Extremal Graphs and Turan numbers

If H is a set of graphs, then an extremal graph with respect to H is a graph having the largest possible number of edges without containing any subgraph isomorphic to a graph in H. The number of edges in an extremal graph on n vertices is called the Turan number of H and sometimes is denoted ex(n,H).

In specifying H, Ck is a cycle with k vertices and Codd means all odd cycles. As everyone knows, a graph has no odd cycles iff it is bipartite.

The extremal graphs for H={C3} and H={Codd} are the complete bipartite graphs with sides as nearly equal as possible. For H containing only a clique of order k, Turan's famous theorem says that the extremal graphs are the complete multipartite graphs with k-1 parts as nearly equal as possible.

When H consists of a single odd cycle, the extremal graphs for sufficiently large n are the complete bipartite graphs with sides as nearly equal as possible. The complete details for all n were worked out by Zoltan Füredi and David Gunderson.

Apart from these examples, almost nothing is known apart from examples for small n and some asymptotic and comparative results.

On this page we provide the extremal graphs for small n when H is a collection of cycles. It is the joint work of Narjess Afzaly and Brendan McKay. In all cases apart from those mentioned above, our tables go further than was previously known. Details of what was known earlier will appear in our papers in preparation.

The meanings of the table entries are:

If neither ne nor ng is preceded by "≥", it means that we have the Turan number exactly and all the extremal graphs.

If ne is not preceded by "≥" but ng is preceded by "≥", it means that we have the Turan number exactly but possibly there are more extremal graphs. In this case, the file name contains the word "some".

If the values of both ne and ng are preceded by "≥", it means that we are giving all the graphs we can find on the largest number of edges we can find, but we didn't prove that that more edges are impossible. In this case, the file name contains the word "maybe".

In all cases where we didn't prove that all the extremal graphs are present, we are confident that we have them all and would like to know of any exceptions.

H={C4}

These are the extremal graphs without 4-cycles. ALL

nv
ne
ng
4
4
1
5
6
1
6
7
4
7
9
5
8
11
5
9
13
10
10
16
2
11
18
11
12
21
3
13
24
2
14
27
1
15
30
2
16
33
2
17
36
1
18
39
1
19
42
5
20
46
1
21
50
1
22
52
13
23
56
1
24
59
20
25
63
9
26
67
8
27
71
7
28
76
1
29
80
2
30
85
1
31
90
1
32
92
9
33
96
18
34
102
1
35
106
1
36
110
5
37
113
11
38
117
≥20
39
122
≥1
40
127
≥2

41
≥132
≥3
42
≥137
≥3
43
≥142
≥7
44
≥148
≥2
45
≥154
≥1
46
≥157
≥9
47
≥163
≥1
48
≥168
≥10
49
≥174
≥6

H={C5}

These are the extremal graphs without 5-cycles. The unique extremal graph for n≥8 is the balanced complete bipartite graph. ALL

nv
ne
ng
5
7
2
6
9
3
7
12
2
8
16
1

H={C6}

These are the extremal graphs without 6-cycles. ALL

nv
ne
ng
6
11
1
7
13
1
8
16
1
9
20
1
10
21
3
11
23
3
12
26
3
13
30
2
14
31
7
15
33
11
16
37
1
17
40
4
18
41
32
19
44
8
20
48
2
21
50
12
22
52
16
23
56
2
24
59
1
25
61
1
26
64
3
27
67
9
28
70
1
29
72
3
30
76
1
31
78
10
32
80
70
33
84
4
34
87
1
35
89
49
36
92
≥60
37
95
≥125

38
≥98
≥258
39
≥101
≥292
40
≥105
≥7
41
≥108
≥10

H={C7}

These are the extremal graphs without 7-cycles. The unique extremal graph for n≥12 is the balanced complete bipartite graph. ALL

nv
ne
ng
7
16
1
8
18
2
9
21
2
10
25
2
11
30
2
12
36
1

H={C8}

These are the extremal graphs without 8-cycles. ALL

nv
ne
ng
8
22
1
9
24
1
10
27
1
11
31
1
12
36
1
13
42
1
14
43
3
15
45
3
16
48
3
17
52
3
18
57
3
19
63
2
20
64
7
21
66
8
22
69
8
23
73
8
24
78
8
25
84
4
26
85
22
27
87
24
28
90
28
29
95
3
30
101
1
31
105
9
32
106
66
33
108
86
34
112
12
35
117
12
36
123
3
37
126
22

38
≥127
≥240

H={C9}

These are the extremal graphs without 9-cycles. The unique extremal graph for n≥16 is the balanced complete bipartite graph. ALL

nv
ne
ng
9
29
1
10
31
1
11
34
2
12
38
2
13
43
1
14
49
2
15
56
2
16
64
1

H={C10}

These are the extremal graphs without 10-cycles. ALL

nv
ne
ng
10
37
1
11
39
1
12
42
1
13
46
1
14
51
1
15
57
1
16
64
1
17
72
1
18
73
3
19
75
3
20
78
3
21
82
3
22
87
3
23
93
3
24
100
3
25
108
2
26
109
7
27
111
8
28
114
8
29
118
8

30
≥123
≥8
31
≥129
≥8
32
≥136
≥8

H={C11}

These are the extremal graphs without 11-cycles. The unique extremal graph for n≥20 is the balanced complete bipartite graph. ALL

nv
ne
ng
11
46
1
12
48
1
13
51
1
14
55
2
15
60
2
16
66
1
17
73
1
18
81
2
19
90
2
20
100
1

H={C3,C4}

These are the extremal graphs of girth at least 5. ALL

nv
ne
ng
5
5
1
6
6
2
7
8
1
8
10
1
9
12
1
10
15
1
11
16
3
12
18
7
13
21
1
14
23
4
15
26
1
16
28
22
17
31
14
18
34
15
19
38
1
20
41
1
21
44
3
22
47
3
23
50
7
24
54
1
25
57
6
26
61
2
27
65
1
28
68
4
29
72
1
30
76
1
31
80
2
32
85
1
33
87
12
34
90
237
35
95
5
36
99
36
37
104
7
38
109
2
39
114
1
40
120
1
41
124
1
42
129
1
43
134
1
44
139
2
45
145
1
46
150
2
47
156
1
48
162
1
49
168
1
50
175
1
51
176
7
52
178
148
53
181
≥2688

54
≥185
≥13
55
≥189
≥5
56
≥193
≥11
57
≥197
≥4
58
≥202
≥1
59
≥207
≥2
60
≥212
≥2
61
≥216
≥17
62
≥220
≥85
63
≥224
≥6065
64
≥230
≥6

H={C3,C4,C5}

These are the extremal graphs of girth at least 6. ALL

nv
ne
ng
3
2
1
4
3
2
5
4
3
6
6
1
7
7
2
8
9
1
9
10
4
10
12
3
11
14
1
12
16
1
13
18
1
14
21
1
15
22
3
16
24
4
17
26
4
18
29
1
19
31
1
20
34
1
21
36
3
22
39
2
23
42
1
24
45
1
25
48
1
26
52
1
27
53
4
28
56
1
29
58
1
30
61
1
31
64
1
32
67
5
33
70
3
34
74
1
35
77
1
36
81
1
37
84
3
38
88
2
39
92
1
40
96
1
41
100
1
42
105
1
43
106
5
44
108
12
45
110
183
46
115
1
47
118
1
48
122
1
49
126
1
50
130
1
51
134
1
52
138
3
53
142
3
54
147
1
55
151
1
56
156
1
57
160
3
58
165
2
59
170
1
60
175
1
61
180
1
62
186
1
63
187
6
64
189
≥31

H={C3,…,C6}

These are the extremal graphs of girth at least 7. ALL

nv
ne
ng
3
2
1
4
3
2
5
4
3
6
5
6
7
7
1
8
8
2
9
9
7
10
11
1
11
12
7
12
14
2
13
15
15
14
17
3
15
18
55
16
20
13
17
22
3
18
23
174
19
25
48
20
27
18
21
29
5
22
31
3
23
33
2
24
36
1
25
37
9
26
39
6
27
41
3
28
43
2
29
45
1
30
47
1
31
49
1
32
51
5
33
53
8
34
55
20
35
58
1
36
59
205
37
61
392
38
63
1415
39
66
1
40
68
11
41
70
54
42
72
420
43
74
3152
44
77
5
45
79
22
46
81
490
47
83
9094
48
86
54
49
88
≥1049
50
91
≥29
51
94
≥3
52
96
≥13

53
≥98
≥52
54
≥100
≥669
55
≥103
≥9
56
≥105
≥191

H={C3,…,C7}

These are the extremal graphs of girth at least 8. ALL

nv
ne
ng
3
2
1
4
3
2
5
4
3
6
5
6
7
6
11
8
8
1
9
9
2
10
10
8
11
12
1
12
13
5
13
14
29
14
16
4
15
18
1
16
19
6
17
20
65
18
22
6
19
24
2
20
25
32
21
27
2
22
29
1
23
30
37
24
32
6
25
34
2
26
36
2
27
38
1
28
40
1
29
42
1
30
45
1
31
46
3
32
47
44
33
49
4
34
51
5
35
53
1
36
55
1
37
56
73
38
58
27
39
60
26
40
63
1
41
64
75
42
66
35
43
68
32
44
70
21
45
72
36
46
75
3
47
77
1
48
80
1
49
81
9
50
83
2
51
85
4
52
87
26
53
90
1
54
92
2
55
94
5
56
96
≥9
57
98
≥37

58
≥100
≥135
59
≥103
≥2
60
≥105
≥27

H={C3,…,C8}

These are the extremal graphs of girth at least 9. ALL

nv
ne
ng
5
4
3
6
5
6
7
6
11
8
7
23
9
9
1
10
10
2
11
11
8
12
12
28
13
14
1
14
15
8
15
16
57
16
18
3
17
19
24
18
21
1
19
22
14
20
23
240
21
25
4
22
27
1
23
28
11
24
29
358
25
31
2
26
33
1
27
34
23
28
35
1693
29
37
16
30
39
1
31
40
152
32
42
4
33
43
1092
34
45
28
35
47
1
36
48
501
37
50
25
38
52
2
39
54
1
40
55
116
41
57
5
42
58
3202
43
60
379
44
62
51
45
64
6
46
65
5692
47
67
1134
48
69
311
49
71
75
50
73
22
51
75
7
52
77
4
53
78
≥2015
54
80
≥77
55
82
≥16
56
84
≥1

57
≥85
≥2572
58
≥87
≥205

H={C3,…,C9}

These are the extremal graphs of girth at least 10. ALL

nv
ne
ng
5
4
3
6
5
6
7
6
11
8
7
23
9
8
47
10
10
1
11
11
2
12
12
9
13
13
31
14
15
1
15
16
5
16
17
37
17
18
227
18
20
5
19
21
39
20
23
1
21
24
16
22
25
232
23
27
1
24
28
58
25
30
2
26
31
38
27
32
1198
28
34
10
29
36
2
30
37
39
31
38
1313
32
40
10
33
42
1
34
43
33
35
44
2599
36
46
26
37
48
1
38
49
75
39
51
1
40
52
313
41
54
8
42
55
1382
43
57
8
44
59
1
45
60
277
46
62
3
47
63
1612
48
65
30
49
67
1
50
68
1096
51
70
25
52
71
24959
53
73
612
54
75
31
55
76
46794
56
78
1930
57
80
75
58
82
4
59
84
1
60
85
≥945
61
87
≥33
62
89
≥3

63
≥90
≥13524
64
≥92
≥2412

H={C3,C6}

These are the extremal graphs without 3-cycles or 6-cycles. ALL

3
2
1
4
4
1
5
6
1
6
8
1
7
10
1
8
12
1
9
14
1
10
16
1
11
18
1
12
20
1
13
22
1
14
24
1
15
26
1
16
28
3
17
30
12
18
33
1
19
35
5
20
38
1
21
40
4
22
42
44
23
45
6
24
48
2
25
51
1
26
53
15
27
56
5
28
59
2
29
62
1
30
64
19
31
67
3
32
70
3
33
72
67
34
75
44
35
78
24
36
82
1
37
84
19
38
87
12
39
90
4
40
93
4
41
96
5
42
99
6
43
102
≥10
44
106
≥3
45
110
≥2

46
≥112
≥34
47
≥115
≥17

H={C3,C8}

Up to 53 vertices, K3,n-3 is the unique extremal graph without 3-cycles or 8-cycles. On 54 vertices, it is extremal but it is possible, though unlikely, that there is another. This pattern does not continue forever, but we don't know when it stops.

H={C4,C5}

These are the extremal graphs without 4-cycles or 5-cycles. ALL

nv
ne
ng
4
4
1
5
6
1
6
7
3
7
9
2
8
10
10
9
12
8
10
14
4
11
16
4
12
18
7
13
20
9
14
23
1
15
25
2
16
28
1
17
30
1
18
33
1
19
35
1
20
38
1
21
42
1
22
43
3
23
45
7
24
48
5
25
50
17
26
53
3
27
55
119
28
58
38
29
62
1
30
65
1
31
67
5
32
70
2
33
73
2
34
77
1
35
79
11
36
82
18
37
86
4
38
89
5
39
93
3
40
96
4
41
100
2
42
105
2
43
107
5
44
110
≥1

45
≥114
≥1
46
≥117
≥1
47
≥121
≥1
48
≥124
≥2

H={C4,C6}

These are the extremal graphs without 4-cycles or 6-cycles. ALL

nv
ne
ng
4
4
1
5
6
1
6
7
3
7
9
2
8
10
7
9
12
4
10
13
25
11
15
12
12
17
3
13
19
1
14
21
1
15
22
63
16
24
57
17
26
57
18
28
92
19
30
159
20
32
291
21
35
1
22
37
8
23
39
36
24
41
172
25
44
2
26
46
14
27
48
95
28
50
869
29
53
25
30
56
1
31
58
20
32
60
284
33
63
11
34
66
1
35
69
1
36
72
1
37
74
2
38
77
1
39
79
5
40
81
21
41
83
45
42
85
≥195
43
88
≥2
44
90
≥132

45
≥93
≥4
46
≥95
≥288
47
≥98
≥6
48
≥100
≥1199
49
≥103
≥69

H={C4,C7}

These are the extremal graphs without 4-cycles or 7-cycles. ALL

nv
ne
ng
4
4
1
5
6
1
6
7
4
7
9
3
8
10
16
9
12
8
10
15
1
11
16
1
12
18
1
13
19
6
14
21
7
15
23
2
16
24
80
17
26
35
18
29
2
19
31
1
20
34
1
21
36
3
22
39
2
23
42
1
24
45
1
25
48
1
26
52
1
27
53
2
28
56
1
29
58
1
30
61
1
31
64
1
32
67
5
33
70
3
34
74
1
35
77
1
36
81
1
37
84
3
38
88
2
39
92
1
40
96
1
41
100
1
42
105
1
43
106
3
44
108
13
45
110
183
46
115
1
47
118
1
48
122
1
49
126
1
50
130
1
51
134
1
52
138
3
53
142
3
54
147
1
55
151
1
56
156
1
57
160
3
58
165
2
59
170
1
60
175
1
61
180
1
62
186
1
63
187
3

64
≥189
≥32

H={C4,C8}

These are the extremal graphs without 4-cycles or 8-cycles. ALL

4
4
1
5
6
1
6
7
4
7
9
5
8
11
2
9
12
33
10
14
14
11
15
245
12
17
94
13
19
10
14
20
852
15
22
168
16
23
9473
17
25
2580
18
27
570
19
29
304
20
31
94
21
33
12
22
34
13644
23
36
3257
24
38
980
25
40
490
26
42
140
27
44
16
28
46
8
29
48
13
30
50
27
31
52
54
32
54
73
33
56
64
34
58
35
35
59
215178
36
61
78616
37
63
≥18492
38
65
≥15366
39
67
≥31057

40
≥69
≥62535

H={C5,C6}

These are the extremal graphs without 5-cycles or 6-cycles. ALL

nv
ne
ng
5
7
2
6
9
2
7
12
1
8
13
6
9
15
6
10
18
2
11
19
17
12
21
19
13
24
4
14
25
76
15
28
3
16
30
20
17
32
38
18
35
5
19
38
2
20
41
2
21
43
6
22
46
2
23
49
1
24
52
2
25
54
7
26
57
2
27
60
1
28
63
2
29
67
1
30
69
3
31
72
1
32
74
3
33
78
1
34
81
1
35
83
8
36
86
3
37
88
44
38
92
3
39
96
1
40
100
1
41
102
1
42
104
≥6

H={C3,C4,C6}

These are the extremal graphs cycles of length 3, 4 or 6. ALL

3
2
1
4
3
2
5
5
1
6
6
1
7
7
5
8
9
1
9
10
5
10
12
2
11
13
16
12
15
5
13
17
2
14
18
62
15
20
33
16
22
19
17
24
12
18
27
1
19
28
9
20
30
7
21
32
11
22
34
16
23
36
16
24
38
13
25
40
25
26
42
48
27
45
1
28
46
487
29
48
2162
30
51
4
31
53
26
32
55
96
33
57
1023
34
60
2
35
62
25
36
65
1
37
67
8
38
69
139
39
72
17
40
75
3
41
77
36
42
80
10
43
83
4
44
86
2
45
90
1
46
91
21
47
93
3
48
95
≥15

49
≥97
≥88
50
≥100
≥1

H={C4,C6,C8}

These are the extremal graphs cycles of length 4, 6 or 8. ALL

nv
ne
ng
4
4
1
5
6
1
6
7
3
7
9
2
8
10
7
9
12
4
10
13
21
11
15
8
12
16
60
13
18
19
14
19
199
15
21
55
16
23
4
17
25
1
18
27
1
19
28
12
20
30
3
21
31
317
22
33
115
23
35
34
24
37
8
25
39
2
26
40
498
27
42
218
28
44
115
29
46
62
30
48
40
31
50
36
32
52
40
33
54
50
34
56
40
35
58
36
36
60
37
37
62
55
38
64
77
39
66
92
40
68
80
41
70
71
42
72
87
43
74
169
44
76
349
45
78
816
46
81
1
47
83
4
48
85
27
49
87
≥151
50
90
1
51
92
≥2

52
≥94
≥8
53
≥96
≥54

H={Codd,C4}

These are the extremal bipartite graphs of girth at least 6. ALL

Note how for these orders the maximum number of edges and often also the number of extremal graphs is the same as for H={C3,C4,C5}. We don't know if this is always true.

nv
ne
ng
4
3
2
5
4
3
6
6
1
7
7
1
8
9
1
9
10
3
10
12
3
11
14
1
12
16
1
13
18
1
14
21
1
15
22
2
16
24
4
17
26
4
18
29
1
19
31
1
20
34
1
21
36
3
22
39
2
23
42
1
24
45
1
25
48
1
26
52
1
27
53
2
28
56
1
29
58
1
30
61
1
31
64
1
32
67
5
33
70
3
34
74
1
35
77
1
36
81
1
37
84
3
38
88
2
39
92
1
40
96
1
41
100
1
42
105
1
43
106
3
44
108
12
45
110
183
46
115
1
47
118
1
48
122
1
49
126
1
50
130
1
51
134
1
52
138
3
53
142
3
54
147
1
55
151
1
56
156
1
57
160
3
58
165
2
59
170
1
60
175
1
61
180
1
62
186
1
63
187
3
64
189
≥31

H={Codd,C4,C6}

These are the extremal bipartite graphs of girth at least 8. ALL

nv
ne
ng
4
3
2
5
4
3
6
5
6
7
6
11
8
8
1
9
9
1
10
10
7
11
12
1
12
13
4
13
14
22
14
16
4
15
18
1
16
19
5
17
20
47
18
22
6
19
24
2
20
25
27
21
27
2
22
29
1
23
30
33
24
32
6
25
34
2
26
36
2
27
38
1
28
40
1
29
42
1
30
45
1
31
46
2
32
47
27
33
49
4
34
51
5
35
53
1
36
55
1
37
56
68
38
58
27
39
60
26
40
63
1
41
64
65
42
66
35
43
68
32
44
70
21
45
72
36
46
75
3
47
77
1
48
80
1
49
81
6
50
83
2
51
85
4
52
87
26
53
90
1
54
92
2
55
94
5
56
96
9
57
98
37
58
100
≥135
59
103
≥2
60
105
27
61
108
3
62
110
≥9

63
≥112
≥93
64
≥115
≥5

H={Codd,C4,C8}

These are the extremal bipartite graphs with 4-cycles or 8-cycles. ALL

nv
ne
ng
5
4
3
6
6
1
7
7
1
8
9
1
9
10
2
10
12
1
11
13
2
12
15
1
13
16
2
14
18
1
15
19
2
16
21
1
17
22
2
18
24
1
19
25
2
20
27
1
21
28
2
22
30
1
23
31
2
24
33
1
25
34
2
26
36
1
27
37
2
28
39
1
29
40
2
30
42
1
31
43
3
32
45
2
33
46
64
34
48
13
35
50
1
36
52
1
37
54
1
38
57
1
39
58
1
40
60
1
41
61
26
42
63
23
43
64
1020
44
66
394
45
68
2
46
69
7931
47
71
265
48
73
28
49
74
21420
50
76
4003
51
78
649
52
80
≥165
53
82
≥24
54
84
≥8
55
86
≥1

56
≥88
≥2

H={Codd,C4,C6,C8}

These are the extremal bipartite graphs of girth at least 10. ALL

nv
ne
ng
5
4
3
6
5
6
7
6
11
8
7
23
9
8
47
10
10
1
11
11
1
12
12
8
13
13
23
14
15
1
15
16
4
16
17
29
17
18
160
18
20
5
19
21
27
20
23
1
21
24
12
22
25
158
23
27
1
24
28
49
25
30
2
26
31
33
27
32
841
28
34
10
29
36
2
30
37
31
31
38
933
32
40
10
33
42
1
34
43
28
35
44
2090
36
46
26
37
48
1
38
49
69
39
51
1
40
52
292
41
54
8
42
55
1260
43
57
8
44
59
1
45
60
267
46
62
3
47
63
1575
48
65
30
49
67
1
50
68
1079
51
70
25
52
71
24187
53
73
612
54
75
31
55
76
45275
56
78
1930
57
80
75
58
82
4
59
84
1
60
85
≥928
61
87
≥33
62
89
≥3

63
≥90
≥13407
64
≥92
≥2412

H={Codd,C6}

These are the extremal bipartite graphs without 6-cycles. ALL

6
8
1
7
10
1
8
12
1
9
14
1
10
16
1
11
18
1
12
20
1
13
22
1
14
24
1
15
26
1
16
28
1
17
30
1
18
32
1
19
34
1
20
36
1
21
38
1
22
40
1
23
42
1
24
44
1
25
46
1
26
48
2
27
50
3
28
52
6
29
54
15
30
57
2
31
60
3
32
64
1
33
66
1
34
68
3
35
70
6
36
73
1
37
76
2
38
80
1
39
82
2
40
84
5
41
86
12
42
89
2
43
92
5
44
96
2
45
100
1
46
102
1
47
104
3
48
106
6
49
109
1
50
112
5
51
116
1
52
120
1
53
122
2
54
124
5
55
126
12
56
129
2
57
132
9
58
136
3
59
140
2
60
144
1
61
146
1
62
148
3
63
150
≥6
64
153
≥1

H={Codd,C8}

For 5 ≤ n ≤ 63, the unique extremal bipartite graph with no cycle of length 8 is the complete bipartite graph K3,n-3. This situation does not continue forever, but we don't know when the pattern changes.

H={Codd,C6,C8}

For n ≤ 55, the unique extremal bipartite graph with no cycle of length 6 or 8 is the complete bipartite graph K2,n-2. This situation does not continue forever, but we don't know when the pattern changes.

 


Page Master: Brendan McKay, brendan.mckay@anu.edu.au

Up to the combinatorial data page