
COLOR FEATURES FOR DATING HISTORICAL COLOR IMAGES

Basura Fernando?†, Damien Muselet?, Rahat Khan† and Tinne Tuytelaars?†

?† PSI-VISICS, KU Leuven, iMinds, Belgium
? Universit Jean Monnet, LaHC, Saint-Etienne, France

†ALCoV-ISIT, UMR 6284 CNRS / University of Auvergne, Clermont-Ferrand, France

ABSTRACT

Estimating the age of historical photographs is a challeng-
ing task for human beings. Only recently this task has been
addressed in computational image analysis perspective. The
characteristics of the device used to acquire each photograph
are discriminative features for this task. We aim at extracting
such characteristics from a historical color photographs. The
acquisition device mainly effects two properties of the colors:
the distribution of their derivatives and the angles drawn by
three consecutive pixels in the RGB space. We propose two
color features that take advantage of these observations. We
show that these two color descriptors (namely color deriva-
tives and color angles) attain the state-of-the-art in the context
of image dating.

Index Terms— Dating images, Color features, Color
derivatives, Color angles, Imaging process

1. INTRODUCTION

The age of an old photograph is a useful information for vari-
ous areas of studies such as history, genealogy and anthropol-
ogy. They are interested in the conservation and preservation
of old photographs. More often than not this information is
not readily available. Moreover, there is a growing interest to-
wards cultural heritage projects such as Flickr Commons [1]
that tries to make historical photography collections accessi-
ble online. These preservation projects have a real necessity
to estimate the age of a photograph automatically. Only re-
cently, the task of automatically estimating the age of histori-
cal photographs has gained some attention [2, 3].

Despite it’s limitations, manually estimating the age of the
photograph seems to be the most popular method at the mo-
ment. Mostly, these manual techniques rely on visual cues
such as particular fashion or hair styles worn by human sub-
jects [4, 5]. These approaches are not reliable and can’t be ap-
plied to all kinds of photographs. In some specific instances,
estimating the age of the photograph can be done using do-
main specific knowledge such as in [6] where military histori-
cal photographs are successfully dated using such techniques.

Following the work of Palermo et al. [2], we propose to
solve the task of classifying historical color photographs into

Fig. 1. Some photographs from left to right in chronological
order. Left photograph is from 1930s next ones from 1940s,
1950s, 1960s and the last from 1970s. This figure clearly
shows the difficulty of the task.

decades (see Fig. 1). In this aim, Palermo et al. propose to
analyze the variation of color distributions across the age to
classify the images. In particular, they exploit the probabil-
ity to have a certain color saturation for each considered hue.
The hue and saturation they are using are estimated from the
CIELAB color space although the transformation from the
available RGB components to this standardized color space is
not accurate in such uncalibrated acquisition conditions. Fur-
thermore, we show that, given one image, while being very
useful, its color distribution is not the most accurate feature
to discriminate between decades.

Unlike classical color descriptors, our proposed features
are device-dependent. We consider that the characteristics
of the devices used to acquire one photograph are very ac-
curate features to date this photograph. For example, the
color films used in 1930s are different from the once used in
1970s. Therefore, we aim at extracting these characteristics
from each image. From the imaging process, we claim that
the acquisition devices impact two different properties of the
colors: first, the global distributions of the RGB derivatives
and second, the shapes drawn in the RGB space by consecu-
tive pixels along the edges. Thus, we propose to use two dif-
ferent and complementary color features for the dating task,
namely color derivatives and color angles introduced in sec-
tion 3. We show in section 4 that they perform significantly
better than the state-of-the-art [2] and than novel features such
as DeCAF [7] which are based on deep learning [8].



2. RELATED WORK

The most related work for dating historical images is the one
from Palermo et al. [2]. They propose to split the available
historical images into discrete time interval classes and de-
fine the problem as an image classification problem. While
many definitions of these time intervals are possible, decade
(e.g. the 1950s) based grouping is intuitive from cultural
trends point of view. A novel color descriptor called Condi-
tional Probability of Saturation Given Hue is proposed. This
descriptor is based on the argument that unique appearance
of images produced by historical color imaging process is at
least partly due to differences in their reproduction of certain
hues, especially with regard to saturation [9].

Schindler et al. [10, 11] proposed a method to tempo-
rally order a large collection of historical skyscraper images
by reconstructing the 3D world using structure-from-motion
which requires many overlapping images of the same scene
over a large time lag. Following a similar idea Xu et al. [12]
proposed a method to model 3D urban scenes in the spatial-
temporal space using a collection of photographs that span
over many years. Recently, Rematas et al. [13] try to infer the
age of a man made object in an image using modern descrip-
tors such as SIFT and encoding methods such as Fisher vec-
tors, while Lee et al. [3] try to discover specific styles using
mid-level features. These methods do not inspect the photo-
graph as a physical artifact but rather rely on object recogni-
tion techniques to identify specific patterns that are correlated
with time or the decade. Even though, these methods can be
useful, they are limited by the image content of the historical
photograph. That’s why in this paper, we propose an approach
that is not restricted to some kind of contents and that is based
on two different and complementary color descriptors intro-
duced in the next section.

3. PROPOSED COLOR DESCRIPTORS

We also define the task of estimating the age of a photo as
determining the decade during which a historical color pho-
tograph was taken. In this section we introduce two color
descriptors that are useful to classify images based on the age
of the photograph. The intuition behind these descriptors is
as follows: the color content of the images have changed over
the years because of the evolution of the acquisition devices.
By analyzing the photograph contents, we try to extract in-
formation that reveals the camera characteristics and then use
them to infer the age of the photograph.

3.1. Color acquisition process

From [14], it is clear that different cameras do not exhibit con-
sistent color responses while observing the same scene under
the exact same conditions (viewpoint, illumination, ...). In-
deed, each acquisition device uses its own mapping process

from scene radiance to pixel intensity. As explained in [15],
each step of this acquisition process can be associated with
one specific (and often unknown) transform. In this paper, we
claim that some of these transforms are impacting the global
statistics of the colors in the resulting photographs while oth-
ers make the relation between scene radiance and pixel in-
tensity nonlinear. For example, the white balance and the
color transform are changing the color statistics whereas tone
mapping, aesthetic effects, gamma correction or old film re-
sponses are adding non-linearity to the mapping [16].

Consequently, in order to measure the impact of the ac-
quisition systems (changing over the years) on colors, we pro-
pose two color features that are related to color statistics and
non-linearity assessment.

3.2. Color derivatives

Palermo et al. [2] use color statistics to evaluate the age of a
photograph. They approximate the L*a*b* components from
the available RGB, which is a coarse approximation in such
uncalibrated acquisition conditions. Then they deduce hue
and saturation from these components. In this paper, instead
of using approximate transforms between color spaces, we
propose to exploit the variations of the color distributions over
the time directly in the original RGB camera color spaces.
Our motivation comes from the fact that RGB global color
distributions have been shown to reveal information about
the acquisition conditions such as the lights and the cam-
era [17, 18]. That’s why, in most color constancy algorithms,
the analysis of such distributions helps in removing the im-
pact of the acquisition conditions on the colors. For example,
the average RGB components are used by the grey-world al-
gorithm and the convex-hull of the RGB distribution is the
basis of the gamut-mapping algorithms [19]. More recently,
it has been shown that taking into account the 3D distribu-
tions of the first and second derivatives of the RGB compo-
nents improves the results of the classical algorithms [18, 20].
The idea behind these algorithms is that RGB zeroth, first and
second derivatives coarsely follow canonical distributions in
every natural image and deviate from these distributions be-
cause of the lights and cameras used during the acquisition.
Thus, we claim that analyzing these distributions can help in
extracting information about the acquisition conditions and
thus in estimating the age of a photograph. Therefore, we pro-
pose to extract the RGB components, the RGB first and sec-
ond derivatives and to construct one 3D histogram for each.

3.3. Color angles

Whatever their age, all cameras exhibit a non-linear relation-
ship between the scene radiance and the pixel intensity. Nev-
ertheless, these non linear transforms are different between
cameras. The idea of camera radiometric calibration is to es-
timate such transform for a specific camera [21]. In this paper,



Fig. 2. Color angle illustration inspired from [2]. a) Two ho-
mogeneous regions in a scene. b) The projection of these col-
ors on the image plane. c) The corresponding colors C1, C2

and Ce are not aligned because of the non-linear transform
and the angle is specific to the used acquisition system.

we exploit these device-dependent features and propose to es-
timate and use this non linear transform to characterize the
camera that acquired each considered photograph. In this aim,
we exploit the work of Lin et al. [2] who analyze the RGB
positions of the colors along the edges in the image. Indeed,
let us consider the border between two homogeneous regions
in a scene observed by an imaginary camera whose mapping
function (radiance to intensity) would be linear. During the
acquisition, the projection of these regions in the image plane
forms two homogeneous regions whose colors are respec-
tively [R1, G1, B1]

T and [R2, G2, B2]
T in the image. Fur-

thermore, the colors [Re, Ge, Be]
T of the edge-pixels which

lie along the border between these regions are linear combi-
nations of these two colors. Consequently their colors should
be on the line connecting the two colors [R1, G1, B1]

T and
[R2, G2, B2]

T :

∃α ∈ [0; 1] so that,

[Re, Ge, Be]
T = α [R1, G1, B1]

T + (1− α) [R2, G2, B2]
T .

(1)

However, since in real cases, the camera mapping f from
scene radiance to pixel intensity is not linear, the three colors
f([R1, G1, B1]

T ), f([Re, Ge, Be]
T ) and

f([R2, G2, B2]
T ) do not form a line in the RGB space, i.e.

eq. 1 does not hold any more. Let us denote C1, C2 and Ce

the three considered colors. In the imaginary case of linear
mapping, the angle ̂C1CeC2 is flat (= ±π), while in real
cases, its value is different from ±π. This point is illustrated
in fig. 2. Even, for a given camera, this angle is not constant
and depends on the colors C1, C2 and Ce.

For clarity, above, we have considered the 3D space RGB
where one single angle can be estimated for each edge-pixel.
But in order to get more information about the non linearity
of the camera, we can project the 3 colors C1, C2 and Ce on
each plane RG, RB and GB and measure one angle in each
plane. We have experimentally validated that accounting 3
angles aRG, aRB and aGB increases the discriminative power
of our color feature with respect to a single ”3D” angle aRGB .

Therefore, we propose to analyze the angles formed in

the RG, RB and GB planes by all triplets of consecutive
(in the image space) pixels (in both horizontal and vertical
directions). Since the values of these angles vary according to
the components Re, Ge and Be of the considered edge-pixel,
we propose to measure the evolution of this angle across these
components.

Consequently, for each pixel triplet associated with the
edge-pixel color [Re, Ge, Be]

T , we evaluate 3 angles aRG,
aRB and aGB and accumulate this information for all the
triplets of one image in 6 co-occurrence matrices that count
the number of times each color angle occurs with each related
color component MRe

aRG
, MRe

aRB
, MGe

aRG
, MGe

aGB
, MBe

aRB
and

MBe
aGB

. All the triplets are considered without edge selection.

4. EXPERIMENTS

4.1. Decade Classification

To evaluate the effectiveness of our proposed features, we use
the same dataset as [2]. This dataset is composed by decades
from 1930’s to 1970’s (five classes see Fig 1). It contains 1375
images in total. As done in [2], we use 225 images per class
for training and the rest for testing. We use both linear and
non-linear (chi-square kernel) SVM classifiers with a fixed
cost parameter (C=100 in LibSVM). We report classification
accuracy averaged over ten random training/testing splits for
each feature.

We test the performance of the proposed color features.
First, the color derivative features described in section 3.2
consist of 3D histograms of RGB components (0-CD), first
derivatives (1-CD) and second derivatives (2-CD). Each his-
togram is 103 dimensions (10 bins per channel) and is tested
independently from the others. The combination of these
three color statistics features is also tested (3000-D). Second,
the color angles (CA detailed in section 3.3) consist of 6 co-
occurrence matrices, each one being 52 dimensions (5 bins
for angles and 5 bins per channel). Thus, this descriptor is
150 dimensional. These color features are compared with:

CIELAB Histogram : This is a color feature commonly
used in previous works such as scene recognition [22] and
image geo-location [23]. As proposed in [2], this descriptor
is 5 ∗ 15 ∗ 15 (1125) dimensions.

P(Sat|Hue) descriptor: This descriptor is introduced
in [2]. It is based on the argument that the unique appearance
of images produced by historical color imaging process is at
least partly due to differences in their reproduction of certain
hues, especially with regard to saturation. This descriptor is
512-D.

DeCAF descriptors: A deep convolution model is
trained in a fully supervised setting using a state-of-the-
art method [8]. Then various features are extracted from this
deep network. The activation of n hidden layer of the deep
convolution neural network is denoted by DeCAFn. These
activation values are used as features.



Table 1. Experimental results using both linear and non-
linear SVM classifiers.

Method Accuracy %
Linear Non-linear

Human 26.0 [2]
Best results from [2] 45.7
CIELAB Histogram 37.3 [2] 43.2 ± 3.0
P(Sat|Hue) descriptor 37.6 [2] 43.1 ± 2.5
DeCAF6 46.7 ± 4.7 18.4 ± 2.9
DeCAF7 42.8 ± 2.1 18.8 ± 3.0

Our features
RGB Histogram (0-CD) 41.8 ± 1.8 47.1 ± 3.6
RGB First derivatives (1-CD) 45.5 ± 1.6 47.6 ± 1.7
RGB Second derivatives (2-CD) 47.8 ± 2.1 50.5 ± 2.6
Color angles (CA) 54.4 ± 4.0 55.4 ± 3.3
0-CD + 1-CD + 2-CD 45.9 ± 3.3 84.3 ± 2.1
0-CD + 1-CD + 2-CD + CA 48.2 ± 3.2 85.5 ± 1.5

We apply L2 normalization for all features. We report
results using both linear and non-linear (chi-square) kernels
for each feature in Table 1.

First, we analyze the results provided by linear SVM (left
column of Table 1). We notice in these results that human ob-
servers find this task extremely difficult (accuracy of 26.0%).
On the other hand, it is interesting to see that color-based
approaches perform better than human which is rare in im-
age classification tasks as reported in [2]. The CIELAB his-
togram reports a classification accuracy of only 37.3% in [2]
while using the RGB histogram we obtain 41.8%. This con-
firms our reasoning for using RGB data directly for this task.
In [2], the best results provided by a single feature are those
of the conditional probability of the saturation given the hue
(P(Sat|Hue)) which reports 37.6%. All our color statistics
features (0-CD, 1-CD and 2-CD) outperform this accuracy.
This clearly shows that the RGB derivative distributions cap-
ture useful information about the acquisition device hence the
information about the age of the photograph. The color angle
feature (CA) performs the best as an individual feature with
a significant performance of 54.4% despite its relative small
dimensionality. Indeed, the best result reported in [2] is equal
to 45.7% and corresponds to a fusion of many (7) classical
features. Finally, modern state of the art object recognition
features such as DeCAF6 or DeCAF7 which are based on
the deep learning do not perform as good as hand crafted fea-
tures such as the color angles for this specific task.

By analyzing the distributions of all the histogram fea-
tures, we noticed that some bins are over represented because
some colors, derivatives or angles are very frequent over
all the images. That specificity of the histograms explains
why we also propose to test chi-square SVM which nor-
malizes the difference between two histogram bin values by
the sum of these values. Obviously, we notice that all the

Fig. 3. The confusion matrix summed over 10 random splits
for the best performing approach (non-linear SVM with 0-
CD + 1-CD + 2-CD + CA). Note that the classes [1, 2 . . . , 5]
correspond to [1930s, 1940s, . . . , 1970s].

histogram based features improve when moving from linear
to non-linear SVM. This is more outspoken when dealing
with feature fusion which seems to be badly adapted to linear
kernels.

All the previous comments remain the same with non-
linear SVM, i.e. our descriptors also outperform the state-
of-the-art with non-linear SVM. Finally, by late fusing RGB
histograms,1-CD, 2-CD and CA features we manage to obtain
the very high accuracy of 85.5%. So our descriptors work
three times better than an average human and twice as good
as the state of the art. This result clearly shows that our color
features are highly complementary.

In Fig. 3, we show the cumulative confusion matrix com-
puted over ten random splits when using the fusion of all our
proposed descriptors with non-linear kernel. The best results
are obtained for 1930s (94.8%) while the worst results are ob-
tained for 1970s (79.5%). This is not surprising given the fact
that during 1930 era there were only a few number of color
films available.

5. CONCLUSION

In this paper we present a successful method to date historical
color photographs. By utilizing RGB derivatives and color
angle features, we collect a significant amount of information
about the photograph capturing process. These features are
used to classify old color photographs into decades. While
an average human performs at a classification rate of 26%,
we manage to obtain a good performance of 85.5% using the
proposed color features and even outperforming state of the
art deep learning features.

We plan to investigate a way to learn functions that
chronologically order historical photographs in the future.
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