nauty User’s Guide (Version 2.2)

Brendan D. McKay
Computer Science Department
Australian National University

ACT 0200, Australia

bdm@cs.anu.edu.au

Contents.

How to use this Guide.
Introduction.

Outline of the algorithm.

Data structures and size limits.
Description of the procedure parameters.
Interpretation of the output.
Examples.

User-defined procedures.
Vertex-invariants.

Writing programs which call nauty.
Installing nauty and dreadnaut.

. Efficiency.

The dreadnaut program.

13. gtools.

14. Recent changes.

15. References.

A. Sample programs which call nauty.

X NSO WD O

— =
N = O ©

0. How to use this Guide.

The dreadnaut program provides sufficient functionality that most simple applications
can be managed without the need to write any programs. Section 12 is intended to be a fairly
self-contained introduction to that level of use. You should start reading there; it will direct you
to any necessary information which appears elsewhere.

If you wish to write C programs which call nauty, you don’t have much choice but to read
this Guide from start to finish. However, it isn’t really as hard as it sounds; see the example in
Appendix A for an constructive proof.

The current version of nauty is available at http://cs.anu.edu.au/~bdm/nauty.

1. Introduction.

nauty (no automorphisms, yes?) is a set of procedures for determining the automorphism
group of a vertex-coloured graph. It provides this information in the form of a set of generators,
the size of the group, and the orbits of the group. It is also able to produce a canonically-
labelled isomorph of the graph, to assist in isomorphism testing. The mathematical basis for
the algorithm is described in [5]; only a broad outline is given here. Note, however, that a great
number of improvements have been made since the implementation described in [5].

1

Useful ideas received from Greg Butler, Aaron Grosky, Andrew Kirk, Bill Kocay, Rudi
Mathon, Kevin Malysiak, Mark Henderson, Gordon Royle, Carsten Saager, Neil Sloane, Don
Taylor, Gunnar Brinkmann, Yann Kieffer, Wendy Myrvold, Glinter Stertenbrink, and several
others, are gratefully acknowledged.

The author would appreciate receiving any comments about the program and/or this Guide,
especially about apparent bugs.

nauty is written in a highly portable subset of the language C. Modern C compilers for
most types of computer should be able to handle nauty without difficulty.

2. The Algorithm.

Throughout this document, a graph is a simple graph with n vertices labelled 0,1, ... ,n—1.
Digraphs, and graphs with loops, can also be handled correctly (see Section 4), but we will not
mention them much. The vertex set of a graph G is denoted by V = V(G).

The terms colouring and partition will be used interchangeably to denote a partition of V'
into disjoint non-empty colour classes or cells. The order of the cells is significant, but the order
of the vertices within each cell is not. If m; and 7o are partitions, then 7, is finer than mo, and
79 is coarser than 7y, if every cell of 7 is a subset of some cell of 5. (Note that partitions are
both finer and coarser than themselves.) A singleton cell is a cell with cardinality one, while a
discrete partition is one with only singleton cells.

Let G be a graph, v a permutation of V, v € V., W C V, and 7 = (Vp,V1,..., Vi) a
partition of V. Then v7 is the image of v under v, W7 = {w" |w € W}, G7 is the graph in
which vertices 7 and y? are adjacent if and only if x and y are adjacent in G, and 77 is the
partition (Vj',V{",..., V,]).

The automorphism group of a coloured graph (G, 7) is the set of all permutations « such that
G7 = G and 77 = 7. Since the order of cells in partitions is significant, the last condition means
that ~ fixes each cell of m setwise (i.e., v is colour preserving). In the majority of applications,
7 has only one cell V', so we get the usual automorphism group.

If 7= (Vp,Vh,...,Vk) is a partition of {0,1,...,n—1}, then () is the partition ({0,1,...,
Vol—=1}3{IVol, .-, Vol + Vil = 1}, ..., {n — |Vk],...,n—1}). Thus, ¢(xr) has the same cell sizes
as 7, in the same order, but is otherwise independent of .

A canonical labelling map is a function C such that, for any graph G, partition 7 of V| and
permutation v of V', we have
(a) C(G,7) = G? for some permutation § such that 7° = c(r), and
(b) C(G7,n")=C(G,).
Informally, C relabels the vertices of G in order of colour, ignoring the original vertex labels.
The usefulness of a canonical labelling map is as follows.

Theorem. Suppose the graphs G1 and Go are coloured using the same number of vertices of
each colour. Then C(Gq,m) = C(Ga,m2) iff G = Ga for some colour-preserving permutation .
(Here, w1 and 7o are the colourings, with the colours in the same order in each.)

Let G be a graph and 7 a partition of V' with cells Vj, Vi, ..., Vi. Then 7 is equitable (with
respect to G) if there are numbers d;; such that each vertex in V; is adjacent to precisely d,;
vertices in Vj, for 0 <4,j5 < k. Up to the order of the cells, there is a unique coarsest equitable
partition which is finer than any given partition.

2

A refinement function is a function R such that, for any graph G, partition w of V', and
permutation v of V', we have
(a) R(G,n) is a partition of V' which, up to the order of the cells, is the coarsest equitable
partition finer than 7, and
(b) R(GY,77) =R(G,n)".

The algorithm used by nauty is a backtrack program which can be described in terms of
the usual associated search tree. We will refer to the nodes of the tree to avoid confusion with
the wvertices of G. The root of the tree is associated with the initial colouring m of G and the
equitable partition 7’ = R(G, 7). If 7’ is discrete, the automorphism group is trivial and we
can obtain C(G,) by labelling the vertices of G in the order that they appear in 7’. Suppose
more generally that the equitable partition 7’ is associated with some node v of the tree. If 7/
is discrete, then v has no children. If 7’ is not discrete, let C' be a non-singleton cell of it. This
is called the target cell for this node (chosen by nauty according to some rule). For each vertex
v € C' we have a child of v associated with the partition got from 7’ by replacing the cell C' by
the pair of cells {v} and C'— {v}, in that order, and the equitable partition obtained by applying
R to it. The children of v are generated in ascending order of the labels on the vertices of C.

Any node of the tree for which the equitable partition is discrete corresponds to a labelling
of G, as described above. Automorphisms of the graph are found by noticing that two such
labellings give the same labelled graph. The canonical labelling map corresponds to one of these
labellings, chosen according to a complicated scheme for which you will have to consult [5] or
the source code.

Except in particularly simple cases, only some of the tree is actually generated. The other
parts of the tree are either shown to be equivalent to parts already generated, or shown to be
uninteresting. Again, see [5] for details.

In Figure One, we show an example of the part of the tree which is actually generated. The
nodes are represented by their equitable partitions, assuming that the original colouring only
used one colour. The target cells are underlined and the numbers on the tree edges give the
elements of the target cells which are being fixed. In this example, all the leaves are equivalent
and correspond to the automorphisms (1), (1 2)(4 5), and (0 1)(3 4), respectively.

3. Data Structures and Size Limits.

A setword is an unsigned integer type of either 16, 32 or 64 bits, depending on the compile-
time parameter WORDSIZE. (By default, WORDSIZE is the largest of 32 and the size of type
int.)

A set (by which we always mean a subset of V' = {0,1,...,n—1}) is represented by an
array of m setwords, where m is some number such that WORDSIZE x m > n. The bits of
a set are numbered 0,1,...,n—1 left to right (within each setword: high order to low order).
Bits which don’t get numbers are called “unnumbered” and are assumed permanently zero. A
set represents the subset {4 | bit ¢ is 1}.

A graph is represented by an array of n sets (so it has mn setwords altogether). The i-th
set gives the vertices to which vertex ¢ is adjacent, for 0 <17 < n.

The C types setword, set and graph are actually the same, so a graph is really represented
by a 1-dimensional array of length mn, not by an array of arrays.

A permutation of V is represented by an array of n integers, the i-th entry giving the image
of ¢ under the permutation. The type of the entries, permutation is either the same as int or
short int, depending on the circumstances (see below).

3

[345]012]

O

[B145]12]0] [4135]02]1]

FON N

[3r4151211101 315141112101 [41315121011

Figure One

The type boolean is a synonym for int, but the different name is intended to encourage
you to restrict the values to either TRUE or FALSE (which are defined as 1 and 0, respectively).

The structured types optionblk and statsblk are described below. All these types are
defined in the file nauty.h.

Note that types like set actually refer to the elements of the arrays (in this case setword)
rather than the arrays themselves. This is done because the lengths of the arrays are not known
in advance. We use set rather than setword purely for self-documentation purposes.

There are several ways to compile nauty, leading to differences in types and the size of
graph that can be processed. These are selected by preprocessor variables.

(1) If BIGNAUTY is not defined, permutation is defined to be short int and there is an
absolute limit of 21% — 3 = 32765 on the order of a graph. This is the default.

(2) If BIGNAUTY is defined, permutation is defined to be int and there is an absolute limit
of 224 — 3 = 16777213 on the order of a graph.

In addition, there is a choice between static and dynamic memory allocation for the larger
data objects. This is selected by the value of the preprocessor variable MAXN.

(a) If MAXN is defined as 0, the limit on the order of a graph is given in (1)—(2) above and
objects are dynamically allocated. Of course, if you don’t have enough memory, dynamic
allocation may fail.

(b) If MAXN is defined as a positive integer, that is the limit on the order of a graph. It can’t
be greater than the absolute limit given in (1)—(2) above. In this case objects are statically
allocated, so space is wasted if MAXN is much larger than what is actually used.

A special case of option (b) is 0 < MAXN < WORDSIZE, which implies that a set consists
of a single setword. Some of the critical routines in nauty have special code to optimize

performance in that case. The recommended way to compile for this case is to define MAXN to
be the name WORDSIZE.

4. Parameters.

A call to nauty has the form

nauty (g, lab, ptn, active, orbits, options, stats, workspace, worksize, m, n, canong)

where the parameters have meanings as defined below.

graph *xg: The input graph. Read-only.

int xlab,xptn: Two arrays of n entries. Their use depends on the values of several options.
If options.defaultptn = TRUE, the input values are ignored; otherwise, they define the
initial colouring of the graph (see below). If options.getcanon = TRUE, the value of lab
on return is the canonical labelling of the graph. Precisely, it lists the vertices of ¢ in the
order in which they need to be relabelled to give canong. Irrespective of options.getcanon,
neither lab nor pitn is changed by enough to change the colouring. (Recall that the order
of the vertices within the cells is irrelevant.) Read-Write.

set xactive: An array of m setwords specifying the colours which are initially active. A brief
outline of what this means is given below. This argument is rarely used; nauty will
always work correctly if given the nil pointer NULL. Read-only.

int xorbits: An array of n entries to hold the orbits of the automorphism group. When nauty
returns, orbits[i] is the number of the least-numbered vertex in the same orbit as i, for
0 <i<n—1. Write-only.

optionblk xoptions: A structure giving a list of options to the procedure. See below for their
meanings. Read-only.

statsblk *stats: A structure used by nauty to provide some statistics about what it did. See
below for their meanings. Write-only.

setword xworkspace, worksize: The address and length of an integer array used by nauty
for working storage. There is no minimum requirement for correct operation, but the
efficiency may suffer if not much is provided. A value of worksize > 50m is recommended.
Write-only and read-only, respectively.

int m, n: The number of setwords in sets and the number of vertices, respectively. It must
be the case that 1 < n < m x WORDSIZE. If nauty is compiled with MAXN >
0, it must also be the case that n < MAXN and m < MAXM, where MAXM =
[MAXN/WORDSIZE]. Read-only.

graph *canong: The canonically labelled isomorph of g produced by nauty. This argument
is ignored if options.getcanon = FALSE, in which case the nil pointer NULL can be given
as the actual parameter. Write-only.

The initial colouring of the graph is determined by the values of the arrays lab, ptn and the
flag options.defaultptn. If options.defaultptn = TRUE, the contents of lab and ptn are set by
nauty so that every vertex has the same colour. If not, they are assumed to have been set by
the user. In this case, lab should contain a list of all the vertices in some order such that vertices
with the same colour are contiguous. The ends of the colour-classes are indicated by zeros in
ptn. In super-precise terms, each cell has the form {lab[i], lab[i+1],...,lab[j]} where [i,j] is a
maximal subinterval of [0,n—1] such that ptn[k] > 0 for i < k < j and pin[j] = 0. (In the
terminology defined in Section 7, this is the “partition at level 0”.) The order of the vertices
within each cell has no effect on the behaviour of nauty. An example is given in Section 6.

The concept of active cells is used by the procedure which implements the partition re-
finement function R defined above. The details are given in [5], where the active cells are

5

in a sequence called «. In this implementation, a set rather than a sequence is used. If op-
tions.defaultptn = TRUE, or active = NULL, every colour is active. This will always work, and
so is recommended if you don’t want to be a smart-arse. If options.defaultptn = FALSE and
active # NULL, the elements of active indicate the indices (0..n—1) where the active cells start
in lab and ptn (see above). Theorem 2.7 of [5] gives some sufficient conditions for active to be
valid. If these conditions are not met, anything might happen. The most common places where
this feature may save a little time are:

(a) If the initial colouring is known to be already equitable, active can be the empty set. (Don’t
confuse this with NULL, which causes nauty to set the active set to include every cell.)

(b) If the graph is regular and the colouring has exactly two cells, active can indicate just one
of them (the smallest for best efficiency).

If nauty is used to test two graphs for isomorphism, it is essential that exactly the same value
of active be used for each of them.

The various fields of the structure options fine-tune the behaviour of nauty. The recom-
mended way to assign values to these options is to start with the declaration
DEFAULTOPTIONS (options) ;
This defines the static variable options of type optionblk, initialized to sensible values for
most circumstances. Changes in those values can then be made using assignment statements,
for example
options.linelength = 100;
This practice will protect your code from breaking if additional fields are added to options in
future editions of nauty, which is quite likely. (You should just need to recompile.)

All of these fields are read-only.

boolean getcanon: If this is TRUE, the canonically labelled isomorph canong is produced,
and lab is set to indicate the canonical label, as described above. Otherwise, only the
automorphism group is determined. Sometimes, different generators of the automorphism
group are found if this option is selected; of course, the group they generate is the same.
Default FALSE.

boolean digraph: This must be TRUE if the graph has any directed edges or loops. It has the
effect of turning off some heuristics which are only valid for simple graphs. If no directed
edges or loops are present, selecting this option is legal but may degrade the performance
slightly. Default FALSE.

boolean writeautoms: 1If this is TRUE, generators of the automorphism group will be written
to the file outfile (see below). The format will depend on the settings of options cartesian
and linelength (see below, again). More details on what is written can be found in
Section 5. Default FALSE (changed with version 2.1).

boolean writemarkers: If this is TRUE, extra data about the automorphism group generators
will be written to the file outfile (see below). An explanation of what these data are can
be found in Section 5. Default FALSE (changed with version 2.1).

boolean defaultptn: This has been fully explained above. Default TRUE.

boolean cartesian: If writeautoms = TRUE, the value of this option effects the format in
which automorphisms are written. If cartesian = FALSE, the output is the usual cyclic
representation of v, for example “(2 5 6)(3 4)”. If cartesian = TRUE, the output for an
automorphism + is the sequence of numbers “17 27 ... (n—1)7", for example “1 5 4 3
6 2”. Default FALSE.

int

FILE

void

void

void

void

void

void

int

int

int

int

linelength: The value of this variable specifies the maximum number of characters per line
(excluding end-of-line characters) which may be written to the file outfile (see below).
Actually, it is ignored for the output selected by the option writemarkers, but that
never has more than about 65 characters per line anyway. A value of 0 indicates no
limit. Default CONSOLWIDTH, which can be defined when compiling but is set to 78
otherwise.

xoutfile: This is the file to which the output selected by the options writeautoms and
writemarkers is sent. It must be already open and writable. The nil pointer NULL is
equivalent to stdout (the standard output). Default NULL.

(xuserrefproc)(): This is a pointer to a user-defined procedure which is to be called in
place of the default refinement procedure. Section 7 has details. If the value is NULL,
the default refinement procedure is used. Default NULL.

(xuserautomproc)(): This is a pointer to a user-defined procedure which is to be called
for each generator. Section 7 has details. No calls will be made if the value is NULL.
Default NULL.

(xuserlevelproc)(): This is a pointer to a user-defined procedure which is to be called
for each node in the leftmost path downwards from the root, in bottom to top order.
Section 7 has details. No calls will be made if the value is NULL. Default NULL.

(xusernodeproc)(): This is a pointer to a user-defined procedure which is to be called for
each node of the tree. Section 7 has details. No calls will be made if the value is NULL.
Default NULL.

(xusertcellproc)(): This is a pointer to a user-defined procedure which is to be called in
place of the default routine which chooses a target cell. Section 7 has details. If the value
is NULL, the default routine is used. Default NULL.

(xinvarproc)(): This is a pointer to a vertex-invariant procedure. See Section 8 for a
discussion of vertex-invariants. No calls will be made if the value is NULL. Default
NULL.

tc_level: Two rules are available to choose target cells. On levels up to level tc_level,
inclusive, an expensive but (empirically) highly effective rule is used. (The root of the
search tree is at level one.) At deeper levels, a cheaper rule is used. For difficult graphs,
a large value is recommended. For easier graphs, use 0. Default 100.

mininvarlevel: The absolute value gives the minimum level at which nvarproc will be
applied. (The root of the search tree is at level one.) If options.getcanon = FALSE, a
negative value indicates that the minimum level will be automatically set by nauty to
the least level in the left-most path in the search tree where invarproc is applied and
refines the partition. If options.getcanon = TRUE, the sign is ignored. A value of 0
indicates no minimum level. Default 0.

mazinvarlevel: The absolute value gives the maximum level at which invarproc will be
applied. (The root of the search tree is at level one.) If options.getcanon = FALSE, a
negative value indicates that the maximum level will be automatically set by nauty to
the least level in the left-most path in the search tree where invarproc is applied and
refines the partition. If options.getcanon = TRUE, the sign is ignored. A value of 0
effectively disables invarproc. Default 1 (changed with version 2.1).

inwararg: This level is passed by nauty to the vertex-invariant procedure invarproc, which
might use it for any purpose it pleases. Default 0.

7

dispatchvec xdispatch: This is a vector of procedure pointers used to apply nauty to objects
other than graphs. Version 2.2 only has full support for graphs. The value NULL is
equivalent to the structure dispatch_graph defined in naugraph.c, which is what this
option needs for graphs. Default NULL.

Some of the fields in the options argument may change the canonical labelling produced
by nauty. These are fields digraph, defaultptn, tc_level, userrefproc, usertcellproc, invarproc,
mininvarlevel, mazxinvarlevel, invararg and dispatch. If nauty is used to test two graphs for
isomorphism, it is important that the same values of these options be used for both graphs.

The various fields of the structure stats are set by nauty. Their meanings are as follows:

double grpsizel, int grpsize2: The order of the automorphism group is equal to grpsizel x
1097P$i2€2 within rounding error. If the exact size of a very large group is needed, it can

be calculated from the output selected by the writemarkers option. See Section 5.
int numorbits: The number of orbits of the automorphism group.
int numgenerators: The number of generators found.

int errstatus: If this is nonzero, an error was detected by nauty. Possible values are:
e MTOOBIG: m is too big; i.e., the maximum is 16777215/WORDSIZE+1 if MAXN=0
and BIGNAUTY is defined, 32765/ WORDSIZE+1 if MAXN=0 and BIGNAUTY is not
defined, and [MAXN/WORDSIZE]| otherwise.
e NTOOBIG: n is too big. n > MAXN and MAXN > 0, or n > 32765 (16777213 if
BIGNAUTY is defined), or n > WORDSIZE x m
e CANONGNIL: canong = NULL, but options.getcanon = TRUE.
nauty also writes a message to stderr in these cases, so there is no real need to test this
parameter in most applications.

long numnodes: The total number of tree nodes generated.

long numbadleaves: The number of leaves of the tree which were generated but were useless
in the sense that no automorphism was thereby discovered and the current-best-guess at
the canonical labelling was not updated.

int mazlevel: The maximum level of any generated tree node. The root of the tree is on level
one.

long tctotal: The total size of all the target cells in the search tree. The difference between
this value and numnodes provides an estimate of the efficiency of nauty’s search-tree
pruning.

long canupdates: The number of times the program’s idea of the “best candidate for canonical
label” was updated, including the original one.

long invapplics: The number of nodes at which the vertex-invariant was applied.

long invsuccesses: The number of nodes at which the vertex-invariant succeeded in refining
the partition more than the refinement procedure did.

int inwvarsuclevel: The least level of the nodes in the tree at which the vertex-invariant suc-
ceeded in refining the partition more than the refinement procedure did. The value is
zero if the vertex-invariant was never successful.

The values corresponding to node counts might overflow in a long computation, but this is
not a serious problem as they are not used during the computation.

8

In addition to their parameters, the output routines of nauty respect the value of the
global int variable labelorg. If the value of labelorg is k, the output routines pretend that
the vertices of the graph are numbered k,k+1,...,n+k—1, even though they are internally
numbered 0,1,...,n—1. By default, kK = 0. Only non-negative values are supported.

5. Output.

If options.writeautoms = TRUE or options.writemarkers = TRUE, information concerning
the automorphism group is written to the file options.outfile.

Let I' be the automorphism group, and let I%,, ,, .. ., denote the point-wise stabiliser in I
of v1,vs,...,v;. The output has the following general form:

k
0
40

(k)
Ve,
level k: cr cells; r, orbits; vg fixed; index i/ ji
(k—1)
~y

(1)
Y2

(k—1)
te—1 . .
level k—1: ck—1 cells; rp_1 orbits; wvi_i1 fixed; index ix_1/Jk_1

level 2: co cells; 19 orbits; wy fixed; index is/jo
(1)
~

W
P

(1)
Yty
level 1: c1 cells; r; orbits; v; fixed; index i1/j;1

Here, v1,vq,...,v; is a sequence of vertices such that I, is trivial. The ’yi(J) are

automorphisms. For 1 <[< k, the following are true.

1,V2,...,Vk

(@) Iy v,...v,_, is generated by the automorphisms 'yi(]) for | <j<kand1l<i<t.

(b) Iy, vy....0,_, has r; orbits and order iyis - - 4.

(¢) ¢ is the number of cells in the equitable partition at the ancestor at level [of the first leaf
of the tree, j; is the number of vertices in the target cell of the same node, v; is the first vertex
in that cell, and ¢; is the number of vertices of that cell which are equivalent to v;.

(d) Zf:z t; < n—r;. This follows from the fact that the number of orbits of the group generated
by all the automorphisms found to up to any moment decreases as each new automorphism is
found. In particular, this means that the total number of generators found is at most n—1.
Usually, it is much less.

The markers “level...” are only written if options.writemarkers = TRUE. In the common

circumstance that ¢; = r;, “¢; cells;” is omitted. Similarly, “/j;” is omitted if j; = 9;. Note
that 4, = 1 is possible for more difficult graphs. Further information about the generators can
be found in Theorem 2.34 of [5].

6. Examples.
All of the following examples were run without the use of a vertex-invariant.

Example 1:

options[getcanon = FALSE, digraph = FALSE, writeautoms = TRUE, writemarkers = TRUE,
defaultptn = TRUE, cartesian = FALSE, tc_level = 0].
output:

(2 5)(3 4)

level 3: 6 orbits; 3 fixed; index 2

(13)(B 7

level 2: 4 orbits; 1 fixed; index 3

(0 1)(23)(4 5)(67)

level 1: 1 orbit; O fixed; index 8
orbits = (0,0,0,0,0,0,0,0), stats|grpsizel = 48.0, grpsize2 = 0, numorbits = 1, numgenerators =
3, numnodes = 10, numbadleaves = 0, mazlevel = 4].
Explanation of output: Let 71, 72 and 3 be the three automorphisms found, in the order
written. Let I' be the automorphism group. Then

Toas = {(1)}
I'v1 = (1) with 6 orbits and order 2

Iy
r

(y1,72) with 4 orbits and order 2 x 3 =6

(V1,72,73) with 1 orbit and order 6 x 8 = 48.

Example 2:

lab = (2,0,1,3,4,5,6,7), ptn = (0,1,1,1,1,1,1,0), active = NULL,
options[getcanon = FALSE, digraph = FALSE, writeautoms = TRUE, writemarkers = TRUE,
defaultptn = FALSE, cartesian = TRUE, tc_level = 0).

output:
51264037
level 2: 6 orbits; 3 fixed; index 2

10

03214765

level 1: 4 orbits; 1 fixed; index 3
orbits = (0,1,2,1,4,0,1,0), stats[grpsizel = 6.0, grpsize2 = 0, numorbits = 4, numgenerators = 2,
numnodes = 6, numbadleaves = 0, mazlevel = 3|.

In this example we have set lab, ptn and options.defaultptn so that vertex 2 is fixed. The
automorphisms were written in the “cartesian” representation, which would probably only be
useful if they were going to be fed to another program. The value of orbits on return indicates
that the orbits of the group are {0,5,7}, {1,3,6}, {2} and {4}.

~A Ty

0 2 4 5 9 10

options|getcanon = TRUE, digraph = FALSE, writeautoms = TRUE, writemarkers = TRUE,
defaultptn = TRUE, tc_level = 0].

output:

Example 3:

(8 11) (9 10)

level 6: 10 orbits; 8 fixed; index 2

(7 8)(9 11)

level 5: 8 orbits; 7 fixed; index 5

(4 6)

level 4: 7 orbits; 4 fixed; index 2

(3 4)(5 6)

level 3: 4 cells; 5 orbits; 3 fixed; index 4/9

(12

level 2: 3 cells; 4 orbits; 1 fixed; index 2

(0 1)

level 1: 1 cell; 3 orbits; 0 fixed; index 3/12
orbits = (0,0,0,3,3,3,3,7,7,7,7,7), stats[grpsizel = 480.0, grpsize2 = 0, numorbits = 3, numgen-
erators = 6, numnodes = 40, numbadleaves = 2, mazlevel = 7 lab = (3,4,6,5,7,8,11,9,10,0,1,2).

11 6 7 3
/N WOZ
9 10 5 8 0 1

options|getcanon = TRUE, digraph = FALSE, writeautoms = FALSE, writemarkers = FALSE,

defaultptn = TRUE, tc_level = 0].
No output written.

Example 4:

11

orbits = (0,0,0,0,0,5,5,5,5,9,9,9), stats[grpsizel = 480.0, grpsize2 = 0, numorbits = 3,
numgenerators = 6, numnodes = 41, numbadleaves = 3, mazlevel = 7],
lab = (5,6,8,7,0,1,4,2,3,9,10,11).

11 1 3 8
6 7
g = ;
9 10 O 2 4 5

which is identical to the resulting canong in Example 3.

7. User-defined procedures.

Provision is made for up to five procedures specified by the user to be called at various
times during the processing. This will be done if pointers to them are passed in the userrefproc,
userautomproc, usernodeproc, userlevelproc and/or usertcellproc fields of options (see Section 4).
In all cases, a value of NULL will result in sensible default action.

These procedures have many parameters in common; we will describe the most important
of these here. Unless the individual procedure descriptions specify otherwise, they should be
treated as read-only.

graph xg; int m, n: These are the arguments of the same name passed to nauty. nauty has
not changed them. See Section 4 for their meanings.

int level: The level of the current node. The root of the search tree has level one.

int *lab, xptn: Arrays of length n giving partitions associated with each of the nodes along
the path from the root of the tree to the current node. These are the parameters of the
same name passed to nauty, but nauty has modified their contents as described below.

Suppose that we are currently at level [of the search tree. Let v1,vs,...,14 be the path
in the tree from the root v; to the current node v;. The “partition at level ¢” is a partition m;
associated with node v;. The partition originally passed to nauty, implicitly or explicitly, is the
“partition at level 0”, denoted by my. The complete partition nest mg, wq,..., 7 is held in lab
and pin thus:
(a) lab holds a permutation of {0,1,...,n—1}.
(b) For 0 < t < [, the partition m; has as cells all the sets of the form {labi], lab[i+1],
..., lablj]}, where [i,j] is a maximal subinterval of [0,n—1] such that ptn[k] > ¢t for i < k < j
and pin[j] < t.
(¢) Every entry of ptn which is not less than or equal to [is equal to NAUTY_INFINITY.
(NAUTY_INFINITY is a large constant defined in nauty.h.)

For example, say n = 10, | = 3, 7o = [0,2,4,5,6,7,8,9|1,3], m = [0,2,4,6/5,7,8,9]|1, 3],
my = [0,2,4,6|8]5,7,9|3|1], and 735 = [4,6]0,2|8]5,7,9|3|1]. Then the contents of lab and pin
may be

lab: 4 6 2 o 8 7 5 9 3 1
ptn: co 3 o 1 2 oo oo 0 2 0

The order of the vertices within the cells of 7; is arbitrary.

We will refer to the partition at level [as “the current partition”.

12

(a) wuserrefproc (g, lab, ptn, level, numcells, count, active, code, m, n)

This is a procedure to replace the default partition-refinement procedure, and is called for
each node of the tree. The partition associated with the node is the “partition at level level”,
which is defined above.

The parameters passed are as follows.

g,m,n,lab,ptn,level: As above. The parameters lab and ptn may be altered by this procedure
to the extent of making the current partition finer. The partitions at higher levels must
not be altered.

int snumecells: The number of cells in the current partition. This must be updated if the
number of cells is increased.

permutation xcount: This is the address of an array of length at least n which can be used
as scratch space. It can be changed at will.

set xactive: The set of active cells. This is not the same as the parameter of the same name
passed to nauty, but has the same meaning and purpose. It can be changed which
affecting nauty behaviour. See Section 4.

int *code: This must be set to a labelling-independent value which is an invariant of the
partition at this level before or after refinement. (Example: the number of cells.) It is
essential that equivalent nodes have the same code. The value assigned must be less than
NAUTY_INFINITY.

The operation of refining the current partition involves permuting the vertices (i.e., entries
of lab) within a cell, and then breaking it into subcells by changing the appropriate entries of
ptn to level.

The validity of nauty requires that the operation performed be entirely independent of the
labelling of the graph. Thus, if userrefproc is called with g and lab relabelled consistently and
the same values of pin and active, then the final values of ptn and active should be the same,
and the final value of lab should be the same but relabelled in the same way (remembering
always that the order of vertices within the cells doesn’t matter). It is also necessary that nodes
of the tree which may be equivalent must be treated equivalently. To be safe, regard any nodes
on the same level as possibly equivalent.

It is desirable (but not compulsory) that the partition returned is equitable. If necessary,
this can be done by calling the default refinement procedure refine, which has the same parameter
list. If equitablility cannot be ensured, make sure that options.digraph = TRUE.

The usefulness of userrefproc has declined since vertex-invariants were introduced (see Sec-
tion 8).

(b) wusernodeproc (g, lab, ptn, level, numcells, tc, code, m, n)

This is called once for every node of the tree, after the partition has been refined.

The parameters passed are as follows. Treat all of them as read-only.
g,m,n,lab,ptn,level: As above.
int numecells: The number of cells in the current partition.

int tc: If nauty has determined that children of this node need to be explored, tc is the index
in lab of where the target cell starts. Otherwise, it is —1.

int code: This is the code produced by the refinement and vertex-invariant procedures while
refining this partition.

13

(¢) wuserautomproc(count, perm, orbits, numorbits, stabvertex, n)

This is called once for each generator of the automorphism group, in the same order as they
are written (see Section 5). It is provided to facilitate such tasks as storing the generators for
later use, writing them in some unusual manner, or converting them into another representation
(for example, into their actions on the edges).

(4)

Suppose the generator is v = +,”’, in the notation of Section 5. Then the parameters have

meanings as below. Treat them all as read-only.
int count: The ordinal of this generator. The first is number 1.
permutation sperm: The generator v itself. For 0 < i < n, perm[i] = 7.

int xorbits; int numorbits: The orbits and number of orbits of the group generated by all
the generators found so far, including this one. See Section 4 for the format of orbits.

int stabvertexr: The value v;, as defined in Section 5.

int n: The number of vertices, as usual.

(d) wuserlevelproc(lab, ptn, level, orbits, stats, tv, indez, tcellsize, numcells, childcount, n)

This is called once for each node on the leftmost path downwards from the root, in bottom
to top order. It corresponds to the markers “level ...”, which are described in Section 5,
except that an additional, initial, call is made for the first leaf of the tree. The purpose is to
provide more information than is provided by the markers, in a manner which enables it to be
stored for later use, etc.. The parameters passed are as follows. Treat them all as read-only.

lab,ptn,level,n: As above. The values of level will decrease by one for each call, reaching one
for the final call.

Suppose that the value of level is I.

int xorbits: The orbits of the group generated by all the automorphisms found so far. See
Section 4 for the format. In the notation of Section 5, orbits gives the orbits of the
stabiliser Iy, vy, 04+
statsblk x*stats: The meaning is as given in Section 4, except that it applies to the group
generated by all the automorphisms found so far, that is to Iy, 4,....4,_,. Only the fields

which refer to the group can be assumed correct.

int tv, index, tcellsize, numcells: In the notation of Section 5, these are the values of vy, i, j;
and ¢, respectively. For the first call, their values are 0, 1, 1 and n, respectively.

int childcount: This is the number of children of the node at level level on the first path down
the tree which were actually generated.

The condition numcells = n can be used to identify the first call.

(e) wsertcellproc(g, lab, ptn, level, numcells, tcell, size, cellpos, tc_level, hint, bestcellproc, m, n)

This is a replacement for the default procedure called on to choose a target cell. It is called
for every node for which nauty has decided children must be generated, after the partition has
been refined.

The parameters are as follows. Only tcell, tcellsize and cellpos may be altered.
g,m,n,lab,ptn,level: As above.

int numecells: The number of cells in the current partition.

14

set xtcell: This is the address of a set of m setwords which must be set by the procedure to
contain just those vertices in the target cell.

int =size: This must be set by the procedure to the size of the target cell.

int =cellpos: This must be set by the procedure to the position in lab where the target cell
starts.

int tc_level: The value of the field of the same name in the options parameter passed to nauty.

int hint: If this is > 0, it is a suggestion from nauty of a good value for cellpos (and thus
for tcell and tcellsize). There is no compulsion to take the hint, but taking it is almost
always a good idea. However, you must first verify that the hint is valid in the sense that
there is a non-singleton cell which starts at the specified place. If there is not, you must
choose a valid cell.

int bestcellproc(): If not NULL, this is a procedure which can be called with argument list
(graph *g, int *[ab, int *pin, int level, int tc_level, int m, int n). The pro-
cedure passed by nauty is the one given in options.dispatch—>bestcell, which for graphs
is normally the procedure bestcell in naugraph.c. It returns the index in lab/ptn of a
non-trivial cell, or n if there is one.

It is quite central to the validity of the algorithm that a non-singleton cell be chosen (it will
always exist). The choice must be entirely independent of the labelling of the vertices. It must
also be independent of the position of the node in the search tree to the extent that equivalent
nodes are treated equivalently.

The standard way to write usertcellproc is like this:
(i) if hint indicates a non-trivial cell, choose it; else
(i) if level < tc_level use bestcellproc to choose a cell; else
(iii) choose a non-trivial cell in some other manner (for example, the first such cell).

The bestcellproc parameter was added at version 2.0.

8. Vertex-invariants.

As described in Section 2, the operation of nauty is driven by a procedure which accepts
partitions and attempts to make them strictly finer without separating equivalent vertices. For
some families of difficult graphs, the built-in refinement procedure is insufficiently powerful,
resulting in excessively large search trees. In many cases, this problem can be dramatically
reduced by using some sort of invariant to assist the refinement procedure.

Formally, let G be the set of labelled graphs (or digraphs) with vertices V' = {0,1,...,n—1},
and let I be the set of partitions of V. As always, the order of the cells of a partition is
significant, but the order of the elements of the cells is not. Let Z be the integers. A wvertex-
invariant is defined to be a mapping

¢ GXI XV —>Z

such that ¢(GY,77,vY) = ¢(G,m,v) for every G € G, m € II, v € V and permutation .
Informally, this says that the values of ¢ are independent of the labelling of G.

A great number of vertex-invariants have been proposed in the literature, but very few
of them are suitable for use with nauty. Most of them are either insufficiently powerful or
require excessive amounts of time or space to compute. Even amongst the vertex-invariants
which are known to be useful, their usefulness varies so much with the type of graph they are

15

applied to, or the levels of the search tree at which they are applied, that intelligent automatic
selection of a vertex-invariant by nauty would seem to be a task beyond our current capabilities.
Consequently, the choice of vertex-invariant (or the choice not to use one) has been left up to
the user.

The options parameter of nauty has four fields relevant to vertex-invariants, namely in-
varproc, mininvarlevel, mazxinvarlevel and invararg. These are fully described in Section 4. The
I command in dreadnaut may be useful in investigating which of the supplied vertex-invariants
are useful for your problem. Experience shows that it is nearly always best to apply the invariant
at just one level in the search tree, with levels 1 and 2 being the most likely candidates.

We now describe the vertex-invariants which are provided with nauty. Information on how
to write a new vertex-invariant procedure can be found in the file nautinv.c. We will assume
that ¢g is a graph on V = {0,1,...,n—1}, and that = = (V,V1,..., V%) is a partition of V.
This partition will be equitable unless options.digraph = TRUE. One of the cells of m will be
designated V*. If the procedure is called by nauty at level 1 (i.e. at the root of the search
tree), or directly by dreadnaut (I command), this will be the first cell Vp; otherwise, V* will
be the singleton cell containing the vertex fixed in order to create this node from its parent.

twopaths. Each vertex v is given a code depending on the cells to which belong the vertices
reachable from v along a path of length 2. invararg is not used. This is a cheap invariant suitable
for graphs which are regular but otherwise have no particular structure (for example).

adjtriang. Each vertex v is given a code depending on the number of common neighbours
between each pair {v1,vs} of neighbours of v, and which cells v; and vs belong to. v; must be
adjacent to vy if invararg = 0 and not adjacent if invararg = 1. This is a fairly cheap invariant
which can often break up the vertex sets of strongly-regular graphs.

triples. Each vertex v is given a code depending on the set of weights w(v, vy, vs), where {vy,v2}
ranges over the set of all pairs of vertices distinct from v such that at least one of {v,v1, vy} lies
in V*. The weight w(v,v;,vs) depends on the number of vertices adjacent to an odd number
of {v,v1,v2} and to the cells that v, v; and vy belong to. invararg is not used. This invariant
often works on strongly-regular graphs that adjtriang fails on, but is more expensive.

quadruples. FEach vertex v is given a code depending on the set of weights w(v, vy, va, v3), where
{v1,v2,v3} ranges over the set of all pairs of vertices distinct from v such that at least one of
{v,v1,v2,v3} lies in V*. The weight w(v, v1,v2,v3) depends on the number of vertices adjacent
to an odd number of {v,v1,v9,v3} and to the cells that v, vy, vy and vz belong to. invararg
is not used. This is an expensive invariant which can sometimes be of use for graphs with a
particularly regular structure.

celltrips. Each vertex v is given a code depending on the set of weights w(v,vy,vs2), where
w(v,v1,vy) depends on the number of vertices adjacent to an odd number of {v,vy,vo}. These
three vertices are constrained to belong to the same cell. The cells of 7 are tried in increasing
order of size until one splits. 4nvararg is not used. This invariant can sometimes split the
bipartite graphs derived from block designs, and other graphs of moderate difficulty.

cellquads. FEach vertex v is given a code depending on the set of weights w(v, vy, v2,v3), where
w(v,v1,v9,v3) depends on the number of vertices adjacent to an odd number of {v,vy,v9,v3}.
These four vertices are constrained to belong to the same cell. The cells of 7 are tried in
increasing order of size until one splits. invararg is not used. This invariant is powerful enough
to split many difficult graphs, such as hadamard-matrix graphs (where it is best applied at
level 2).

16

cellquins. Each vertex v is given a code depending on the set of weights w(v,vy,vs, vs,v4),
where w(v,v1,vs,v3,v4) depends on the number of vertices adjacent to an odd number of
{v,v1,v9,v3,v4}. These five vertices are constrained to belong to the same cell. The cells
of 7 are tried in increasing order of size until one splits. invararg is not used. We know of no
good use for this very powerful but very expensive invariant.

distances. Each vertex v is given a code depending on the number of vertices at each distance
from v, and what cells they belong to. If a cell is found that splits, no further cells are tried.
invararg specifies an upper bound on which distance to investigate, with 0 indicating no limit.
This is a fairly cheap invariant suitable for things like regular graphs for which twopaths doesn’t
work.

indsets. Each vertex v is given a code depending on the number of independent sets of size
invararg which include v, and the cells containing the other vertices of those sets. The value
of invararg is limited to 10. This can often split the vertex sets of strongly-regular graphs
and bipartite design graphs, though it becomes expensive if invararg is large. A value of 4 is
sometimes sufficient.

cliques. Each vertex v is given a code depending on the number of cliques of size invararg which
include v, and the cells containing the other vertices of those cliques. The value of invararg is
limited to 10. This can often split the vertex sets of strongly-regular graphs, though it becomes
expensive if invararg is large. A value of 4 is sometimes sufficient.

cellcliq. Each vertex v is given a code depending on the number of cliques of size invararg
which include v and lie within the cell containing v. The value of invararg is limited to 10. The
cells are tried in increasing order of size, and the process stops as soon as a cell splits. This
invariant applied at level 2 can be very successful on difficult vertex-transitive graphs. A value
of 3 can sometimes work even on strongly-regular graphs.

cellind. Each vertex v is given a code depending on the number of independent sets of size
invararg which include v and lie within the cell containing v. The value of invararg is limited
to 10. The cells are tried in increasing order of size, and the process stops as soon as a cell splits.
This invariant applied at level 2 can be very successful on difficult vertex-transitive graphs.

adjacencies. 'This is an invariant for digraphs and is not useful for graphs. The standard refine-
ment procedure alone can sometimes give very poor performance for directed graphs, especially
those which are not strongly connected. This invariant tries to correct the poor behaviour.
Applying it to multiple levels may be necessary.

cellfano. This invariant is intended for projective plane graphs but can be applied to any
graphs. It is very expensive.

cellfano2. This invariant is intended for projective plane graphs but can be applied to any
graphs. It is very expensive, but maybe less than cellfano for genuine projective plane graphs.
In the latter case, it can be thought of as counting the Fano subplanes according to which cells
they involve.

9. Writing programs which call nauty. A complete example of a program calling nauty
can be found in Appendix A. There are two versions, one using an explicit positive value of
MAXN, and one using dynamic allocation.

Programs which call nauty should include the file nauty.h. As well as defining the rel-
evant types and parameters, this file also declares macros and procedures which are of use in
constructing the arguments, and declares some useful tables.

17

Suppose that m and n have meanings as usual.

There are two general approaches. The first, the simplest if a prior limit is known on the
graph size, is to define MAXN to be that limit before nauty.h is included. nauty.h will define
MAXM, and then MAXN and MAXN can be used to declare variables. For example:

set s[MAXM]; /* a set *x/
graph ¢g[MAXN*MAXM]; /* a graph */
int zy[MAXN]; /* an array */

The second method is more complicated but does not require a prior bound on the graph
size. In this method, each variable whose size is unknown is dynamically allocated. Of course you
can do this yourself using malloc() but nauty.h provides macros for doing it in a convenient
and efficient way. First there are static declarations:

DYNALLSTAT (set, s, s5.52) ;
DYNALLSTAT (graph, g, g.s2) ;
DYNALLSTAT (int, zy, xy-sz) ;

Before the variables are used, they are set to the right size using the dynamic allocation macros:
DYNALLOC1(set,s,s.sz,m,"malloc");

DYNALLOC2(graph, g, g-sz,m,n,"malloc") ;
DYNALLOC1 (int,xy, zy-sz,n,"malloc");

To take the first variable as an example, the result of the macro will be that s has a value
of type set* which points to an array of length at least m. If DYNALLSTAT is used again
for the same variable, it is freed and allocated again only if the new requested size is larger
than the previous size. This is intended to be more efficient that repeated unnecessary calls
to malloc() and free(). In case it is desired to free the object allocated by DYNALLOCI,
use, for example, DYNFREE (s, s_sz). There is also CONDYNFREE that frees objects if they are
bigger than a given size.

In the case of g, we used DYNALLOC2 instead of DYNALLOC1. This is slightly better as it
covers the possibility that mn is too large for an int. We could also use
DYNALLOC1(graph, g, g_sz,m*(size t)n,"malloc");

nauty.h also defines a number of macros that are useful for programming with the nauty
data structures. Some of the more useful macros are as follows.

ADDELEMENT(s,i) : add element ¢ to set s.

DELELEMENT(s,7) : delete element ¢ from set s.

FLIPELEMENT(s,7) : delete element 7 from set s if it is present, or insert it if it is absent.
ISELEMENT (s,i) : test if 7 is an element of the set s (0 <7 <n—1).

EMPTYSET(s,m) : make the set s equal to the empty set.

POPCOUNT(z) : the number of 1-bits in the setword z. Use (z ? POPCOUNT(z) : O0) in
circumstances where z is most often zero.

FIRSTBIT(z) : the position (0 to WORDSIZE — 1) of the first (least-numbered) 1-bit in the
setword z, or WORDSIZE if there is none.

TAKEBIT (¢,z) : If the setword z is not 0, set ¢ to the position (0 to WORDSIZE — 1) of the
first (least-numbered) 1-bit in x, and remove that bit from x.

ALLBITS : A setword constant with the first WORDSIZE bits set (this is usually all the bits).

18

BITMASK(7) : A setword constant with the first ¢+1 bits unset and the other WORDSIZE—i—1
numbered bits set, for 0 < ¢ < WORDSIZE. Thus, ANDing a setword with BITMASK(1)
deletes bits 0..4.

Some of the procedures in nautil.c or naugraph.c may be useful. They are declared in
nauty.h. See the source code for the parameter list and semantics of these:

nextelement : find the position of the next element in a set following a specified position. The
recommended way to do something for each element of the set s is like this:
for (i = -1; (i = nextelement(s,m,i)) >= 0;)
Process element i.

permset : apply a permutation to a set.

orbjoin : update the orbits of a group according to a new generator.

writeperm : write a permutation to a file.

isautom : test if a permutation is an automorphism.

updatecan : (for samerows = 0) relabel a graph.

refine : find coarsest equitable partition not coarser than given partition.

refinel : produces exactly the same results as refine, but assumes m = 1 for greater speed.

The file naututil.c contains procedures which are used by the dreadnaut program (see
Section 12). Many of these are also useful to programs which call nauty. If your program uses
them, include naututil.h instead of nauty.h.

Some of the more useful procedures are:
setsize : find cardinality of set.
setinter : find cardinality of intersection of two sets.
putset : write a set to a file.
putgraph : write a graph to a file.
putorbits : write a set of orbits to a file.
putptn : write a partition to a file.
readgraph : read a graph from a file.
readptn : read a partition from a file.
ranperm : generate a random permutation.
rangraph : generate a random graph.
mathon : perform a doubling operation, as defined in [3].
complement : take the complement of a graph.
converse : take the converse of a digraph.
cellstarts : find the places where the cells at a given level begin.
sublabel : extract an induced subgraph of a graph.

In addition, the file nautaux.c contains a few procedures which manipulate graphs or
partitions, but which are not currently used by nauty or dreadnaut.

It is recommended that programs which call nauty use the call
nauty_check(WORDSIZE,m,n,NAUTYVERSIONID);
which will verify that a compatible verion of nauty is being used.

19

10. Installing nauty and dreadnaut.
First, read the file README to see if there is information more recent than this manual.

There are a number of source files provided. mnauty by itself requires at least the files
nauty.h, nauty.c, nautil.c and naugraph.c. The provided invariants are in nautinv.c. The
dreadnaut program requires, in addition, files rng.c, naututil.h, naututil.c and dread-
naut.c.

Starting at version 2.1, nauty does not try too hard to support very old or broken compilers.
In particular, the basic facilities of ANSI C such as void and function prototypes are assumed.
The files of nauty itself should compile with any ANSI-compliant compiler. On the other hand,
dreadnaut expects a few library functions that might not be available in non-Unix systems.

If are using a Unix-like system (one that has a working shell and preferably make), the
preferred way to compile nauty is to run the shell script
./configure
This will examine your system and create the files nauty.h, naututil.h, gtools.h and make-
file in a way that is (hopefully) compatible. Then you can compile nauty using
make nauty

If you are on a system where these tools are not available, but you have a half-decent C
compiler, you should start by editing the definitions near the start of nauty.h, naututil.h
and gtools.h. (Most should be OK already.) Then you can compile using the commands in
makefile as a guide. If you have trouble, please advise the author of the details. Similarly,
please tell us if you can improve the operation on non-Unix systems.

This procedure will create two editions of dreadnaut, namely dreadnaut (n limited to
32765) and dreadnautB (n limited to 16777213). The makefile also knows how to make other
variants of nauty; here is a list of all of them:

nauty.o etc: MAXN = 0 (n limited to 32765)

nautyl.o etc: MAXN = WORDSIZE (n limited to the word size)
nautyB.o etc: MAXN = 0, BIGNAUTY (n limited to 16777213)
nautyW.o etc.: MAXN = 0, WORDSIZE = 32

nautyWi.o etc.: MAXN = WORDSIZE = 32

nautyS.o etc.: MAXN = 0, WORDSIZE = 16

nautyS1i.o etc.: MAXN = WORDSIZE = 16

nautyL.o etc.: MAXN = 0, WORDSIZE = 64

nautyLl.o etc: MAXN = WORDSIZE = 64

The last two variants can only be used if your compiler supports either unsigned long or
unsigned long long type as a 64-bit integer.

There are some test files included in the package. To run these, just use
make checks
which should not produce any output that looks like an error message.

20

11. Efficiency.

We give some sample execution times for a Pentium III processor at 1 GHz, using gcc with
full optimisation, using default options unless otherwise specified.

For random graphs with edge probability 1/2, experimental execution times for large n are
about n? nanoseconds with options.getcanon = FALSE, and 12n? nanoseconds with
options.getcanon = TRUE. The large difference between these times for large n is almost
entirely taken up by the process of permuting the entries of g to get canong. Except for very
small n, nearly all random graphs have only discrete equitable partitions, and thus have trivial
automorphism groups. All nauty does in this case is one refinement operation followed, if
options.getcanon = TRUE, by one relabelling operation.

The 46308 vertex-transitive graphs of order 30 require 0.14 milliseconds each on average,
irrespective of the value of options.getcanon. An average of about 4 generators each are found
for the automorphism groups.

A list of difficult graphs is given by Mathon in [3]. Using his notation for them, we find the
following times with options.getcanon = TRUE:
Ass—Bss: 0.00015 seconds;
Aso and Bsyp: 0.029 seconds (0.006 seconds using vertex-invariant cellquads at level 1);
Als: 0.0008 seconds (0.00014 seconds using vertex-invariant adjtriang at level 1);
Bls: 0.0026 seconds (0.00014 seconds using vertex-invariant adjtriang at level 1);
Aszs—D35: 0.008 seconds (0.00018 seconds using vertex-invariant cliques with parameter 4 at
level 1);
Aso: 0.009 seconds (0.0014 seconds using vertex-invariant cliques with parameter 5 at level 1);
Bso: 0.055 seconds (0.0016 seconds using vertex-invariant cliques with parameter 5 at level 1);
A79—D7o: 0.58 seconds (0.15 seconds using vertex-invariant quadruples applied at level 1).
The execution time for these graphs varies somewhat with the initial labelling.

Amongst the most difficult known graphs for this algorithm, and probably for most other
similar algorithms, are certain bipartite graphs derived from Hadamard matrices. For example,
some of these graphs on 96 vertices require more than 5 seconds to process. However, with the
vertex-invariant cellquads applied at level two, this time is reduced to less than 1 second.

A family of strongly-regular graphs with 155 vertices and trivial automorphism group require
0.76 seconds with no vertex-invariant and 0.01 seconds with the vertex-invariant adjtriang (or
cliques with parameter 4) applied at level 1. A similar family with 1027 vertices require 264
seconds with no vertex-invariant and 1.3 seconds with the vertex-invariant adjtriang (or cliques
with parameter 4) applied at level 1.

As examples of how nauty performs for very rich automorphism groups, we mention L(K3p)
(435-vertex linegraph of complete graph; group size 30!; execution time 0.1 seconds; 29 genera-
tors) and the 1-skeleton of the 11-cube (2048-vertex graph; group size 81,749,606,400; execution
time 11 seconds; 11 generators).

12. dreadnaut.

dreadnaut is a simple program which can read graphs and execute nauty. It is only a
very primitive interface with few facilities. If you want to use nauty in a richer interactive
environment, some of your choices are:

(a) Magma: http://magma.maths.usyd.edu.au/magma/

21

(b) GAP with GRAPE: http://www-gap.dcs.st-and.ac.uk/~gap/Share/grape.html
(¢c) LINK: http://dimacs.rutgers.edu/~berryj/LINK.html
(d) Vega: http://vega.ijp.si/Htmldoc/Vega03.html

Input is taken from the standard input and output is sent to the standard output, but this
can be changed by using the “<” and “>” commands. Commands may appear any number per
line separated by white space, commas, semicolons or nothing. They consist of single characters,
sometimes followed by parameters.

At any point of time, dreadnaut knows the following information:

(a) The number of vertices, n.
(b) The “current graph” g, if defined.
(¢) The “current partition” m, if defined.
(d) The orbits of the (coloured) graph (g,), if defined.
(e) The canonically labelled isomorph of g, called h, if defined. (Also called canong.)
(f) An extra graph called A/, if defined. (Also called savedg.)

) Values for each of a variety of options.

In the following ‘#’ is an integer and ‘=’ is optional.

(A) Commands which define or examine the graph g.

n=# Set value of n. The maximum value is installation-defined.
g Read the graph g.

There is always a “current vertex” which is initially the first vertex. (Vertices are num-

bered from 0 unless you have used the $ command.) The number of the current vertex

is displayed as part of the prompt, if any. Available subcommands:

: add an edge from the current vertex to the specified vertex. (Unless you have se-

lected the option digraph, edges only need to be entered in one direction.)

-# : delete the edge, if any, from the current vertex to the specified vertex.

;@ increment the current vertex. If it becomes too high for a vertex label, stop.

#: : make the specified vertex the current vertex.

? : display the neighbours of the current vertex.

: stop.

! :ignore the rest of this input line.

, :ignored.

Edit the graph ¢g. The available subcommands are the same as for the “g” command.

¢)

r ... ; Relabel the graph g, where ‘..." is a permutation of {0,1,...,n—1}, specifying the
order in which to relabel the vertices, followed by a semicolon. Missing numbers are filled

in at the end in numerical order. For example, for n = 5, “r 4,1;” is equivalent to “r
4,1,0,2,3;”. The partition 7 is permuted consistently.
R ... ; This is the same as r except that unspecified vertices are not filled in. Instead, a

subgraph corresponding to the given vertices is formed and replaces g. If the command is
given as -R, the given vertices are deleted instead. The partition 7 is reset to have only
one cell.

j Relabel the graph g at random. The partition 7 is permuted consistently.

% Perform the doubling operation E(g) defined in [3]. The result in g is a regular graph
with order 2n + 2 and degree n.

22

(€)
$=#

Generate graph (or digraph) g at random with independent edge probabilities 1/i, where
1 is the integer specified.

(underscore) Replace the graph g by its complement. If there are any loops, the set of
loops is complemented too; otherwise, no loops are introduced.

(two underscores) If ¢ is a digraph, take its converse (which reverses the direction of all
the edges). Otherwise do the same as _.

Type the graph g, in an obvious format. The value of option linelength is taken into ac-
count. The format used is consistent with the input format allowed by the “g” command.
To examine just some of the graph, you can use the “?” subcommand within the “e”
command.

This is exactly like “t” except that a line of the form “n=n $=] g” is written first, where n
is the number of vertices and [is the number of the first vertex, and a line of the form “$$”
is written afterwards. This enables you to save a graph to a file and easily restore it later:
“>newgraph.dre T ->” will save g to the file newgraph.dre, while “<newgraph.dre” will
restore it.

Display the degrees of each vertex of the graph g, if defined. For digraphs, the outdegrees
are displayed.

Commands which define the partition 7.

Specify an initial partition.

“~f” selects the partition with only one cell, which is the default.

“f=#" selects the partition with one cell containing just the vertex named and one cell
containing every other vertex.

“f=[... 1”7 selects an arbitrary partition. Replace “...” by a list of cells separated by
“]”. You can use the abbreviation “x:y” for the range x,x+1,...,y. Any vertices not
named are put in a cell of their own at the end.

Ezxample: If n =10, then “f=[3:7 | 0,2]” establishes the partition
3,4,5,6,710,2|1,8,9].

Perform a refinement operation, replacing the partition 7 by its refinement. The active
set initially contains every cell.

113

Perform a refinement operation, an application of the vertex-invariant (if one has been
selected using the * command), and (if any cells were split) another refinement operation.
The final partition becomes 7. The behaviour may be modified by the K command, but
not by the k command.

This is useful for determining whether an invariant is effective for a particular graph.
Note that you need to restore the partition between repeated tests.

Commands which establish or examine options.

Establish an origin for vertex numbering. The default is 0. Only non-negative values
are permitted. All the input-output routines used by nauty or dreadnaut respect this
value, even though internally vertices are always numbered from 0. (The value given is
copied into the global int variable labelorg, which is described in Section 4.)

23

pP,7PpP

Restore the vertex numbering origin to what it was just before the last $ command. Only
one previous value is remembered.

Set value of option linelength : the length of the longest line permitted for output. The
default value is installation-dependent (typically 78).

Set value of worksize : the amount of space provided for nauty to store automorphism
data. The maximum value is installation-defined, and the default is the same as the
maximum. There’s little reason to ever use this command.

Ignored. Provided for contrast with “-”.

Set option digraph to TRUE or FALSE, respectively. You must set it to TRUE if you
wish to define g to be a digraph or a graph with loops. The default is FALSE. Changing it
from TRUE to FALSE also causes the graph g to become undefined, as a safety measure.

Set option getcanon to TRUE or FALSE, respectively. This tells nauty whether to find
a canonical labelling or just the automorphism group. The default is FALSE.

Set option writeautoms to TRUE or FALSE, respectively. This tells nauty whether to
display the automorphisms it finds. The default is TRUE.

Set option writemarkers to TRUE or FALSE, respectively. This tells nauty whether to
display the level markers “level ...”. See Section 5 for their meaning. The default is
TRUE.

Set option cartesian to TRUE or FALSE, respectively. This tells nauty to use the “carte-
sian” form when writing automorphisms. Precisely, the automorphism ~ is displayed as

alist v] v] ...v), where v1,vs,...,v, are the vertices of g. The default is FALSE.

Set the value of option tc_level. A value of # tells nauty to use an advanced, but expensive,
algorithm for choosing target cells in the top k levels of the search tree. See Section 4 for
a more detailed description. The default is 100, but setting it to 0 might speed up the
average time for easy graphs.

Select a vertex-invariant. One user-defined vertex-invariant can be linked with dread-
naut if its name is provided in the preprocessor variable INVARPROC. The argument
to the * command is interpretted thus:

-1 : the user-defined procedure (if any)

: no vertex-invariant (this is the default)

. twopaths

: adjtriang

: triples

: quadruples

. celltrips

: cellquads

. cellquins

. distances

: indsets

: cliques

: cellcliq

: cellind

: adjacencies

. cellfano

© 0 ~NO O W N = O

=
= O

e
Sow N

24

k=# #

&&

(D)

15 : cellfano?2

These procedures are described in Section 8. The default behaviour is for the invariant
to be applied only at the root of the tree, but this can be modified using the k command.
The K command can be used to change the invariant parameter, if there is one. The
default is K=3 for indsets, cliques, cellind and cellcliq; and K=0 for everything else.

(Two integer arguments.) Define values for the options mininvarlevel and mazinvar-
level. These tell nauty the minimum and maximum levels of the tree at which it is to
apply the vertex-invariant. The root of the tree is at level 1. See Section 4 for a little more
information about these options. The default is k = 0 1, which causes the invariant to
be applied only at the top of the search tree.

Give a value to the invararg option. This number is passed to the vertex-invariant by the
I command and by nauty. See Section 8 for the meaning of this option for each available
vertex-invariant. The default value depends on the invariant; see the * command.

Request calls to user-defined functions. The value is

1 for usernodeproc,

2 for userautomproc,

4 for userlevelproc,

8 for wusertcellproc,

16 for userrefproc.

These can be added together to select more than one procedure. The procedures called are
those named by the compile-time symbols USERNODE, USERAUTOM, USERLEVEL,
USERTCELL and USERREF defined in dreadnaut.c. The default values are:
USERNODE: For each node, print a number of dots equal to the depth, then
(numecells/ code/tc) where numcells is the number of cells, code is the code produced
by the refinement procedure, and tc is the position in lab where the target cell starts.
For the first path down the tree, the partition is displayed as well.

USERAUTOM: For each automorphism, display the arguments numorbits and stabvertex
(see Section 7).

USERLEVEL: For each level, display the arguments tv, indez, tcellsize, numcells and
childcount, as well as the fields numnodes, numorbits and numgenerators of stats. See
Section 7 for what they mean.

USERTCELL: Do nothing.

USERREF: Do nothing.

Type the current values of m, n, worksize, most of the options, the number of edges in
g, and the number of cells in 7. If output has been directed away from stdout using the
“>” command, some of this information is also written to stdout.

Type the current partition 7, unless it is has only one cell.

Same as &, except that the quotient of g with respect to m is also written. Say © =

(Vo,V1,..., Vi) and let v; be the least numbered vertex in V; for 0 < i < m. Then, for
each ¢, this command writes v;, then |V;| in brackets, then the numbers kg, k1, ..., kn,
where k; is the number of edges from v; to V;. The value 0 is written as “-”, while the

value |V;| is written as “x”.

Commands which execute nauty or use the results.

25

##

Execute nauty. Depending on the values of the writeautoms and writemarkers options,
the automorphism group will be displayed while nauty is running. See Section 5 for an
explanation of the output. When nauty returns, dreadnaut will display some statistics
about it. See Section 4 for the meanings; the important ones are the order of the group
and the number of orbits. Depending on your system, the execution time is also displayed.

Copy h, if defined, to h'. See the description of the # command for more.

Type the canonical label and the canonically labelled graph. The canonical label is given
in the form of a list of the vertices of g in canonical order. Only possible after x with
option getcanon selected.

Type two 8-digit hex numbers whose value depends only on k. This allows quick compari-
son between graphs. Isomorphic graphs give the same value. In principle, non-isomorphic
graphs may also give the same value but we don’t know any examples (please tell us if
you find one). Only possible after x with option getcanon selected.

Compare the labelled graphs h and hA'. Both must have been already defined (using x
and @). The complete process for testing two graphs g; and g, for isomorphism is this:
enter gi;

cx @ (select getcanon option, execute nauty, copy h to h’);
enter gs;
x # (execute nauty, compare h to h').

This is the same as # except that, if h is identical to h’, you will also be given an
isomorphism from ¢; to go. This is in the form of a sequence of pairs v;-w;, where v; is a
vertex of g; and w; is a vertex of go. The vertex-numbering origin in force when h’ was
created is used for g;, whilst the origin now in force is used for gs.

Type the orbits of the group. Only possible after x.

(F) Miscellaneous commands.

h,H

>>

Help: type a summary of dreadnaut commands.

Anything between the quotes is simply copied to the output. The ligatures ‘\n’ (new-
line), ‘\t’ (tab), ‘\b’ (backspace), ‘\r’ (carriage return), ‘\f’ (formfeed), ‘\\’ (backslash),
‘\?’ (single quote) and ‘\"’ (double quote) are recognised. Other occurrences of ‘\’ are
ignored.

Ignore anything else on this input line. Note that this is a command, not a comment
character in the usual sense, so you can’t use it in the middle of other commands.

Begin reading input from another file. The name of the file starts at the first non-white
character after the “<” and ends before the next white character. If such a file cannot
be found, another attempt is made with the string “.dre” appended to the name. When
end-of-file is encountered on that file, continue from the current input file. The allowed
level of nesting is system-dependent (usually 8).

Close the existing output file unless it is the standard output, then begin writing output
to another file. The name of the file starts at the first non-white character after the “>”
and ends before the next white character. For “>” the file starts off empty. For “>>” if
an existing file of the right name exists, it is written to starting at the current end-of-file.
Use “=>” to direct output back to the standard output.

26

M=# Each call to nauty is performed # times and the average cpu time is then reported
accurately. This is for doing timing tests with easy graphs.

q Quit. dreadnaut will exit irrespective of which level of input nesting it is on.

The canonical labellings produced by dreadnaut can depend on the values of many of the
options. If you are testing two or more graphs for isomorphism, it is important that you use the
same values of these options for all your graphs. In general, h is a function of all these:

(a) option digraph (4 command)

) all the vertex-invariant options (%, k and K commands)
(c) the value of tc_level (y command)

(d) the use of usertcellproc or userrefproc (u command)
(e) the version of nauty used

Beginning at version 2.1, the canonical labelling does not depend on the compiler, the
system, or the word size.

Several sample dreadnaut sessions are shown below. The first problem solved is the second
example in Section 6. The underlined characters are those typed by the user.

n=8 g 8 vertices
13 4; enter the graph

v O O W N+~ O V
L\]\'

£f=2 x fix vertex 2; execute
[fixing partition]
(0 5)(3 6)
level 2: 6 orbits; 3 fixed; index 2
136G 7
level 1: 4 orbits; 1 fixed; index 3
4 orbits; grpsize=6; 2 gens; 6 nodes; maxlev=3
tctotal=7; cpu time = 0.00 seconds

> o show the orbits
057; 136; 2; 4;
> q quit

The next problem solved is to determine an isomorphism between the graphs of examples 3
and 4 of Section 6. We turn off the writing of automorphisms to save some space.

c -a -m turn getcanon on, group writing off
n=12 g enter the first graph

1: 2: 0:
4; 5; 6; 3;
8; 9; 10; 11; 7.

x @ execute, save the result

vV N W O VvV V

27

3 orbits; grpsize=480; 6 gens; 31 nodes (3 bad leaves); maxlev=7

tctotal=88; canupdates=1; cpu time = 0.00 seconds

> g enter the second graph

0 1; 2; 3; 4; 0;

5 6; 7; 8; 5;

9: 10; 11; 9.

> x execute

3 orbits; grpsize=480; 6 gens; 50 nodes (2 bad leaves); maxlev=7

tctotal=124; canupdates=4; cpu time = 0.00 seconds
> ## compare to saved graph

h and h’ are identical.

0-9 1-10 2-11 3-5 4-6 5-7 6-8 7-0 8-1 9-2 10-3 11-4

As a third example, we consider a simple block design. nauty can compute automorphisms
and canonical labellings of block designs by the common method of converting the design to
an equivalent coloured graph. Suppose a design D has varieties =1, x2, ..., x, and blocks
By, Bs, ..., By. Define G(D) to be the the graph with vertex set {z1,...,2y,B1,...,Bp},
with each z-vertex having one colour and each B-vertex having a second colour, and edge set
{x;Bj|z; € Bj}. The following theorem is elementary.

Theorem.
(a) The automorphism group of D is isomorphic to the automorphism group of G(D).

(b) If Dy and Dy are designs, D1 and Dy are isomorphic if and only if G(D1) and G(Ds2) are
isomorphic. 1

Consider the design D = {{1,2,4},{1,3},{2,3,4} }. Label G(D) so that the varieties of D
correspond to vertices 1-4, while the blocks correspond to vertices 5-7.

> $=1 label vertices starting at 1
>n=7 g

1: 5: go to vertex 5 (block 1)

5: 12 4,

6: 13;

7: 2 3 4.

> f=[1:4] fix the varieties setwise

> cx run nauty

[fixing partition]

(2 4) group generators
level 2: 6 orbits; 2 fixed; index 2

13BN

level 1: 4 orbits; 1 fixed; index 2

4 orbits; grpsize=4; 2 gens; 6 nodes; maxlev=3
tctotal=6; canupdates=1; cpu time = 0.00 seconds

>0 display the orbits

13; 24, 57; 6;

>b display the canonical labelling

28

1324657 the vertices in canonical order
1: 5 6; the relabelled graph
2: b7,
3: 67;
4 . 6 7;
5: 12;
6 : 1 34;
7. 23 4;
> q quit

For many families of block designs, it can be proved that the isomorphism class of each
design is uniquely determined by the isomorphism class of its block-intersection graph, where
that graph has the blocks as vertices and pairs of intersecting blocks as edges. For (v, k,1)-
designs, a sufficient condition for this is that v > k(k? — 2k 4+ 2). On the occasions when this is
true, nauty can usually process the block-intersection graphs more quickly than it can process
the designs directly. Also, the vertex-invariants described in Section 8 are more likely to be
successful with the block-intersection graphs.

13. gtools.

A package of programs called gtools is distributed along with nauty. The main purpose
of the package is to provide efficient processing of files of graphs stored in graph6 or sparse6
format. These formats are defined in the file formats.txt. Support for gtools is limited to
Unix, but they may run on other systems which provide basic Unix system calls. The program
shortg requires a program compatible with the Unix sort program, as well as pipes.

To compile gtools under Unix, just use make gtools. All the gtools programs are self-
documenting: just execute with the option -help to see an explanation of all the features. We
only list the basic functions of the programs here:

geng : generate small graphs

genbg : generate small bicoloured graphs

directg : generate small digraphs with given underlying graph
multig : generate small multigraphs with given underlying graph
genrang : generate random graphs

copyg : convert format and select subset

labelg : canonically label graphs

shortg : remove isomorphs from a file of graphs
listg : display graphs in a variety of forms
showg : a stand-alone version of 1listg

amtog : read graphs in adjacency matrix form
dretog : read graphs in dreadnaut form

complg : complement graphs

catg : concatenate files of graphs

addedgeg : add an edge in each possible way
deledgeg : delete an edge in each possible way

29

newedgeg : in each possible way, subdivide two non-adjacent edges and join the two new
vertices

NRswitch : switch the edges between the neighbourhood and the complementary neighbour-
hood, for each vertex

countg : count graphs according to a variety of properties

pickg : select graphs according to a variety of properties

biplabg : label bipartite graphs so the colour classes are contiguous
Further programs will be added. Requests are welcome.

14. Recent changes.

This section lists all the significant changes made to nauty or dreadnaut since version
1.5. For a complete list of even trivial changes, see the source code.

(A) Changes to the user view of dreadnaut.
(a) The commands R, __ and M have been added.
(b) Several new invariants have been added.

54

(B) Changes affecting programs which call nauty.

(a) The graph-specific contents of the file nautil.c have been moved into the new source
file naugraph.c. This is to support the use of nauty with non-graph objects.

(b) The options parameter has grown some extra fields. To ease future changes like this, use
the DEFAULTOPTIONS macro to declare the actual parameter.

(f) Dynamic allocation for all large variables has been added in the case that MAXN=0.
(g) Support for 64-bit compilation using long long if available.

() Some features of ANSI C are now assumed, including function prototypes. If you want
to use nauty with a very old compiler, try version 1.9 or earlier.

(k) The set macros like ADDELEMENT now work for sets of arbitrary size even if you are
compiling with MAXN < WORDSIZE. To get the old behaviour (where a more efficient
definition is used in the latter case), define the preprocessor variable ONE_WORD_SETS.

Q) Minor changes: extra parameter in usertcellproc, no need to use EXTDEFS, null pointers
like NILSET are obsolete (just use NULL), INFINITY has been renamed to NAUTY_INFINITY ||

15. References.

[1] B. W. Kernighan and D. M. Ritchie, The C programming language (Prentice-Hall,
Englewood Cliffs, 1978).

[2] A. Kirk, Efficiency considerations in the canonical labelling of graphs, Technical report
TR-CS-85-05, Computer Science Department, Australian National University (1985).

[3] K. E. Malysiak, Graph Isomorphism, Canonical Labelling and Invariants, Honours Thesis,
Computer Science Department, Australian National University (1987).

[4] R. Mathon, Sample graphs for isomorphism testing, Congressus Numerantium 21 (1978)
499-517.

[5] B. D. McKay, Practical graph isomorphism, Congressus Numerantium 30 (1981) 45-87.
Available at http://cs.anu.edu.au/~bdm/nauty/PGI/.

30

Appendix. A Sample programs which call nauty.

We give two sample programs which generate a graph (a polygon) and call nauty to display
its automorphism group.

The first program uses a fixed positive value of MAXN so is limited to that size. The second
program uses dynamic allocation and so works with much larger sizes.

In each case, you need nauty.c, nautil.c and naugraph.c as well.

Note the calls nauty_check (WORDSIZE,m,n,NAUTYVERSIONID); These are not essential,
but have the desirable feature of checking that you linked the program with a compatible version
of nauty.

These programs are in the nauty distribution as nautyex.c and nautyex2.c.

31

/* This program prints generators for the automorphism group of an
n-vertex polygon, where n is a number supplied by the user.
It needs to be linked with nauty.c, nautil.c and naugraph.c.

This version uses a fixed limit for MAXN.

*/

#define MAXN 100

#include "nauty.h" /* which includes <stdio.h> */
main()

{

graph g[MAXN*MAXM] ;

int lab[MAXN],ptn[MAXN],orbits[MAXN];
static DEFAULTOPTIONS(options);
statsblk(stats);

setword workspace [50*MAXM] ;

int n,m,v;
set *gv;

options.writeautoms = TRUE;

while (1)
{
printf("\nenter n : ");
if (scanf("%d",&n) == 1 & n > 0)
{
if (n > MAXN)
{
printf("n must be in the range 1..%d\n",MAXN);
exit(1);
}

m = (n + WORDSIZE - 1) / WORDSIZE;
nauty_check (WORDSIZE,m,n,NAUTYVERSIONID) ;

for (v = 0; v < n; ++v)

{
gv = GRAPHROW(g,v,m);
EMPTYSET (gv,m) ;
ADDELEMENT (gv , (v+n-1)%n) ;
ADDELEMENT (gv, (v+1)%n) ;

}

printf ("Generators for Aut(C[%d]):\n",n);
nauty(g,lab,ptn,NULL,orbits,&options,&stats,
workspace,50*MAXM,m,n,NULL) ;

else
break;

32

/* This program prints generators for the automorphism group of an
n-vertex polygon, where n is a number supplied by the user.
It needs to be linked with nauty.c, nautil.c and naugraph.c.
This version uses dynamic allocation.

*/
#include "nauty.h" /* which includes <stdio.h> */

main()

{
DYNALLSTAT(graph,g,g_sz);
DYNALLSTAT(int,lab,lab_sz);
DYNALLSTAT (int,ptn,ptn_sz);
DYNALLSTAT (int,orbits,orbits_sz);
static DEFAULTOPTIONS(options);
statsblk(stats);
setword workspace[100];

int n,m,v;
set *gv;

options.writeautoms = TRUE;

while (1)
{
printf("\nenter n : ");
if (scanf("%d",&n) == 1 & n > 0)
{
m = (n + WORDSIZE - 1) / WORDSIZE;
nauty_check (WORDSIZE,m,n,NAUTYVERSIONID) ;

DYNALLOC2(graph,g,g_sz,m,n, "malloc");
DYNALLOC1 (int,lab,lab_sz,n,"malloc");
DYNALLOC1(int,lab,lab_sz,n,"malloc");
DYNALLOC1(int,ptn,ptn_sz,n,"malloc");
DYNALLOC1 (int,orbits,orbits_sz,n, "malloc");

for (v = 0; v < n; ++v)

{

gv = GRAPHROW(g,v,m);
EMPTYSET (gv,m) ;
ADDELEMENT (gv , (v+n-1)%n) ;
ADDELEMENT (gv, (v+1)%n) ;

}

printf ("Generators for Aut(C[%d]):\n",n);
nauty(g,lab,ptn,NULL,orbits,&options,&stats,
workspace,100,m,n,NULL) ;

else
break;

33

