 'IT. 

The result is an ordered partition R(G, 'IT, a) E U(V). Under suitable 

conditions, to be discussed below, R(G,'IT,a) '" E("'-), 

2·5 Algorithm Compute R(G,'IT,a) given q E g(V), 'IT E Il(V) and 

a = (WI, W2,"', WM) C 'IT. 

(l) * := 'IT 

m:= 1 

(2) If (* is discrete or m> M) stop: R(G,'IT, a) = 1i' 

W:=Wm 

m:=m+l 

k: = 1 



{Suppose if = (VI , V2 , ' ", v~) at t his point.} 

(3) Define (Xl, X:., ···, X.) IE lI(V ... ) such that for any :I: IE Xit 

Y IE Xj we bave d(~, W) < d(y, W) i f and onl y if i < j. 

If (.! = 1) go t o (4) 

Le t t be tbe sma llest in teaer such t hll t IXII 15 aadaulll 

(1::; t < 4). 

If (Wj = V ... for SOllie j (m < j < M) Wi := XI 

Fo r 1::; i < t se t WM+,:= Xi 

For t < i < , set WM+t - 1 := Xi 

M:= M+,-l 

Update ;r by replac i ng t he cell V ... wltb tbe cells X l, X :, ·· ·, X. 

in that order (in situ.). 

(4) k := k + 1 

If (k < r) go to (3) 

Go to (2) o 

2·6 Theorem For Gny G IE g(V), 1T E LI{V), we Mtle R(G,1!' , '!!') = €(1T), 

Proof: (a) The value of M - m is de creased In Step (2) and is onl y 

increased when if is made strictly finer. Therefore the algorithm 15 

cer tain t o terBinate. 

(b) By defi nition, €(1T) < 1T, so €('/r) < if at Step (1). Now 

suppose tha t e("') < if be f or e sOllie executi on of Step (3). Since W is a 

cel l of some partition coarser than €(11') (i e. some earlier value of 1i) , 

it 15 a uni on of cells of €(w). Since €(1T) 15 equitable, we must have 

t ba t t(w) < i after the execution of Step (3). Therefore, by induct i on, 

{ ('If) < R(G,1I',1!') < 11' .. hen the algorithm stops. 

(c) Suppo se that R(G,Tr,Tr) is not equitable. Then for soce YI , 

Y~ e: R{G,1I',1I') there are :t, y e Y1 such thllt d(:Z: ' Y2) 01 dry, Y2). Since if 

'I 



is made successive ly f iner by t be 4lgorit~, :t and y must al'oiays be in 

the same cell of i-. 

(d) At Step (1), Y2 is contained in some e lement of a. Hence 

Y2 must sOllle t ille be contained in W for an execut ion a t' Step (3). 

(e) Since z and yare never se parated, d(:t, W) = d{y, W}. But 

sinc:e W Is a union of cell s of R(G,,..- ,l'T) , and d(z, Y2) ':1= d(Y,Y2) , there 

is at least one other cell Ys of R(G,1f,If) contained 1n W f or which 

d(:r;,Ys) ;;£d(y, Ys). Si nce Y'l and Ys are different cells of R(G,1r,If) t hey 

must be separa t ed at some execution of Step (J). At leas t one of theil, 

say Y2 will t hen be con t a i ned in soae new ele_en t of a. 

(f) Si nce t he argullent in (e) can c l early be repeated in

definitely , the algor1thll ne ver stops, con tradi c ti ng (a) . Therefor e our 

assullPtion that R{G, 1t' ,1r) is not equitable must be fa lse , 'o'hic:h pr ove s 

t hat R(G,'Ir,1r)~ {('I'I'). 0 

An i mpor tan t advantage t ha t Al gorit ha 2·5 has over prev i ous 

algor ithms f or computi ng { ('II") is that a can some tilles be chosen t o be a 

proper subset of '11'. One lIethod of choos1ng a is desc r Ibed tn the nelCt 

the ores . 

2· 7 Theorem Let G E Q(V), 11' e lI(V) and SUppOSIJ that there is some equi. 

t abl ~ partitio n fr' which i, coar.!er than 7T. Cho f}u a C '1'1' luch that for any 

WE fr', W ~ halJe X C W for at mod one X € '1'1' \ a. T hen. ~{G,1r,a) ~ €"(7T ). 

(Il) 8y the s alle argullell t s as i n Theorem 2·6 , t he a l goritha will 

eventually stop, am" {(lI') < R(G, 1I',a} < 11'. 

(b) Suppose t hat ~(G,1I',a) is not equitable. Then f or some 

Yl , Yz €.£(G,1I',1lI) thl!rl! are z, 1jeYI such that d(:t,Y~);;t:.d(y,Yz)' Since 

R(G,'I'I',IlI) < 11"', and 1'1" 1s equitable, there 1s at least one oth~r cell 

Y3 of ~(G, 11' , Ill) such tha t Ii(:!:, Y~);;t:. d(y, Ys). 

Cc) If Y2 and Y3 are in different cells of .,.., the defined 

r elationship be tween 1'1'. a and 'If' ensure s tha t a t l east one of thea, say 

Y2 , I s rontal nl'ld In some ce ll of a at Stl'lP (1). We can then t ak:e up the 

proo f of Theore. 2·6 a t s t ep Cd) , and conclude t hat R(G, 'II',a)~{ (.,..). 

" 



(d) On the other hand, Y2 and. Y3 may be in the !lame cell of 11'. 

Since they are in different cells of R(G. 1I',c.r) tbey .ust be separa t ed 

a t Step (3). At leas t one of t hem, say Y!/., .... 111 then be contained in 

some nel>' elellent of a. We can now take up the proof of Theor em 2·6 at 

step (e) and conclude II.S bef ore that R(G,lI',a) ..... e(7I")· 0 

One application of Theorem 2·7 occurs when G is regular and "II" 

has lIore than one ce ll . The unit part iti on 11"0 is equi table , and so we 

can choose a to be 11" l ess anyone cel l. Thts will be part!l;:ularly time 

saving if 11" = (tI, V \ tI) for sOllie tI, In which case we can use a = (tI). 

A much 1I0re important app l ication of Theorem 2·7 will be described 

in Section 2· 9. 

Two ve ry usefu l prope r ties o f Algo r ttlut 2·5 are s tated in the 

next lemma. Both of them are i lllmedia te cons equence s of the defi ni tion 

of the a l gorithm. 

2·8 Lemma Let G E Q(V), "II" E n(V). a an o,.dered &u.Dset of 1T' and 1 E Sn . 

Then 

(b) o 

2·9 Partition Delb 

Let 1T' = (tll ,tl2, .. ·,w .. ) E U(V) and let tI e Vi for sOllie i. I f I Vii = I 

define "11",>1; = fr. If jv.j > 1 define fT ,,1.1 = (Vi,··· , Yo- I, II , Yo \ 'II, Y.:+I , ··· , Vk)' 

Also define 1T' .1.tI= R(G,1T'o>"tI,(tI)). 

Given G E .Q(V), If E U (V) and a sequence v = ti l , tilt, ... , tI ... ~l of 

distinct elellents of V, we define the partition nut de,.'tl ed /,.om G, 'II" 

and v to be [11"1 ,11"2, · ··,11'",1. where 

(b) 11'; = 'll"i_ 1 J.. tI,_1> f or 2 < i < m. 

It follows froa Theorems 2·6 and 2·7 that each 'It"i Is equitable. 

Define N(V) to be t he se t of all partition nests derived f rom salle 

G e Q{V), 'It" e U(V) and vector v of distinct elelilen ts of V. 



2·10 The basit .earth tree 

Let G E Q(V) and 11" E U(V). Then the s/ta.reh tree T(G,1I") 1s the 

set of all partition nests 1/ = [11"1,11"2, .. ',71"",] e H(V) such that /I is 

derived from G, 11" and a sequence 1Il,tl2,' " ,tI",_1 where, for 1 <i< m~l. 
V; 1s an element of the first non-trivial cell of 71"; which has the 

smallest size. This definition implies that 11I"il < 111";+1 1 for 1 <i < m. 

The elements of T(G,1I") will be referred to as nodes. The 

length 1/11 of a node 1/ is the number of partit10ns it contains. If 

/I = 111"1,11"2, .. " 71"",1 is a node then 1.'(.) denotes the node [11"1,11"2, .. " 1I"i), for 

1 <i< m. Thus 1.'("') = /I. If m > 2 then v Is called a Su.cceSJOf of 

/I(m - I). Similarly, /I 1s a descendant of 1.'(') (and /I(i) is an a.ncestor 

of v) if 1 < i < m. The root node [11"1) 1s an ancestor of every node 

other than itself. The set of all nodes equal to or descended from a 

node 1/ c.onstitutes the s1/,btree of T(G,1T) rooted at v, and is denoted 

by T(G,'I'I",/I). If the last partition in a node is discrete, /I will be 

called a terminal node. 

Suppose that VI and /12 are distinct nodes, neither of which Is a 

descendant of the other. Then for some i. /I~;) = v~;) but V~'+lJ =F vh·+ 1
). 

The node 1.'\.+1) wl1l be denoted by 1/1~/l2 and I/~"+I) by /l2~/ll' 

The natural linear ordering of V can be used to provide an 

ordering < of the nodes of T(G,fI"). Let VI and /12 be distinct nodes. If 

/11 Is an ancestor of 1-'2 then /II < /12' If neither of /11 or 1/2 1s an ancestor 

of the other, there Is a node [1"1"1,11"2, •• ·,11"",1 and vertices Vl =F 112 such 

that /11 ~ /12 = ['1'1"1, '1'1"2, .. " '1'1" tn, ff m .1. till and 1.'2 ~ /II = [fft, ff2, .. ',11",.", 11"", .1. 1121· 

Then we have VI < 1.'2 if VI < V2' If VI < /12, we say that VI is earlier 

than 1.'2. and tha t /12 is later than VI' 

Some of the obvious properties of this ordering of T(G,1I") are 

listed in the next lemma. 

2·11 Lemma Let G E Q(V), 7r E II(V) and /11, /12, V3 E T(G, 71"). Then 

(a) Exactly one of VI < 1.'2, 1.'1 = /12 and /12 < /II is tru.e. 

" 



(c) If 111 < 112, 11'1 E T(G,'II", 111) and V:/. E T(G,'II", 1I2) then 11'1 < 1I~, 
except pO$.tibly if 111 i.t an. an.ce&tor of 112. 

Given G E -'!(V) and. 'II" E a(V) we can gene rate the e lellents of 

T(G,fI') In the order given by <, with the simple backtrack B.lgorith. 

gIven bel ow. 

2· 12 All'Orithm Gllmerate T(G, 11') in the order eariie8t to lated , given 

G E M(V) and'll" E mY). 

(1 ) It; := 1 

'11'1: = .R.(G,1I','If) 

(2) If (1I't Is discrete) go t o ( 4) 

w,.:= fir s t non-trivial cell at '11'1; ot tbe smallest size. 

(J) If (W" = 0) go to (4) 

v: = mIn W~ 

Ie:= k+ 1 

Go t o COl} 

(4) Ie := It; - 1 

If (k > 1) 110 to (3) 

Stop: All tbe nodes of T(G,'Ir) hIlve been out put in tbe 

required order. o 

" 



2·13 Group Action. Oil T(G,~) 

If II = [1rl,1T2, " ',1I"",J E f:!(V) and '1 e 5 .. , then we can define 

,,"I = ['lrI,1fl,' ", ";:'J. Obvious ly II" E li(V). The property of Alaorlthlll 

2·5 descr i bed in Lemma. 2·S ha s imlledi ate consequences f or T(G,'II'" }, IS we 

describe in the next t heorem. 

2·H Theorem Let G e G(V), 'Ir e mV) 4nd'J E Sn. 

(a) T(G"I ,rr"l ) = T(G,'II'")'I . 

(b) If II e T(G,1I"), th.en T( G'"', ", .. , ,,"I) = T(G, 11", "p. o 

The map fr om T(G, '!f) t o T(G,"p Inducect by '1 w11 1 not tn general 

preserve the order1na <. 

We wl11 be pa rticularly interested in pe rmutations 'J E Sn such 

that G" = G and ","I e '!f. In other word s, '1 e Aut (G)" . If "I> II:.! e T(G,1I') 

and II::: = "I for sOllie '1 E Aut {G) .. we write V I '"" V::: and say that " 1 and 

II::: are equivalent. By theorem 2·14, ...... is an equi valence relati on on 

T(G,1f). If v is a terai nal node of T(G,'!f) t hen v is ca ll ed an i den.tity 

nods if the r e is no earlier node of T(G,:rr) wh ich is equi valent to v. 

The foll owing t heore. 1s fundamenta l to our treatment of group 

actlons on T(G, w). 

2·15 Theorem Let G <I!! .Q(V}, 11" e LI(V) 4nd'1 E Aut(G)" . Th.en 

(a) T(G, '!f)" = T(G, '!f). 

(b ) IfveT(G,w), tlu n T(G,1!',") = T(G, 'Ir, IIP. 

(c) If VI, v::: E T(G, '11'), VI < 112 Gnd lit '" v::: , then T(G, '11', V2 - VI) 

contain& no identitll nod ~, . 

Prool : Asser tlons Ca.) and (b) are lllo.ediat e consequences of Theorell 

2·14, so we conSider on ly a.s serti on (c) . If Vi ....... 112, there 1s SOlie 

'1 E Aut(G) ~ such tha t "2 = Vf ' But then V::: - V I = (YI - 112P a.nd 

so T(G,'Ir,V2 - "'I)= T(G,'II" ,VI - " 2P by (b ) . However VI <~ and sO 

"' I - v::: < 112 - Vi> by Lemma 2·11. Ther efore, every ter1llinal nm1e i n 

T(G, '!f, V2 - VI) is equl valent t o an ear lier termInal noDe i n T(G,:If, "' I-II:::). 

whi ch proves (c:) . 
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2· 16 Indicator rundionl 

Let .1 be any 1 t nearly ordered set. An indicat or function 1s a 

lIap A :g(V)XlJ{V)X.tf(V)-> .1 such that A{G",1I"' ,v') = A(G,'II",v) for 

any G E Q(V). 'II" E mY), v e T(G,'II") and..., E Sn· 

Given one indica tor function A, we can define ano ther ind icator 

function ,1 by 

where k = Ivl. wi t h t he l exicographic ordering Induced frolll the ordering 

of .:1 . 

2·17 Definition of C(G,"!!) 

If v = ['11"1,11":1, " ','11"",] Is a terminal node of T(G,'II") t hen'll"", 

1s a discrete ordered partition, by definition. This .eans that 11" .... 

defines a.n ordering of the decents of V. We can define a graph G(v) 

iso.or phic t o G by relabelling the vert i ces of G in the order tha t 

they appear in 11" .... More pr ecisely, If " .. = (ti l I"~ I··· 1 tin), and 6 E S" 

Is the perllutation taUng V; onto i for 1 < i:5 n, t hen G(v) = d. The 

followin g leMma is an lIlllediate consequence of the defin itions. 

2·18 Lemma If G E s:i(V), 'II" E II(V), ..., E Sn and II E T(G,1T) is a. terminal 

n.ode, then G(II') = G(II) if an.d only if1 E Aut(G). 

Proof: Let v = [11"1 , '11"2, · ··. '11" ... 1, where '11' ... = (VI [ \/2 1··· I V .. ), a nd take 

the pe rauta tion 6 E S .. which takes 11; onto i for 1 < i < n). Then 

G(v) = d by def i nition. Also by definition, '11";' = (,,11111 1'" I ,, ~), 
snd so G(v') = G"'- II. Thereto r e G(v) = G(v') if and onl y if G' = G"'- 'I, 

which is possibl e 1r and onl y if 1 E Aut(G). o 

Our next requir ement Is a linear ordering of Q(V). Any such 

onler ing will do, but it will be convenie nt f or us to use an ordering 

defined using the adja cency aatrices of elements ot Q(V). GIven G E Q(V) 
we can define an integer n.(G) by writing down the e i eCients of the 

adjacency aatrlx In a r ow- by- r ow fash ion, and interpr eting the result as 



an n 2 _bit binary number. If Glf G2 E Q(V) we can then define G l < G2 

if and only if n(G l ) < n(G2). 

We can at last define C(G,'Ir). Let X(G,'Ir) be the set of all 

terminal nodes of T(G,'II"). Choose an arbitrary (but fixed) indicator 

function A. Let A* = max{.1{G,7r,v) I v E X(G,'II")}. Then we def i ne 

C(G,w) = max{ G(II) III E X(G,7f) and AlG, 1f, v) = A*}. 

2·19 Theorem C is a. .ca.nonicalla.bel. 

Proof: We show that C has Properties Ci~C3 (Section 2·1). Property 

C1 is true because G(v) '" G for any v E X(G,7f). Now let 'Y e Sn. By 

Theorem 2·14, T(G"', '11"1") = T(G,1f)'!" and so X{G1','II"1') = K(G,1r)1". Also, 

by the definition of indicator function, &01",7f1',v1') = M:G,'II",v) for 

any v e X(G,7r). Finally, by the definition of G(v), we find that 

G"'(v1") = GCv). Therefore C has Property C2. 

In order to prove Property C3 we must recall Lemma 2·8 (a). 

Together with the fact that any v e X(G,'II") Is a parti tion nest, this 

implies that C(G,1f) = G6 for some 6 E Sn such that 7ri = '11". 

Now suppose that C(G, '11"1") = C(G,'II") for some 'Y e Sn. Since C -, 
satisfies Property C2, C(G,1l"1') = C(G"' ,1f}. Therefore there are a, 

(j E Sn such that 1f0" = 'lr P = '11", C(G,1r1") = G1'-
I

O and C(G,'Ir) = GP. The 

assumption that C(G, "1'1"1") = C(G,1r) thus implies that G1"-
I

O = G~ and so 

(ja-1'Y E Aut(G). Finally, 7f~o-l1" = '11"1" since 1ffJ = '11"'" ="1'1". Therefore C 

has Property CJ. 0 

An elementary means of computing C{G,1r) is now apparent. Using 

Algorithm 2·12 we can generate every element of K(G, "1'1"). We can then 

identify those II e X(G,"I'I") for which MG,1f,v) is maximum and so find 

C(G,'II") from its definition. It is not necessary to s t ore all of K(G,1f) 
slmul taneously; its elements can be processed a s they are generated and 

then dIscarded. However, this process IS not practical for use with 

a great many graphs because of the size of K(G,7r). One problem is 

with graphs having large automorphism groups. Since Aut(G) acts seml

regularly on X{G,1f), IX(G,'Ir)1 must be a multiple of Aut(G), and so can 

be impossibly large, even for moderate n. Secondly, there are graphs 
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fo r which IX(G,"-)! i s very larae, even if IAut(G)1 is small. We w11l 

lIeet some of t hese grapbs in §3. 

The metho~ which we will use to attack these difficulties I s a 

process of pruning T(G,"'-). Let us say t hat II e X(G,1I') is a canonical 

node if C(G, 11') = G(II). Obvi('lusly, any part of T(G,1I') can be ignored U' 

the remainder is known to contain a canonical node. OUf guiding 11ght 

1s the following thee r ell, which is already implicit in the foregoing. 

2·20 Theorem Let G E Q(V}, 11" E: LI(Y), and A"' = ux{A(G,1r,II) 1 11 e 

X(G,,..)}. LetX"(G,1f) be any ,ub,et o[ X(G,w) which conta.ina thole identity 

node.; II for which ltiG, 'If , £I) = iO. Then X·{G, w) conta.inl a. canonical node. 

D 

In the te rms of Theorem 2·20 our aim will be to reduce the size 

of X*(G,lT) as lIuch as possible. We will reduce the nUliber of el ement s 

Of X*(G,'!I') which are not identity nodes by searening for autollorptlisms 

of G and ellploying any we find te delete subt rees of T{G,1f). We will 

reduce the number of Ideotl t y nodes In X"'(G,1f) by using A. 

2·21 Vaing automorphilml to pt'une T(G,'If) 

The existence of one or more automorph:lns of G can be inferred 

during the gene r ati on of T(G,1I') in at least two dUfe rent ways. 

(1) We lIay find two t erminal nodes Ill' £I~ E X(G, '11") such that 

G(v,) = G(",). 

(2) We CAn sOlletlmes infer the presence of auto~orpbl slls fr om 

the structure of an equitable partition. 

The first case is tbe more important and will be treated first. 

The second case can vait until Section 2·24. 

Suppose then that during the generation of T(G,1I') we encounter 

a terminal node £I~ E X(G, '!I'). compute G(£I~), and discover that it is the 

same as G{1I1) for sOlie earlier terminal node £11' Since III and II~ Are 

teninal nodes, ther e Is a unique penutation '1 E SOl such that £12 = 111. 

It then follows from Lemma 2·18 that '1 E Aut(G). We will call 1 an 

e%piicit autollorph l s ll. 
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Once we have found an explicit automorphism there are several 

ways we can put it to work. These are based on Theorem 2·15. The immediate 

outcome of Theorem 2·15 is that we may ignore the remainder of the subtree 

T(G,1I",V~-Vl)' However, we can do better than that. Since Aut(G) is a 

group, not only '"/ but all its powers are in Aut(G). Moreover, if we have 

found several automorphisms of G, any permutation which 1s generated 

by these is also in Aut(G). The follow1ng scheme for handling this mass 

of information 1s not always the best, but has been found to work very 

well in many circumstances. 

Let r E X(G,1f) be the earliest terminal node. We w11l need the 

following lemma. 

2·22 Lemma Let VI < V2 E X(G, 11"). Then I~ - v21 < IVI- v~l. 

Proof: If 1£11 - v21 < It - v21, then V2 E T(G, 1r, r - VI), whi ch contradicts 

the assumption that III < v~. o 

We next introduce an auxiliary partition fJ E n(V). We initially 

set 9 equal to the discrete partition of V, and whenever we obtain an 

explicit automorphism 1, we update 9:= 9 v 9(1). This means, by Lemma 

1·i3, that 9 is at every stage the orbit partition of the group generated 

by all the explicit automorphisms so far discovered. It also means that 

9 <9(Aut(G)"-m)' where [11"1,11"2," ·,11" ... 1 is any common ancestor of all the 

terminal nodes we have yet considered. This is because a permutation 

taking one node to another fixes their common ancestors. 

Now consider a node v = [11"1,11"2, "',1I'm1 which 1s an ancestor of r. 
Because of the defini tion of t, v is also an ancestor of all the terminal 

nodes generated so far. Let W = {\ll,\l2," ',IJIo} be the first non-trivial 

cell of smallest size of 11""" where IJI < 1J2 < .. < 1J1o' Since 9 <1I'm, (J 

induces a partition of W. Now the successors of v, in the order earliest 

to latest, are V(\ll), V(1J2),' ", V(VIo). where V(Vi) = [7fl' 11"2, "', lI'm, 11'", .1. Vi1. 
If '!Ii < IJj are in the same cell of (J, there 1s some automorphism 1, 

,generated by the explicit automorphisms so far discovered, such that 

lI(tlj) = v(v;p. Therefore we can exclude the subtree T(G,1I',v(\lJD from 

further examination. There are two ways of doing this. The first 1s 

that, as we generate successive subtrees T(G,1I",V(IJI)), T(G,1r,V(tl2))' 
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we only consider those for which 11; e mcr(6). The second Is that, 

upon discovering an explicit automorphism 7 during the generation of 

T(G,1I",V('!Ii)), and updating 6, we check to see if it still true that 

v; e IIlcr(6). If no t , we have found proof (namely 1 ) that T(G,1I",V(lIi)) 

only contains terminal nodes equivalent to those of some subtree we have 

al teady examined. Therefore we can return at once to v and consider 

V(VH I)' 

The technique just described often allows us to jump all the 

way bac\::: to an ancesto r v of ~ after only generating one terminal node of 

a subtree rooted at a successor of v. Unfortunately this is not always 

possible, for example when a new terminal node is not recognised as 

being equivalent to an ea rlier one. It will also be possible (due to the 

use of A - see later) for a whole subtree to be ignored without knowing 

it to be equivalent to anything else. In order to put our automorphisms 

to work in such cases we have devised the following scheme. 

Firstly, we maintain a store 1If which contains (flx{1), mcr(1)) 

for every explicit automorphism 7 so far discovered (or some subset of 

them). Tben, with each non-terminal node v e T(G, 11") we associate a set 

W(v) C V. The first time (1f any) we encounter v in the search of 

T(G,1I"), W(v) is set equal to the first smallest non-trivial cell of 

11""" where v = 111"1, 1r2 , ... , ffm). The next time we encounter v (if any), we 

redefine W(v):= W(v) n mCr(71) n mCr(72) n· .. n mcr(7r), where 71,72, ... , 1r 

are those previously encountered explicit automorphisms which fix v. 

From then on we can ignore subtrees T(G,ff, V(V)) for which tI t: W(v). This 

is justified by Le mma 1·5. The reasons for deferring the modification of 

W(v) until the second encounter with v are (1) that the subtree rooted 

at the earliest successor of v has to be examined anyway (since the 

smallest element of W(v) before the modification remains 1n W(II) after 

the modification) and (i1) that there is often no second encounter w.1th 

v (we may find an automorphism allowing us to jump bac\( to an ancestor 

of v). The next lemma shows that we can determine whether 1 fixes v by 

100k1ng at fixf1). 

2·23 Lemma Let 7 be an explicit automorphism. Let v = [11"1,11"2, .. . , ffmJ e 

T{ G, 11") be deriv ed from G, 11" and VI, V2, ... , V .... _I . Then 1 fixes v if and only 

if {tll,1I2' ·· ·, 1Im_l} C flx(1) . 0 
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There is one other circumstance under which we may wish to 

change W(II). If we find two equivalent terminal nodes Ill! 112 where 

112 = 111 and where II is the l onge s "!: common ancestor of V l and 112. we can 

set W(II):= W(II) n mcr«r). 

2·24 Implicit AutomorphisIDs 

There are occasions when we can infer the presence of one or 

more automorphisms without generating any of them explicitly. These are 

based on the following lemma. 

2·25 Lemma L et G I: .G(V) a.nd let 'II" E U(V) be equita.ble with respect to 

G. If 11" has m non-trivial cells and either n < IlTl + 4, n = 111") + m or 

n = )lTl + m + 1, then IT1 = 8(Aut(G).,,) for a.ny equitable 'lT1 < 11". 0 

The most commonly occurring case of Lemma 2·25 is when n= i'IT! + m, 
which corresponds to 11"1 only having cells of size one or two. 

Lemma 2·25 can be put to several uses. The most immediate 

application is that whenever we encounter a node v = [11"1,'11"2, . ",'lTmi for 

Which 'IT.". satisfies t he requirements of Lemma 2·25, we can infer that 

all the terminal nodes descended from II are equivalent, and so at most 

one of them is an identi t y node (the earliest one, if any). A less 

direct technique is to store the pair (fix(1I"m), mcr(lTm)) in the list 

11', along with the along with the similar pairs derived from explicit 

automorphisms. I t can then become useful in pruning later parts of the 

search tree. 

2·26 Eliminating identity nodes 

The technique s of the last few sections are generally quite 

efficient in removing terminal nodes which are not identity nodes. 

However, t here are occasions when the number of identity nodes is 

unmanageably large. Examples of these will be given in later sections. 

"Some of these can be elimi nated by means of an indicator function A. 

Suppose that during the search of T(G,1I") we maintain a node 

variable p. When the first t erminal node! is generated, we initialise 
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p := !. Thereafter we update p:= v whenever we find a termInal node ", 

s uch that iYG,. , ,,,} > 4,{G, 1I',p} or d(G,.,V}= d(G, ., p} and G(v} > G(p}. 

Tbe definition of C(G,"') ensures that by the ti.e we have finished 

searching T(G,:pr) we have G(p) = C(G,1I'), provided the set of terlllinal 

nodes examined includes all the identity nodes. Now suppose that at sOlDe 

i nstant during our search we have p = [11'1, 11'~, .. " '11" ... 1 and encolUlter a nod!! 

v = [."r1,1I"'2t .. ·. 11"'/01, not necessarily terminal. Le t r = lIIin{m, k}. Then, 

it 4{G,1I",v(r)) < MG.1f,p(r) , ·th!! definition o t an indicator functi on 

t ells us th4t .1.lG,1I", v) < d/..G, ff, p) fo r every ter.lnal node II of T(G, rr). 

Tberefor!! w!! can ute ly i gnore T(G,1I",v) wi t hout .l sca l culating C(G,.). 

The efficiency ot th is technique d!!pendS .ainly on two facto r s . 

On Is the power of tt in distinguishing h!!tw!!en non-equival!!nt nod!!s. 

Tbis, of course, can only be improved by changing A, which wIll g!!n!!rally 

involve a power/comput a t ion- tilDe trade-off. The other factor depends nn 

the initial labelling of G. Suppose that we wish t o search the subtr!!es 

T(G,1I",vd. ···, T{G, "II",v.). Where V1,V2, ···,v. Ilre the successors of v, in 

the order ea r li e s t to la. t e st. We can use t he 1nforma tion provided by 

A by ignoring the s ubtre!! T(G, "Ir ,Vi) if A(G,1I", ,,,.) < A(G,. , v;) f or so.e 

j < i. The number of subtree s whicb are t hus Ignored could vary from none 

(1f the A(G, "II", Vi) ar e 1n nOn-decreasi ng order), to t h!! maxlmull numbe r 

poss ible (if A(G,1f,v.) < A(G,1I","'l) for 1 <,;:::; r l . While the.r!! 1s no 

efficient wa.y of ensuring that the best case always occurs we can arrang e 

for the worst case to be very unlik!!ly. The s imple s t way of doing thts 

{but not the on!! we will adopt) 1s to label G 1n a r andoll fashion before 

co_enc1ng the generation of T(G,1I"). A preeise statistical andysi s of 

how tills !!ffects the overall effic i ency woul d he ve ry difficult, but 

a rough i dea can perhaps be gained fr om t be f oll owing t wo theore.s. 

We will use E (X) t o deno t e t he exp!!ctation of a randoll variable X. 
The fIrst theor em s ugg!! s t ! that the nUllber of ignor ed sub trees wI ll not 

usually be much 1!!S! than the maxlllull nUllber poss \. bl!! . 

2·27 Theorem Let 61 < 62 < ... < 5" be eiementl of a. linea.rly ordered ut 

£!,. Let ml, m2, "', m", bt pOlititl e int eger', and p~t I = ml + m2 + ... + m~ . 

L et :tI t :t2, "', :tl b! t lemtnh rJ/ .6, t:tactiy mj of which. au !qual to 5j for 

1 < j < k . N ow permuh the :ti at random to get :ttl ), 2;(2), •.• , :r;£'), each. 0/ 
the I ! possible permutation.. bei719 equally lihly. F or 1 < i < I, ~ x(· ) 11 
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:t(il > ::c (il for i < i, out ::c(i) "'" 6" . Let M oe tht ,,"umoer ojmarkrrt eltmt""t.s. 

Then 

where the IUm il ~aA:en 41 0 if k = 1. 

In particular, if mj = m j ar 1 < i < Ie, tlun 

.-, 
E(M) ~ " . m < ' 0'(''), ~Jm+l 

1-' o 

The second theorell concerns the nUllber of values of 4{G,1I",tli) 

for those T(G,1I",v;) which a r e not ignored. I t therefo r e hIlS a bearing 

on the number of ident ity nodes which are excluded by means of A. 

2·28 Theorem Under th.e conditions of T heortm sun, let N bt tlu n"mbltr 

of differtm tll1luet amonglt tM marktd dementi. Then 

< log I, +m" -

'Where th.e .urn il 0 if A: = 1. In particular, if mo· = m for 1 < i < k. then 

E(N) = E;_:fl < log ic . 0 

An alternative to this technique for using A Is to cOIiPute 

A(G,'II",II") for 1 <i< \" and then only search T(G,'II",lIi) for those II; for 

which ~G,,,.,1o';) is t he largest. Thts 1s undoubtedly the best approach In 

III1ny cases. However we are not adopting t his Ilet hod because it severely 

degrades the a verage-case behaviour. This is because t he discovery of 

automo r phislls frequent ly a ll ows us to reject a subtree T (G,'If , 1o") without 

ever co_puting v;. 

The theo rems above rel a te to the ef f ect of performing an 1nitlal 

random relabel l ing of G. The r easons we are not adopting t his approach 

are, fir st l y, that tbi s relabelling aay almost double the total execution 

U_e (tor a ve r y large randoll graph; see Section 3·10) an~. $e4;ondl y. 

that In order to make $ome of the output useful (e. g. the list of 
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aut ollorpbi slis produced) it may be necessary t o translate it back to 

the ori gina l l abell ing, whic h is inconven i ent. "'e wH l describe an 

alternative , but ..,111 onl y jus t 1fy it qualitatively. A more precise 

ana lysI s woul d be impOSS i bly di f ficult to perform. 

Let A' : Q'(Y ) X my) x N(V) -.. .1 be any conven i ent indicator 

f unction. Now devise It lIIap / : .1 ..... 11 wi th t he proper ty tha t fo r pairs 

:1:, y e ..:1 , z - y is very poorly cor r elat ed ""ith /(: ) - /(y). (This is 

not meant to be a r i gor ous Ijefini tlon). For example , t ake ..:1 = [-l.l[ 

and /(2;) = sin(lOIOz); the sign of :t - y is very poor ly correla t ed 

with tha t of f(:::)- f(y). Now defi ne A by A(G,'II".II) = t(A'(G,'II',v» . The 

hope I s t hat any tendency t o an unfavourable orde r ing of t he values 

of A'(G, lr, vl).···, A'(G,lr.Vr) will not occur fo r A(G,lI",III),···, A(G,lI".lIr). 

However, as we have stated, ther e Is lit t le hope ot an exact sta t is t ical 

analysis. The best .... e can say i s that t he computational experience is 

favourab le. 

2·29 St.orage of identity node. 

Up to this poi nt we have been t/lc itly auuming t hat we are 

keeping a record of all those identity nodes so far gene ra ted, so that 

we can r ecognize la t er ter.inal nodes which are equivalent to any of 

t hem. In prac t ice this can cause a seve r e storage problem, since t he 

number of identity nodes can be very large, even if we don't count t hose 

.... hi ch a re eliminated by use of an indicator function . Ther efor e it is 

necessary to put a limit on the nu.ber of identity noljes (s trictly, 

termi nal nodes not known t o be equ i valent to an earlier node) to be 

stored. The OpU .UIl s t rateiY is no t c l ear. On the one hand, stor i ng 

.ore Identi ty nodes illproves our c hances of detecting autollorph i sms, 

'll"hlch can be pu t t o use a s we have seen. On t he other hand, tes t ing t'll"O 

ter.inal nodes f or equivalence is quite time consuming (espe cially for 

large graphs) , and ha ving to do a l ot of these tests would have a very 

bad ef fe ct on t he overall execut ion time. 

The technique which we have adopted, wi thout a gr eat deal of 

t heoretica l justificatIon, is to store two ident i ty nodes at a time . 

The earl i est terllinal node t 1s a l ways stored. The other termi nal node 

(which cay be the same as t he f ir s t ) Is our best guess so far at the 
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Identi ty node corres.pondlng to C{G, 'If). This 15 the node p referred to 

1n Sl!ction 2·25. WI! a1 so pl!rmi t thl! &1gor1 thlt to sl!arch for terllina1 

nodes equivalent to r, with t he ll.im of using the automorphislls thus 

d Iscovered to shorten the total amount of work:. This will sOlleU_es 

degrade the perforllanee somewhat, but on the aVl!rage it works vl!ry well. 

We are now able to sUI.arize the way in wh ich terminal nodes are 

processed. Suppose that ."e have Just created a node v , not necessarily 

terminal, which is not an ancestor of , (1. e. I S later than O. 

The node p and the partition 8 have tbe. saae i nt e rpretation as 

before. Suppose that II 1s the node [tr l ,'lr2 ' ·· ·,'lrk] so that 1111 = k. Also 

define m = Irl and r = Ipl, and define variables as foll ows. 

kh: I f.,..." satisfies the requirellents of Lelllla 2·2 5, then hh is 

the silallest value of i, 15 i < k, for which 'Ir; satisfies 

these r equi rements. 

Otherw1 S6, hh = k. 

ht: Tbis 1s tbe SlI4llest value of i, 1 <i < m, for whicb 

all the terminal node s descended froll or equal to ,til have 

been shown to be equivalent. 

h: The longest COllllon ancestor of , and II 15 lI(h l. 

hb: The longest cO.llon ance sto r of p and v i s v (.\&). 

hzb: This is the lIaxhum value "Of 1, 1 <i< min{k, r}, such 

that .:UG,1r,,,(i») = MG,'Ir,p{;~. 

By returning to 11(;) we !IIean backtracking in the searcb t ree to 

IPl and proceeding IIi th t he next successor of v(;) not yet generated, if 

any. If t here ar e no such successors, we return to lI(i-l}, /lnd so forth. 

Return to vIOl 1s equivalent to stop. 

Now suppose we have Just created v = V(k). Let ~= MG,"","). 

(1) If (k > m or A =I- 4(G,""',,(~1 and (k > r or 

A< .d(G,.".,p{kl»)) go to (8) . 
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(2) If v is non-terminal, proceed to search T(G, 11", v). 

(3) If (k> m or A~A(G,1I",.I") go to (4). 

If the permutation, taking t onto v is an automorphism, 

go to (A). 

(4) If (k > r or A< ll:(G,1I",p) or (A='&G,1I",p) and 

G(v) < G(p))) go to (B). 

If (d>4(G,1r,p) or (A=d(G,1I",p) and G(v»G(p))) set 

p:= v then go to (B). 

If (d= 4{G,1r,p) and G{v) = G(p)) let, be the permutation 

taking p onto v and go to (A). 

(A) {At thls stage ;"e have found an automorphism ,.} 

(Al) Add (fix(,), mere,)) to 1/1" (1f there is room) and set 

6:=6v6(1). 

(A2) If (v E mcr(6)) return to v(l». Otherwise, return to 
v(Io~). 

(B) {At thi -s -stage we have a terminal node v not known to be 

equivalent to an earlier terminal node.} 

(Bl) If (hI!. < k) add (fix{1rhh), mcr(1rhh)) to 1/1" (if there 

is room). 

(E2) Return to v(;), where i=min{hh-l,max{ht-l,hzb}}. 

The only feature in the foregoing informal algorithm which we 

have not already justified is the use of the variable ht in Step B2. 

What we want to do in Step B2 is to return to the longest ancestor 

V(i) of v which may conceivably have a terminal descendant which is 

either equivalent to S or improves on p as "the best canonical label so 

far~. All the terminal nodes in T(G,1r ,V(hlo») are known to be equivalent 

to v, so we can assume that i < 11.11.. FUrthermore, if i> hzb, none 

of the descendants of v(i) can improve on p. Finally, if i > kt, and 

one of the descendants of v(i) was equivalent to l then v(;) would be 

equivalent to .1"(;)' However, all the terminal nodes descended from .I"(i) 
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are equivalent, and so all those descended from V<" are equivalent, 

giving a contradiction. 

2·30 We will now give a forl&&l description of the cOlllplete alg orithm. 

N()tu: (1) lab and cAg are boo lean var i ables. If lah = fo.lse, p 15 not 

used, and the algori th. only searches for terll1inal nodes equivalent to 

~. We will s how In Theo rem 2·33 that use tul intormation about Aut(G) 15 

still obtained.. If dig = true, the algorithm will not use Lemma 2·2 5, 

and. will be vaUd f or digraphs and graphs with loops (for which Lemma 

2·25 does not ho l d) . 

(11) The variable J.I r efers everywhe r e to the node [71"1,71"2, ···, 7I"~1. 

It t bus change s val ue if 11"; (l < i < k ) or k changes va lue. 

pairs 

(111 ) L > 1 is an integer 

(f1X(2:), .cr(2:)) t o be stored at 

specifying a limit on the number of 

algorl t b. Is independent of t he cholce 

In general may not be . 

ti~e. The result computed by the 

of L, although the eff iciency 

(1 v) P C;;;; il(V) is the set of all ordered pa r ti t i ons of V 

which satisfy the require.ents of Lellma 2·25. 

(v) We are assu.ing f or convenience tllat A(G,1I" ,J.I) is real 1n 

val~ . I f this 15 not t he case replll ce "qzb:= A.I" - zb,,n by 

{
_', 

qzb:= 0, 

" 

1 f A.Io < "b/o 

if AJ. = zbk 

1 f A.I; > zb" 

2·3 1 Algorithm GilJ ~n G E g(V) and 7r E a{V), find g~n~ro.tors for Au t(G),. 

and (optionally) compu.t~ C{G,7r) . 

0) k := Jize := 1 

h := lub := indez := I := 0 

8 := discrete partition of V 

kh:= 2 
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If (1fl E P and dig = false) hk:= 1 

If (1f1 is discrete) go to (18) 

W1 := first small e st cell of 11"1 

Vt := minWI 

(2) k:= Ie + 1 

Ai<:= A(G,1f,II) 

If (h= 0) go to (5) 

If (hz! = k -1 and A;, = z/k) hz!:= k 

If (lab = !alae) go to (3) 

qzb := A.;, - zbk 

If (hzb = k-l and qzb = 0) hzb:= k 

If (qzb > 0) zbk := A.;, 

(3) If (hzb = k or (lab = true and qzb > 0)) go to (4) 

Go to (6) 

(4) If (1f1< Is discrete) go to (7) 

Wk := first smallest ce1l of 11"1< 

Vk:= min W~ 

If (dig = tru.e or 1I"k i'! P) hh:= k + 1 

ek:= 0 

Go to (2) 

(5) Z!k := zb k := A;, 

Go to (4) 

(6) Ie' := k 
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"" := 1I1nthh-l, IIIU:{M - 1, h.zb}} 

If (k' = hh) go "to (3) 

1:= 1I1n{1 + 1, L} 

AJ- := IIlCr (fI'IoIl) 

"'r := flx(fI'llll ) 

Go t o (12) 

(7) It (II. = 0) go "to (18) 

(8) 

I f (k ~ h.zJ) go t o (8) 

Define 1 E' Sn by (' = /I 

If ((71 = G) go "to (10) 

If (Illb = ja.l&e or qzb < 0) go to 

If (q;d > 0 or k < Ipl) 80 t o (9) 

I f (G(") > G(p)) go to (9) 

If (G(") < G(p)) go to (Ol 

Define 7 IE S" by (,1'1 = p 

Go to (10) 

( 9 ) p := II 

qzb := 0 

hI; := hzb:= Ie 

zb" +1 := 00 

Go to (6) 

(to) 1:= min{l + 1, L} 

(h := IIcrb) 

flr: = flxb) 

If (8b) < 0) go to (11) 

" 
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O:=OvO(-r) 

Output '1 

If (ttiC e lIler(O}) go to (11) 

k:= II. 

Go to (13) 

(11) k := hb 

(12) 

(13) 

If (ek = 1) Wk:= Wknn, 

If (k ~ 0) stop 

If (k> h) go to (17) 

If (k=h) go to (14) 

II. := Jt 

ttiC := ttlh. := min WI; 

(14) If (tlk and ttlh are in the same cell of 0) indllx := indllx + 1 

1110 := mini tI e W" I II > tlk} 

If (1110 = 00) go to (16) 

If (tlk tL mer(O}) go to (14) 

(15) 11.11.:= min{hh., It + 1} 

h.z!:= min{hz!, k} 

If (lab = falsll or hzb < It) go to (2) 

hzb:= It 

qzb := 0 

Go to (2) 

(16) If (IW,,! = 'ndex and ht = k + 1) h.t:= k 

size := size X index 

index:= 0 
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.I::=Jc - 1 

Go t o (1 3) 

(17) If (ek = O) set Wh:=Wknn, for each i, l<i < l, such 
t hat (1I 1, V2' ··· , Vk _l } C tIJ, 

11k := min{ tI e Wk I tI > tlk} 

If (v. ~ 00) go to (5) 

.1::= k-l 

Go to (13) 

(1S) h := ht := hzf := k 

!:= II 

k:= .1:-1 

I f (1t1h = f al/e) go to (13) 

p :=v 

hzb := hb := k + 1 

qzb := a 

Go t o (13) o 

2·32 Con sider the stage during t he execution of Algo rl tb. 2·31 that 
ve pas s the poi nt marked B (1n Step (la». At t his instant define 
K = k - l and "W.= tI. (1 <i< K ). 

Now l et r IO) = r = Aut(G),., and define r ei) = r .. 1 •• a •...• "'1 (point
wi se stab i1 1ser) for 1 < i< K. Since r is a termi nal node, the coarsest 
e<tultable partiti on which 1s finer t han 'If and thes Wl,W2, · ··, WI( i s 
discrete. Therefore r (K) = 1. 
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2·33 Theorem During th.e e:tecut1on of Algo";thm £·91, each. timt we pas, 

point A (in Step (16)) or "o,'nt B (in Bte" (18)) th.e foj/owing are trut: 

(1) inde:t = Ir (I<-lJ\/lr(")1 (point A orull) 

(i 1) size = Ir (lH)1 

( 1.1 1) 8 = 9(r ( · - I~ 

(t v) r (I<-l) = (Y}, when: Y i$ the lit of a.U automorph,',m, output 

up to tht! "ruent stag e (in Step (10)). 

(v) IYI < n-I'I 

Proof: The theorell f ollows r eadily fr om t he theor y that we bave already 

discussed, so we will only descri be br iefly how this need s t o be assellbl ed. 

PO int B is only passed once, when, i s created, and It = K + 1 

at this stage. Point A is then passed K tilles, at which stages Ie has 

the values K,K-l,"' ,11n that orde r. 

We prove the t heore. by backward Induction on 1;. For Ie = K + 1 

it is obvIous. Now assu.e it for 11;' , f or so.e Ie ' , 2 <11;'< K+l. and 

let .1: = .1:' - 1. 

Consider v = \11"1,'11"2, "',11".1:1. The successor s of 11, in the 

order earliest to la test are III,V2, ··· .11 ... wbere II. = II(W.). and WI< = 

{WI,W2, ···,ur ... }. The p r evious ti.e we passed pOint A (or B) was When we 

completed our examina tion of the subtree T(G.'II", 1I1)' We now clai ll that, 

for 1 < i < m, by the time we have completed exami nation of T{G,1I",1I;). 

Wi is in t he same cell of 8 as WI if and onl y i f II; "-J 1-'1. 

Suppose on the contrary t hat there is an earliest v, for which 

our asser tion is not true. If v; i s not equivalent to V I then w. a nd WI 

are obv iously in different cells of 6, !o ince 6 Is the orbit partition 

of so.e subgroup of Aut(G) .. ,. On t he other hand. i f 11,,..,/.11, T(G,1I",II,) 

contai ns one or more terminal nodes equi valent t o !. The nature of the 

algorithm 15 such that if one of these nodes is generated, it 10'111 be 

recognized 4S being eq ui valent to " and if it is not generated t hi s will 

only be because i t has been shown to be equiva l ent to an earlier terminal 

node. FurtheTllore, i _pUeit 4uto.orphisms are neve r used t o reduce WK. 

Ilnd during the examinati on of T(G,1I", 1I;), if any , the only stored pair s 
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(1/1';. OJ) which are used to reduce any W. have WI E ~i' Therefore, e1 t her 

Wi is already In the sallie cell of 8 a s Wt or we are sure to discover 

so.e autollOrphl s . "l such that vI < IIi . By the Induction hypot hesis wI 
is In t he salle cell of 9 as W I> and so 1:he upds.1:e 8 := 8 v 8(,} merges 

the cell s of 8 contain I ng WI and Wi, cont ra.ry to hypothesis. Note a lso 

1:hat we have Just proved t hat '1 e Y. 

We have thus concluded that the cell of 8 contai ning WI is 

the orbit of r (Jo- I ) contain ing WI' Since (I = 9(Y) by construction, 

and r (Joj < (Y) by the original induc tion hypothesi s , we .ust have 

r (k-l ) = (Y). since (Y) contaIn s a fu l l set of coset- r epresenta t ! ves f or 

r(k) in r (k-l). This proves that 8 = 8(r(k-l»). The vlI.rlable inde:t merely 

counts the nu.ber of elements In the cell of /I contll.ln i ng WI . so clahs 

(1) a nd (i1) fo llow i mmed i a. t ely. 

Claim (v) f oll ows fr ail the s impl e observation tha t t he nu.ber 

of ce lls of 6 s tarts at n and decr eases by at. l east one f or each new 

element of Y. o 

In closI ng we note a few s imple prope rties of the set of 

generators of r f ound by Al gorttb:l 2·3 1. These are essentiall y the sallie 

as those given in Theor ems 35- 38 iu [13] and t he proofs given t here apply 

with only notati onal cMnges. Let Y be the full set Of autotlorphls.s 

output by Algorith. 2·31, and let r = Aut (G) . 

2·34 Tbeonm (t) Y d(l t l not comain ~ny elements of the form ,.,6, wh.!re 

1,6 E r, supp(,)n supp(5) = 0 an.d" -:I:- (1) rf 5. 

(2) SUPPOIe ,hat fo r lome su6,et Y· C Y, we have (y.) = (Al l), ...1.(1)) . 

where A (I) and A (2) are n.on-trivial subgroups of r with di.joint support. Then 
y. = y ell u y (2) , where y (ll n y(l) = e , (y(t» = AP) and (y(ll) = A(l). 

(8) Suppose that for , orne suhet W C V the point-wi'! stabiliu r 

rw hal oNY ont non-trivial orbit. Then . ome ,1£bsd of Y gener4tu a con.

jugate of rw in r . 0 



IMPLEMENTATION CONSIDERATIONS 

In this section we will discuss sOllie of the problems that arise in 

the implementation of Algorithm. 2·31 and how these have been approached. 

We will then examine the theoretical and empirical performance of our 

implementation. Finally, we wJll mention a few of the practical uses 

to which our implement ation has been put. 

3·1 Time versus storage 

The program described in McKay [14] worked so efficiently for 

many classe s of graphs that the practical limit on the size of graph 

that could be proce s sed was set by the amount of storage Ilvailable, 

rather than by execution time considerations. Consequently the present 

implementation places rather more emphasis on storage conservation, in 

some places to the sl ight detriment of time eff i ciency. 

The variable types used by Algorithm. 2·31 include graphs, sets, 

partitions and parti tion nests. We will now describe the data. structures 

used in our implementation for each of these variable types. 

3·2 Partition nestl 

Let v = [1I"1,1I'":1, "', 1I"1<[ e .JY(V). Then v can be represented by two 

arrays a. and b of length n as follows. Define 11"0 = (V). 

(1) The array a contains the elements of V in any order 

consistent 11'1 th 11"1<' Precisely, if u(a(i),1( ... ) < u(a(J1,1(",) 

then i < j, for any;, j E V. 

(11) Each entry of b is an integer in the i nterval [0, n+ 1[ 

chosen thus: 

(a) If u(a(i), "Irk) = u(a(i + 1), "Ir,,), then b(i) = n + I 
(1<i<n-l). 

(b) If u(a(i) ,1I"H) _ u(a(i + 1),1I"j_l) but u(a(~),1'T"j) < 
u(a(1+ 1),"lrj), then b(i) = j C1 < j < k, 1 <i< n-lJ. 

(c) bin) = o. 
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3·3 Unordered partit;ionl 

The only unordered partition used by Aljoritlm 2.31 Is e. For 
any v e. V let 8. denote the cell of e containing" and let p(tI) = ain8 ... 
Clearly e can be uniquely represented by the array p, and most of the 
necessary quest ions about S can be answered very quickly by reference 
to p. For example, if 11, 'W € V then 11 and 'W Ilre In the salle cell of 
8 if and only if 11(,,) = p{w), and 11 E acr(S) if and only if p{,,) =". 

This representation of 8 suffers fro. the dlsadvl.\ntage that 
updates of the form S;= SvO(-J), for 1 € S,, ' are quite expensive in terms 
of computati on tille . This problelll has been cons i derably a ll ev iated by 
the use of a second a rray q whlch "chains together~ the elements of each 
cel1. More precisely, if i € lIIcr(S). then S. = {i. q(,), q(q(t),"q(q(q('ln. · ·· }, 
where the sequence terminates on the te rm before the first ze ro. 

3·4 Graph. 

A.lgorlthm 3·3 1 requi r es the input graph G and, for reasonably 
efficient operation, requires the graph variable G(p). Froll t he great 
number of possible ways of representini these graphs in the computer, we 
Ilave chosen All adjacency l:l4trlx representation because of It s greater 
storage economy. More precisely, G is stored as a list of n blt
vectors representi ng N(1,G), N(2,G). ··· ,N(n,G), and so requires around 
n2 bits of storage. Since Algorithm 3·31 i s valid also fo r digraphs, it 
1s clear ly Dot possibl e t o reduce t his storage requirement in general. 
However "if the prog ram was only 1ntenried to be apPlied an graphs with 
ve ry loW' degree, a dlf f er en t so r t of representation would save space, 
and probably time as wel l. 

J·S ElHciency of Algorithm 2·5 

Algorithm 2·5 can easily be implemented usi ng the data structure s 
above. We '01111 now consider tbe efficiency wbich can be a chieved i n 
such an Implementation. The follow1ng complex1 ty resul t wa s suggested 
by a re18ted result 1n Gries [ 7] . For t he necessary defin itions , r e f er 
back t o Secti on 2·9. 



J·6 Theorem For 4ny G E Q(V), fr IE LI(Y) Q.nd dirlinct 111, 1Iz, " ' ,11 ... _1 IE 

V, the deri1led partiti on nut l'lrl,1rZ,·· ·, 'lrml can b. computed in O(n:l l og n) 

time, auuming an impl.mentation in which. .i(1I, W ) can be computed in time 

proportional to IWI, for an~ v IE V, W C v. 

-Proof: It Is obvious that the time occupi ed 1n t he computation of 'II", otl; 

for 1 <i< m - l and 1n Step (1) of Algorithm 2· 5 w111 be O{n2). Since 

each e~e cutlon of Step (2) of Algorithm 2·5 requi r e s onl y a fi~ed amount 

of ti me and l eads to a n elecution of Step (3 ) , we are j ustifi ed 111 

r es tr icti ng our attenti on to Step ( 3). 

For a ny gi ven W, the necessllry r exeeuti ons of Step (l) can be 

performed in O(nIW I) t i me. Therefore the total time for the computation 

of l'lrI, 'II"~,·· · , 'II"",lis O(n2+nEIWI), where t he sum 15 over all sets 

a s si gned to W during any execution of St ep (2) (f or any execution of 

Algorithm 2·5). 

Le t :0:; IE V and consider t he real varIabl e q." defined Ilt Ilny 

point of tiDe dur ing any execution of Algorithll 2·5 by q:z = As + l ogzl.,. 

Her e hs i s the number of sets contain i ng :t whi cb bave been previ ousl y 

a ss Igned to W dur i ng an execution of Step ( 2) , pl us t he nUllber of se t s 

Wi (m < j < M ) which e.on tain :t, plus one fo r the se t {:t} = {tid 

created by t he operation '11";0'11;, if it exists and has no t already been 

counted. Also l~ i s the current size of t he cell of 1f which contains 

z. Note that h~, l~ aM. q,. are var iabl es which f r equentl y change value 

during A.lgo ri th. 2·5. 

The value of q., c lea r l y reDlll i lls constant or decreases between 

dIffe r ent executions of Al s or i thm 2·5. The ool y other place where i t can 

change is dur i ng St ep (3) , when ha reDlll i ns fixed whl1e (II decreases, Of 

h.~ i ncreases by on e. In t he latter cllse I", de cr ea Se S by at l east a fac to r 

of two, so tha t q~ does not increase. Therefore qa i s non- increasing 

throug hout the cOllputati on, implying that its l a s t va l ue is bounded 

above by it s first , which Is bounded above by 2+1og~n. Therefore the 

final value h,,,, of h." I s at lIIoSt 2 + l og2n. 

We conclude tha t the t otal t iae requ i r ed f or the computati on 

of [ '11" 1, 11"2, • • • , '11" ... 1 is O(n 2 + n L:OEV~) = O(n2 10g n), 8.S requi r ed. 0 
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Por our particular choice of data structures, and our part icul a r 

implemen t a t ion environmen t, we have found that the fastest way to compute 

d(v, W} for ",/30 < IWI < A approxilll4tely 11$ to represent W as a bit

vector and t o count the numbe r of one-bi t s in the bit-vector represent ing 

N(v,G) nW. Altbough this t echnique (used for IWI > n appears to r educe 

t he t otal the in - t he aajarity· of cases, 1t has t he unfortunat e side

effect of invalidating the premises of Theor ea 3·6. The best replace.ent 

for the bound 0(n210gA) which we have been able to prove I s O(n~). 

Since the time require d for the computation of d(v, Mr) is now essentially 

independent of IWI, Step (3) of Algorithm 2·5 can be simplified by us ing 

t = 1. This is especia lly conven ient if t he seq uence a is r epresented 

as a set at poin t ers to t he array a (see Sectlon 3·2) . 

3· 7 Efficiencyof' Algorithm 2·31 

Le t T·(G,1f) be a portion of t he search tree T(G,1I') wh ich Is 

examined by Al gorl thll 2·31. Let ffll be the nUllber of t eril i nal nodes of 

T-(G,1f) which are eqUivalent t o t he earli es t ter.ina l node r (incl udi ng 

r Itself) . Let m2 be the n\lllber of nodes of T-(G,l'f) which are not 

equival ent to ~ and whi ch do not have any descendants In T-(G, 'II'). Let L 

be the constant defined In Section 2·30 . Then the total time re~ul red by 

Algor1 t hm 2·31 is O(ml"'~ log", + m2A2(L + log A)), under the conditions 

01' Theore. 3·6, Where m~ aay depend on L. For our h pl e.enta tlon, this 

lIIust be increased to O{n3(m l + ",2) + m2",2L). By Theore. 2·33, ml < n, 

but we hav! not fount! any reasonable bound on "'2' It varie s 1n a very 

compl icated manner wi t h the initial labelling of the input graph and 

the val ue of L . 

3·8 Other implementation detail, 

Algor ithm 2·31 has been imple.ented on a eyber 170 computer, 

lII4inly i n Fo rtran. Because of the diffi culty 1n manipulati ng bi t-vectors 

eff ic i ently 1n Fortran, several small subroutines a re coded in assembler 

language. 

The ind ica tor func ti on A Is evaluated by the s ubr out ine which 

1mplements Algorlthll 2·5. It Is f ormed by taUng cell s i zes, relative 

vertex deirees and other inf ormation .... hi ch 15 computed 1n the course 
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of Algori thm 2·5, and merging these into Ii single integer value in a 

"random" fashion (see Section 2·28). 

A technique which produced considerable improvements in ef

ficiency in some cases involves the updating of the graph G(p) when p is 

updated. The computation of G(p) is quite time-consuming (up to about 

6 seconds for n = 1000), so this computation is delayed for as long as 

possible, in case it is not necessary. 

]·9 Storage requirement! 

Let m be the number of machine-words required to hold a bit

vector of size n. Let K be the maximum length of a node of T*(G,1r). 
Obviously K::; n, but very much smaller values are normal. Define L as 

before. The total amount of storage required by our implementation, ig

noring Ii minor amount independent of n, is 2mn+ IOn+m+ (m+ 4)K + 2mL 

words. This figure includes 2mn words for the storage of G and G(p). 

If Ia.b = faiae (see Algorithm 2·]1), the storage requirement is reduced 

by mn + 2n words. 

3·10 Experimental performance 

In figure 3·1 we give the execution tiJlle required for several 

faJllilies of graphs. In each description below, f} gives the approxilllate 

slope of the curve in the region 50 < n < 200. Al though the resul ts of 

Section 3·8 predict 8. value of /3 >4, even when m2 = 0, the experimental 

value of f3 is less than 3 in each of these classes. 

E empty graph on n vertices (f) = 2·8). 

Q m-dimensional cube, where n = 2'" (fJ = 2·3). 

C randoJII circulant graph of degree 10 (f3 = 2·2). This 15 

defined by V(G) = V and E(G) = {zy liz - yl E W(mod n)}, 

where W is a random subset of {I, 2, " ', l(n-l)J2J} of size 

5. 

R~ "random n regular graph of degree 6 ({J = 2·9). There 

is no known practical algorithm for randomly generating 

regular graphs so that each graph appears with equal 
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frequency. The graphs represented by the curve R~ were 

made by randomly generating three permutations '71, '72 and 

'7 ~ E S .. such that :r;6 ~:r; c6 E b~,'7~,'7n) and :r;1'i rf :r;'l1 

(1 <i < j < 3) for each x E V. Define G by V(G) = V 

and E(G) = {xx'l; 1 x E V, 1 <i< 3}. For n > 40 all those 

graphs constructed had trivial automorphism groups, and 

produced search trees with maximum depth 2. 

R 20 : same as R~ but with degree 20 (f3 = 2·6). 

G 1 random graph (f3 = 2·0). Each possible edge is independ

ently chosen or not chosen with probability!. The dashed 

line marked P in figure 5·1 gives the average time required 

for the computation of G(p) for some p. At least one 

such step is essential for any program which computes 

C(G,:rr) from G using an adjacency matrix representation. 

Therefore figure 3·1 suggests that the performance of our 

program is close to optimal for large random graphs. 

G2 same as Gl but with lab = false. 

3·11 Harder examples 

We have also tested our program on a number of graphs which have 

traditionally been regarded as difficult cases for graph isoJ[lorphism 

programs. 

(1) The strongly regular graphs with 25 vertices required 

between 0·1 and 2·4 seconds, with the average time being 

1·0 seconds. 

(11) A strongly regular graph G with 35 vertices can be formed 

from a Steiner Triple System (STS) with 15 points. The 

vertices of G are the blocKs of the STS, and two vertices 

are ad j acent if the corresponding blocks overlap. For the 

80 graphs so formed, our program required between 0·3 and 

7 seconds, with an average of 4·8 seconds. Most of these 

graphs have a trivial automorphism group. 

(iii) Certain strongly regular graphs G with n vertices can be 

extended to graphs E(G), having 2n+2 vertices, which are 
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2'/e1Jel regular (see Mathon tl 0J ) . There are good theoreti 

cal reasons aD] t o expect 2- level regula r g raphs to be 

parti cula r ly dl ftlc ult to pr ocess, and this Is bor ne out 

by expe rience. The graphs Aeo and Bno (60 ver ti ces; see 

[10]) requi red 79 and IS O seconds r e spective ly, while the 

graphs A72 - D 72 (7 2 verti ces) required about 500 seconds 

each. 

3· 12 Duign ilomorphism 

A de8ign D (al so kn own as a hypergraph) is a pai r of sets 

(P , B) • .... he re 8 1s a collect ion of subsets of P. The e lements of P 

a re called poin.ts aod the elements of B are called 61oclu. Two de s tgns 

Dl = (PI, B 1) and D2 = (P2, 8 2) are i somo rphic if there are bijecti ons 

h : PI -+ P~ and h: BI -+ B2 such that :c e X implies h(:c) e 12(X) f or 

all :cePI and XeB I • 

Gt yen a design D = (P, B) .... e can constr uct a graph G = G(D), 

.... here V(G) = P U B and E(G) = {:cX [ :teP,XeB, :teX}. I t is easy 

t o prove ([3), [17)) that two designs D\ = (PI, E I ) and D2 = (P2, B2) 

are isomorphic if and onl y if t here is an isomorphl s. I : G(Dl) -I' G(D2) 

such t ha t IIPI) = P~ and I(B1 ) = 82' Therefore Algor i thm 2· 31 can be 

used for design isomorphism. 

If D I s a balanced incomp le t e hl ock-design (S ISD) then G(D) 

i s known t o pres ent difflcul t1 es for many graph i so.orphtsll. progra.s. 

and ours is no exception. TlIo SO-vertex gra phs G(D), na.ed A~ a oe! B 'j,O 

i n [10J. r equi r ed about 60 seconds each. In another expe rhent (181, we 

established t he isollo r phisll of six BIB LTs with 36 points and 36 blocks 

(so n = 12) us i ng about 6·6 seconds of lIachine time each. The smallness 

of thIs f igure is principally due to tile reasonabl y r ich aut ollorphism 

gr oups of t he designs . 

A lIuch more d iffi~ult problem posed by two BI SDs wt~h 126 points 

and 525 blocks has be en previ ous ly discussed in Stanton and McKay (17]. 

3·13 Hadamard equivalence 

Let M .. and M2 be two m X n matr i ces with ± l entries . We sa.y 

tha.t Ml and M~ are Hada.mard equilJa/mt I f M2 can be obtained ·f rom 



Ml by app l yIng an e l e.ent of the group r generated. by the follow i ng 

operations. 

,. Permute th, rows according to Q E Sm. 

" Permute tho ~olumns according to (J E 5". 

" Mul tipl y rowiby-l (1 < i < m). 

'I Mul Upl Y col uan j by -1 <1<j<n). 

Suppose t hat M 1s Any mXn IIlI trlx w! 'th ± 1 entries. Deflne G= 

G(M) to be the graph witb V(G) = { 'II;,D;,Wj,~j 11 < i < m, l < j < n} 

and E(G) = {'II,'Wj, D,1UI 1 1 < i < m,l < j < n, M'j = I} U {'II,W;, D;Wj I 
1 <i < m, 1 <j< n, MIl = - I}. We will refer to the vertices I), and !Ii 

as I) · type'llerl;ices. The following theorem first appeared in McKay [16]. 

3·14 Theorem Let G1 = G(Mll a.na G2 = G(M~). Then Ml a.'I1.d M~ are 

Ha.da.maTd equil)alent l' a.nd only if th.eTe i, a.n i.omoTp h,iJm f Tom G 1 to G~ 

which. maps the v-type tlerhcu of GI onto thOH of G1. o 

If M is a I(ada,mard Datrix (m = 110 and M T M = fl./) then the 

iraph G(M) llIay prove exeeedingl y difficult for A.lgorith_ 2·3 1. This was 

discovered when our implementation was applied to a collection of 126 

Hadamard matrices of order 24 , produced by t. Dibley and W. D. Walli s , in 

an attempt to determine the equival ence classes. Several of the graphs, 

havlni la rge automorphism groups, were processed In about 300 seconds, 

but some of t bose witb small e r automorphism gr oups woul d requi r e .ore 

than 1800 seconds - the prog ram was not run to completion. These graphs 

are all 2-Tevel regula r In the sense of Mathon (101 , but are very lIucb 

harder than those given in [101, even thougb the~ have larger groups. Tbe 

reason for this is that the sea rch tr ee T"(G,'If) has depth 7 or 8 (colllpared 

with 4 for the graphs in {l Oll, al thoug h only 2 or 3 vertices generally 

need to be fixed In order to eli mi nate any non- triviAl automorphlsms. 

This means that the automorpbism group Is of no use for a large part of 

T"(G, '11'). 

Other ~orkers (see 16] for eXBIple) have found t hat a count of 

small subgraphs (e. g. cllques) can ofte n be used to provide an inl UaI 
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pa r titioning of tbe vertices of a. d i fficult graph, wbi ch greatly spee4~ 

up a subsequent i somorpbi sm test. Siailar techniques can be usel1 bere, 

but they are of no use in IlIII.ny cases. SOlle of the hardest graphs aacmgst 

the 126 ment ioned above have only two orbits (the v-type vertices and the 

others) - the inltlal partitioning which we were usini anyway (because of 

Theorem 3·15). However we have devised a method based on a generalisati on 

of the profile l1et1ned 1n [51 Which can be used to refine the partitions 

at the illmedlate successo rs of the root node 1n T-(G,1T). With this 

impr ovement, we can now process t hese graphs 1n about 20 seconds on the 

average. 

An a lgorithm specifically for equivalence of Hadaaard !latrices 

has been definel1 by Leon [9] . The details given 1n [9] are insufficient to 

perllit a direct compari son with our technique, but a cursory exallination 

suggests that Leon' s t echnique may be competitive with ours for this 

particular proble •. 

EXAMPLES 

In t his secti on we give twn exallp l es of t he automorphism group 

generators prol1uced by Algorithll 2·31. I n each case we w11 1 use the 

notation defined in Section 2·32. 

4·1 First example 

foll ows. 

In our first example G is the S- dll1en sional cube defined as 

V(G) = {(i, i , k,l, m) I i,;, k,l, mE {a, I} } 

E(G) = {(i l,i1 . kl' h, ml)(h.;h, k2, 12. m2) I (il - i2)2 + (il - h)2 

+ (k l - ..t2)2 + (h - b)2+ (ml_m2)2 = I} 

The elements of V{G) are numberel1 1.2,···.32 in lexicographic order . 

For this graph we find K = 5, Uil = 1, W 2 = 16, w~ = 24, 

W~ = 28 and w~ = 30. The output produced is as below. The execution 

time WIiS 0· 18 s econds. 

(3 5) (46) (11 

Ir(f)l = 2 

lJ) (12 14) (19 21) (20 22) (27 29) (28 3D) 

1B(r" ')1 = 24 

.. 



(2 3) (6 

Ir(~;)1 = 

(S 9) (6 

Ir(2)1 = 

7) (10 11) (14 15) (18 19) (22 23) (26 27) (30 31) 

6 18(r{3»)1 = 16 

10) (7 11) (8 12) (21 25) (22 26) (23 27) (24 28) 

24 18(p(2»)1 = 10 

(9 17) (10 18) (11 19) (12 20) (13 21) (14 22) (15 23) (16 24) 

W'''I = 120 18(r"'11 = 6 
(1 2) (3 4) (5 6) (7 8) ( 9 10) 01 12) (1 3 14) (15 16) (17 18) (19 20) 

(21 22) (23 24) (25 26) (27 28) (2 9 30) (31 32) 

WI _ 3840 1 

4·2 Second example 

In our second exampl e G is the lexicographic product C~lC31 

defined as follows. 

V(G) = {(i, j) 11 < i,j < 5} 

E(G) = {(ii, jI)(i2, :h.) IIi1 - i21 = l(mod 5) or 

i 1 = i2 and Ijl - J~I = l (mod 5)} 

The vertices are labelled 1,2," ' ,25 in lexicographic order. 

For this graph we find K = 10, WI = 1, W2 = 3, W3 = 11, 

W, = 13, W~ = 16, Wr; = 18, WT = 21, Ws = 23, Wg = 6 and WlO = 8. The 

output below was generated in 0.23 seconds. 

(7 10) (8 9) 

Ir(g)1 = 2 1e(r,O')1 = 13 

(6 7 8 9 10) 

Ir(S)1 = 10 1e(r"')1 = 21 

(22 25) (n 24) 

Ir(T)1 = 20 1e(r"')1 = 19 

(21 22 23 24 25) 

Ir (~)1 = 100 1e(r"')1 = 17 

(17 20) (18 19) 

Ir(~ )1 = 200 1e(r"')1 = 15 

(16 17 18 19 20) 

Ir(4)1 = 1000 1e(r" ')1 = 13 

(12 15) (13 141 
Ir(~)1 = 2000 1,(r"')1 = 11 

" 



(11 12 13 14 15) 

(6 21) (7 22) (8 23) (9 24) (10 25) (11 15) (12 17) (13 18) (14 19) (15 20) 

rr(2}1 = 20000 IO(r(2)1 = 7 
(25)(34) 

[r(I )1 = 40000 

(12345) 

11 15 21) (2 7 12 17 22) (3 8 13 18 23) (4 9 14 19 24) (5 10 15 20 25) 

_ 1000000 IW)I 1 
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