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A Graph-Spectral Approach to Shape-from-shading
Antonio Robles-Kelly, Member, IEEE, and Edwin Hancock

Abstract— In this paper we explore how graph-spectral meth-
ods can be used to develop a new shape-from-shading algorithm.
We characterise the field of surface normals using a weight
matrix whose elements are computed from the sectional curvature
between different image locations and penalise large change in
surface normal direction. Modeling the blocks of the weight
matrix as distinct surface patches, we use a graph seriation
method to find a surface integration path that maximises the
sum of curvature dependent weights and that can be used for the
purposes of height reconstruction. To smooth the reconstructed
surface, we fit quadrics to the height data for each patch.
The smoothed surface normal directions are updated ensuring
compliance with Lambert’s law. The processes of height recovery
and surface normal adjustment are interleaved and iterated until
a stable surface is obtained. We provide results on synthetic and
real-world imagery.

Index Terms— Shape-from-shading, graph seriation, graph-
spectral methods.

I. INTRODUCTION

Shape-from-shading is concerned with recovering local es-
timates of the surface normal direction, and hence the surface
height function, from single images of shaded surfaces. The
problem is a classical one which has been studied in both the
computer vision and photogrammetry literature for a number
of decades. In photogrammetric remote sensing the problem is
known as photoclinometry, and one of the earliest practical ap-
plications was to recover the shapes of lunar maria from optical
images [1]. More recent work has extended the technique to
the radar domain and has developed radar-clinometry methods
to analyse the topography of the surface of Venus using
images delivered by the Magellan probe [2]. Remote sensing
has also lead to the development of the technique referred
to as photometric stereo, which involves surface normal and
height recovery from sets of images recovered under different
light source directions [3]. In computer vision, some of the
first work was reported in the PhD theses by Horn [4] and
by Krakauer [5]. Early developments in the field are well
documented by Horn in the chapter “Height and Gradient
from Shading” which appears in the collection of papers
entitled Shape-from-Shading [6]. A more up to date review
and comparative study is presented by Zhang et al. [7].

Stated succinctly the aim is to recover surface normal
direction from measured image brightness using the image
radiance equation. According to physics, the measured bright-
ness depends on a number of factors including the viewer
and light source directions, and the physical characteristics
of the surface. To simplify the reflectance model, a number
of assumptions are made. Firstly, the surface is assumed to
be illuminated by a single point light source placed at infinity.
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As a result, there is no dispersion in the light source direction,
and effects due to variations in the inverse squared distance
to the light source over the surface are ignored. Secondly, the
surface is assumed to be perfectly matte, and the observed
surface radiance to follow Lambert’s law. As a result for a
surface of constant or known albedo, the observed brightness is
independent of viewer direction, and depends only on the angle
between the surface normal and the light source direction.
Even under these restrictions, the shape-from-shading process
is under constrained since the surface normal has two degrees
of freedom corresponding to the slant and tilt angles of the
local tangent plane to the surface, and the measured brightness
provides only a single piece of information, or constraint, at
each image location. Hence, additional constraints must be
supplied. The most important of these is that the surface nor-
mals vary smoothly in direction across the surface. In addition,
the integrability constraint is also sometimes imposed, and
this requires that the Hessian matrix is symmetric at every
location on the surface. This constraint is important if the
surface is to be reconstructed from the recovered field of
surface normals, since the estimated height will depend on
the integration path if the constraint is not satisfied. Finally,
constraints are provided by locations on the surface, e.g. the
occluding boundary, where the surface normal directions are
known.

Of course, there has been a considerable effort aimed at
overcoming the restrictions listed above. For instance, methods
have been developed for estimating the light source direction
[8] and the albedo [9]. There has also been work aimed at
understanding the effect of inter-reflections [10] and multiple
light source directions. Finally, alternatives to Lambert’s law
have been investigated to allow for specular reflection from
shiny surfaces, or boundary brightening effects for surfaces
that exhibit roughness.

A. Related Literature

There are a number of perspectives from which the shape-
from-shading literature can be viewed. For instance, Zhang et
al [7] divide existing shape-from-shading methods into those
that are local and those that are global. Local methods involve
quilting local surface patches to recover the overall surface
shape. Although fast, the methods require prior information
concerning height, and this may be provided by, for instance,
the elevation of singular points. As a result local methods are
often sensitive to noise. Global methods, on the other hand, re-
cover the height through the propagation of height constraints,
or by minimisation of an energy function. Although more
robust to noise, global methods can have a tendency to over-
smooth the recovered surface. There have been attempts to
overcome this problem. For instance Zheng and Chellappa [9]
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have imposed a gradient consistency constraint that penalises
differences between the image intensity gradient and the
brightness gradient for the recovered surface. Worthington and
Hancock [11] impose the Lambertian radiance constraint in a
hard manner by demanding that the recovered surface normals
lie on cones whose axis is in the light source direction and
whose apex angle is the inverse cosine of the normalised image
radiance.

Another important issue underpinning shape-from-shading
process is that of how to reconstruct the surface from the
estimated surface normal directions. The so-called surface
integration process involves selecting a path through the
surface normal locations. This may be done using either a
curvature minimizing path or by advancing a wave front from
the occluding boundary or singular points. If the surface
normals do not satisfy the integrability constraint (i.e. the
Hessian matrix is symmetric) then the recovered height can
depend on the path chosen through the surface normals.
The analysis of the literature on the topic of surface height
recovery is not a straightforward task. The reason for this
is that surface recovery is frequently viewed as an integral
part of the shape-from shading or shape-from-texture process.
Horn and Brooks [12], [13] realise surface height recovery
as a post-processing step. The process proceeds from the
occluding boundary and involves incrementing the surface
height by an amount determined by the distance traversed
and the slope angle of the local tangent plane. In some of
the earliest work, Wu and Li [14] average the surface normal
directions to obtain a height estimate. A more elegant solution
is proposed by Frankot and Chellappa [2] who project the
surface normals into the Fourier domain to impose integrability
constraints and surface height is recovered using an inverse
Fourier transform. Klette and his co-workers have enhanced
this approach by showing how more complex regularisation
constraints can be formulated in the Fourier domain [15].
Leclerc and Bobick [16] have developed a direct numerical
method for height recovery from shading information which
uses curvature consistency constraints. Dupuis and Oliensis
[17] have developed a method which draws on differential
geometry and involves propagation in the direction of the
steepest gradient from singular points. A fast variant of this
algorithm is described by Bichsel and Pentland [18] who
compute the relative height of the surface with respect to the
highest intensity point. However, despite this work relatively
little effort has been devoted to the problem of selecting the
surface integration path.

Existing shape-from-shading methods can also be viewed
from the perspective of the method used to solve the image
radiance equation. For instance, the recovery of surface normal
and height information using the image radiance equation can
be posed as the solution of a partial differential equation. Here
a number of methods including the use of level-sets [19] and
the Hamilton-Jacobi-Bellman [20] equations have proved to be
effective. However, one of the most frequently used methods is
to pose the problem of recovering the field of surface normals,
or the surface, as that of energy minimisation. Here one of
the best known methods is the regularisation approach of
Horn and Brooks [12]. According to the regularisation method

there are distinct terms in the cost function to encourage
compliance with the image radiance equation, and smoothness
of the recovered solution. Horn and Brooks [12] show how the
solution may be recovered using an iterative process which
propagates constraints on the surface normal direction from
the boundary to the interior of the object. At each image
location, the update process involves adjusting the surface
normal direction by an amount determined by the brightness
error in the light source direction, and an amount determined
by the local average surface normal. In practice it is the
surface normal averaging effect that dominates, and this has
a tendency to oversmooth the recovered surface. To overcome
this problem, Worthington and Hancock [11] have replaced
the quadratic smoothness penalty function of the Horn and
Brooks method with one dictated by robust statistics.

Of course, when posed as the problem of minimising an
energy function, then the question of how to solve the under-
lying optimisation problem is also one of pivotal importance.
The update process used by Horn and Brooks [12] is a local
gradient descent method which relies on parallel local updates
of the surface normal direction. It is hence reminiscent of
relaxation labeling. There are alternative methods which can
be used to perform the update process. For instance, Crouzil
et al. [21] have cast the problem into a Markov field setting,
and have developed a multiscale method which can overcome
problems of convergence to a local minimum. Recent work has
also explored the use of graph-cuts to find exact minima of an
energy function [22]. However, one of the methods that has
not received attention is that of posing the method in a graph
spectral setting and using eigenvector methods to recover the
solution.

The idea underpinning graph spectral methods is to abstract
the problem in hand using a weighted graph. Here the nodes
represent the basic image entities, and the weighted edges
represent affinity relations between the entities. By computing
the eigenvalues and eigenvectors of the weight matrix, it is
possible to find groups or clusters of entities. The graph
spectral method is in fact one of energy minimisation since
the eigenvectors can be shown to be minimisers of a quadratic
form. In fact, graph spectral methods have recently proved
highly effective in image processing and computer vision.
Perhaps the best known method is that of Shi and Malik [23]
which has shown how to locate image regions by recursively
bisecting a weighted graph that represents the affinity of pairs
of pixels. The method is based on the normalised cut. This is a
measure of the relative weight of the edges connecting the two
parts of the partition (the cut) to the weight assigned to the
edges within the two parts of the bisection (the association).
A relaxed solution to the bisection problem is found by
locating the eigenvector associated with the second smallest
eigenvalue of the Laplacian matrix (the degree matrix minus
the affinity weight matrix). The advantage of graph-spectral
methods is that they can be used to find approximate or relaxed
solutions without the need for parallel iterative updates at the
pixel sites. The method also obviates the need for complex
search algorithms. However, although they have been applied
to region segmentation and grouping problems, graph spectral
methods have been applied neither to shape-from-shading,
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nor to curve detection problems of the sort that arise in the
determination of the optimal integration path.

B. Contribution

The aim in this paper is to use graph spectral methods
to locate integration paths through fields of surface normals,
and hence perform surface reconstruction using shape-from-
shading. Our shape-from-shading method builds on the work
of Worthington and Hancock [11] by constraining the surface
normals to fall on irradiance or Monge cones whose axes
point in the light source direction and whose apex angles are
determined by the normalised image brightness. Our aim is
to use a graph-spectral method to find an integration path
through the field of surface normals that can be used for
surface height recovery. To do this we abstract the field of
surface normals using a curvature dependant weight matrix
computed from adjacent pairs of surface normals. The higher
the curvature, i.e. the difference in surface normal direction,
the smaller the weight. The aim is to recover the integration
path that maximises the sum of weights across the field
of surface normals. This can be viewed as the problem of
ordering the set of nodes in a graph in a sequence such
that strongly correlated elements are placed next to one
another, and this is often referred to as graph-seriation [24].
The seriation problem can be approached in a number of
ways. Clearly the problem of searching for a serial ordering
of the nodes, which maximally preserves the edge ordering
is one of exponential complexity. As a result approximate
solution methods have been employed. These involve casting
the problem in an optimisation setting. Hence techniques such
as simulated annealing and mean field annealing have been
applied to the problem. It may also be formulated using
semidefinite programming, which is a technique closely akin
to spectral graph theory since it relies on eigenvector methods.
However, recently a graph-spectral solution has been found to
the problem. Atkins, Boman and Hendrikson [24] have shown
how to use the leading eigenvector of the Laplacian matrix
to sequence relational data. The method has been successfully
applied to the consecutive ones problem and a number of DNA
sequencing tasks. There is an obvious parallel between this
method and steady state random walks on graphs, which can
be located using the leading eigenvector of the Markov chain
transition probability matrix. However, in the case of a random
walk the path is not guaranteed to encourage edge connectivity.
The spectral seriation method on the other hand does impose
edge connectivity constraints on the recovered path,

Unfortunately, the analysis of the seriation problem pre-
sented in the paper by Atkins, Bowman and Hendrikson [24] is
not directly applicable to our surface reconstruction problem.
We provide an analysis which establishes the relationship
between the seriation path and the leading eigenvector of the
weight matrix. We use the leading eigenvector of the weight
matrix to find a surface integration path through the field of
surface normals. This path provides a relatively stable surface
reconstruction since it avoids high curvature surface structures
such as ridges and ravines. Height recovery can be performed
by traversing the integration path and incrementing the height

function by applying the trapezoid rule to the local slant and
tilt angles.

The eigenvector analysis also allows us to recursively seg-
ment the surface into patches in a manner that is reminiscent
of the Shi and Malik algorithm [23]. The sites visited by
the integration path can be viewed as constituting a single
surface patch. By taking the outer product of the leading
eigenvector, we can compute the curvature dependent weight
matrix associated with the sites belonging to the patch. The
elements of the weight matrix associated with the patch may
be set to zero, and the leading eigenvector of the residual
weight matrix computed. This process may be repeated until
the remaining pixels form patches of negligible size.

We fit a bi-quadric surface to the height values in each patch.
For each pixel location, we can estimate a smoothed surface
normal by computing the derivatives of the fitted patch. The
properties of the bi-quadric patch ensure that the smoothed
surface normals satisfy the integrability constraint. We follow
Worthington and Hancock [11] by projecting the smoothed
surface normals onto the nearest location on the local radiance
cone.

Hence, our shape-from-shading algorithm differs from those
reported in the literature in a number of important ways. First,
we impose the Lambertian radiance equation as a hard con-
straint by demanding that the surface normals fall on radiance
cones aligned in the light source direction. The optimisation
problem underpinning our method is the location of a surface
integration path through the field of surface normals that
maximises the sum of curvature dependent weights. We use
this path to both adjust the estimated height and the surface
normal directions. In this respect the method is close in spirit
to the method of Dupuis and Oliensis [17] since it is concerned
with the recovery of a path on the surface. Since the recovery
of surface normal and height information is implicit, it differs
from the regularisation method of Horn and Brooks [12].
The method differs from the level sets methods since, height
recovery is based on an open-curve and not a closed contour.
The main advantage of using the spectral method is that is
does not involve search over a potentially complex surface
geometry, and that the eigenvector analysis simplifies both the
recovery of the integration path and the location of surface
patches.

The outline of this paper is as follows. In Section 2 we
briefly review Worthington and Hancock’s geometric frame-
work for Lambertian shape-from-shading. Section 3 describes
our curvature-based characterisation of the weight matrix for
sites on the integration path. In Section 4 we describe how
ideas from spectral graph theory can be used to recover an
integration path from the weight matrix. Section 5 describes
the relationship between the leading eigenvectors and surface
patches. Sections 6 addresses the problem of height recovery,
while Section 7 describes the surface fitting and surface normal
adjustment method. In Section 8 we provide an overview of the
resulting iterative algorithm for surface recovery. Experiments
on real-world and synthetic data are described in Section 9.
Finally, Section 10 provides some conclusions and suggested
directions for further investigation.
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Fig. 1. Curvature and path illustration (see text).

II. LAMBERTIAN REFLECTANCE

The starting point for the development of our graph-spectral
approach to shape-from-shading is the geometric framework
recently reported by Worthington and Hancock [11]. Un-
derpinning this work is the observation that for Lambertian
reflectance from a matte surface, the image irradiance equation
defines a cone of possible surface normal directions. The
axis of this cone points in the light-source direction and the
opening angle is determined by the measured brightness. If
the recovered needle-map is to satisfy the image irradiance
equation as a hard constraint, then the surface normals must
each fall on their respective irradiance cones. Initially, the
surface normals are positioned so that their projections onto
the image plane point in the direction of the image brightness
gradient. Subsequently, there is iterative adjustment of the
surface normal directions so as to improve the consistency of
the needle-map. In other words, each surface normal is free to
rotate about its reflectance cone in such a way as to improve
its consistency with its neighbours.

To be more formal let �� be a unit vector in the light source
direction. The light source direction can be arbitrary, i.e. it is
not restricted to the viewer direction ��� �� ��� . However, an
estimate of the light source direction is required. In most of our
experiments the direction is recorded at the time the images are
collected. An alternative is to use one of the methods reported
in the literature for estimating the direction [9]. Suppose that
�� be the normalised brightness at the image location indexed
�. Further, suppose that �� ���

� is the corresponding estimate of
the surface normal at iteration � of our algorithm. According
to Lambert’s law under conditions of constant albedo the
normalised image irradiance is �� � ��

���
� � ��.

The consequence of Lambert’s law is that the surface normal
is constrained for fall on an irradiance or Monge cone, whose
axis is the direction on the light source �� and whose opening
angle is �������.

Our aim is to adjust the surface normals by first smoothing
them and then projecting them back onto the local irradiance
cone. This smoothing is achieved by fitting a quadric patch to
the reconstructed height data, and estimating the local normal
to the fitted surface patch. Details of this process are described
later in Section 7 of this paper. However, suppose that after
local smoothing, the off-cone surface normal is 	��

���
� . The

updated on-cone surface normal which satisfies the image
irradiance equation as a hard constraint is obtained via the
rotation ��

�����
� � 
��� 	��

���
� .

The matrix 
��� rotates the smoothed off-cone surface

normal estimate by the angle difference between the apex
angle of the cone, and the angle subtended between the off-
cone normal and the light source direction. This angle is equal
to

�
���
� � ������� � �����

	��
���
� � ��

��
	��
���
� �� � ������

This rotation takes place about the axis whose direction is
given by the vector �	� 
� ��� �

	��
���
� � ��. This rotation axis

is perpendicular to both the light source direction and the off-
cone normal. Hence, the rotation matrix is


��� �

�
� �� 	��� ��
� 	
�� 

� 	���

�
� 	
�� �� 
��� �	
� 
���

�

� 	��� 	
� 
��� �� ����

�
�

where � � ��� �
���
� , �� � �� �, and 
 � ��
 �

���
� .

This simple approach has a number of shortcomings. For in-
stance, it needs known, though arbitrary, light source direction
and constant albedo. Additionally, the method is not applicable
when there are significant departures from Lambert’s law. This
may be the case for shiny or glossy surfaces when specularities
are present, or for rough surfaces where limb brightening is
observed. However, there are reflectance models that account
for these effects. For instance the Torrance-Sparrow [25]
model may be used for specularties, the Wolff model [26]
for shiny surface reflectance and the Oren-Nayar model [27]
for rough surface reflectance. In principle these models may
be used to construct reflectance maps and may be used to
recover surface normals and height using Horn’s method [12].
However, when using the method of irradiance cones, the mod-
els may be used to recover corrected Lambertian reflectance
as a preprocessing step. Alternatively, the method reported
in our recent paper may be used to perform Lambertian
correction using empirically estimated reflectance distributions
[28]. Finally, we note that using the image gradient direction to
initialise the positions of the surface normals on the irradiance
cone has the effect of biasing the recovered needle-map in the
favour of convex surfaces.

III. AFFINITY MATRIX

The method outlined in the previous section provides us
with estimates of the field of surface normals at locations

Fig. 2. Effect of varying the light source direction on the shape-from-shading
algorithm: Input images (top row); Views of the recovered surfaces (second
and third rows).
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Fig. 3. Surface reconstruction for noise free data: Initial images (top row); ground-truth surfaces (second row); needle-maps (third row); reconstructed
surfaces (fourth row); absolute difference between ground truth and reconstructed surfaces.

on the image plane �. Our aim is to reconstruct the height
function for surface � from this planar field of surface normals,
under the assumption that the image of the surface is formed
under orthographic projection. To realise this goal, we require
an integration path. This path must traverse or connect the sites

of the pixel lattice, By traversing the path the relative surface
height function can be reconstructed. This is done using the
trapezium rule to increment the height using the distance
traveled on the path and the known slant and tilt angles of
the surface normals at different locations on the image plane.
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In the work reported here the path is one that optimises a
graph-spectral criterion that penalises high curvature. To this
end, we require a means of gauging the affinity of pixels based
on an image plane approximation to the surface curvature.

Our aim here is to find a curve � across the plane �
that can be used as an integration path to reconstruct the
height-function of the surface �. The plane-curve � can be
viewed as the projection of a curve �� from the surface �
onto the plane �. Whereas the curve �� has both curvature
and torsion, the planar curve � has only curvature. Further,
suppose that ���� is the sectional curvature of the curve ��

at the point � with parametric co-ordinate �. Dropping the
iteration dependant superscript used in the previous section,
for the surface � the field of unit surface normals is sampled
on the image plane �, and the surface normal at the location
� � � is denoted by ���. Accordingly, and following do
Carmo [29], we let ����� represent the tangent plane to the
surface � at the point � which belongs to the curve �� . To
compute the sectional curvature ���� we require the differential
of the surface or Hessian matrix � ��� � ������ �����. The
maximum and minimum eigenvalues �� and �� of � ��� are
the principal curvatures at the point �. The corresponding
eigenvectors ��� � ����� and ��� � ����� form an orthogonal
basis on the tangent plane �����. At the point � the unit
normal vector to the curve �� is �� and the unit tangent vector
is �� � �����. The sectional curvature of �� at � is given
by

���� �
���� � �������� � ��� � ��

�� � ���

(1)

where ���� � �������� � ��� � �� is the normal curvature and
� � �������� � ��� is the angle between the curve normal and
the surface normal.

Our aim is to approximate the curvature ���� using the field
of surface normals on the plane �. In practice, we deal with
points which are positioned at discrete positions on the pixel
lattice. Suppose that � and � are the pixel indices of neigh-
bouring points sampled on the pixel lattice. To approximate
the sectional curvature we make use of the surface normal
directions. To commence, we note that if the path between the
locations � and � can be approximated by a circle of radius
� on the surface, then the approximate sectional curvature
is ������ � � �

	���
. Suppose that the surface normal directions at

the pixel locations � and � are respectively ��� and ��� . Further
suppose that the line connecting the pixel sites on the image
plane is of length ���� . The approximating circle connects the
points � and �, and has ���� as the connecting chord. Hence,
the change in direction of the radius vector of the circle is
���� � ������ ��� � ��� , and as a result ��� ���� � ��� � ��� .
If the angle ���� is small, then we can make the Maclaurin

approximation ��� ���� � � �

����
� � ��� � ��� . Moreover, the

small angle approximation to the radius of curvature of the
circle is ���� �

����

���

and hence

������ �
���� ��� � ����

�����
(2)

The geometry outlined above is illustrated in Figure 1a.

In the next section of this paper, we will present a graph
spectral technique for locating the integration path �. The
starting point for this analysis is a weight matrix that can be
used to represent the affinity of pixels based on the curvature
of the connecting path, or the difference in surface normal
directions. To compute the elements of the affinity matrix, we
associate with the pair of pixels a cost or energy that is equal
to the product of the distance between the sites and the squared
sectional curvature of the connecting path, i.e. � ��� � ������ ���� .

Using the approximation to the sectional curvature, we find
that the cost associated with the step from the pixel � to the
pixel � is

���� �
�

����
��� ���� ���� (3)

To pursue the graph-spectral analysis of the field of surface
normals, we require a weight matrix which reflects both the
sectional curvature and the connectivity of the pixel lattice.
For the pixels indexed � and � we define the weight matrix to
have elements

� ��� �� �

�
���������� � if � � 	�

� otherwise
(4)

where 	� is the set of pixels-neighbours of the pixel � and �
is a constant. Hence, the curvature dependent weight is only
non-zero if pixels abut one-another. Moreover, the weights are
unity if the sectional curvature is zero and tend to zero as the
curvature increases.

IV. GRAPH SERIATION

In the previous section, we showed how the change in sur-
face normal directions could be used to compute the elements
of a curvature dependent weight matrix. In this section, we
describe how the leading eigenvector of this matrix can be
used to locate an integration path that maximises the total
weight. We pose this as a process of graph-spectral seriation.

To commence, we pose the problem in a graph-based set-
ting. The set of pixel sites can be viewed as a weighted graph
� � ������ � with index-set � , edge-set� � 
��� ������ �� �
� � �� � �� �� and weight function � � � � ��� ��. Let the
integration path commence at the node �� and proceed via the
sequence of nodes � � 
��� ��� ��� ����.

The seriation problem as stated by Atkins, Boman and
Hendrickson [24] is as follows. The aim is to find a path
sequence for the nodes in the graph using a permutation �.
The permutation gives the order of the nodes in the sequence.
The sequence is such that the edge weight decreases as the
path is traversed. Hence, if ����  ����  ����, then
� ��� �� ! � ��� �� and � ��� �� ! � ��� ��. This behaviour
can be captured using the penalty function

"��� �

�� ��
���

�� ��
���

� ��� �������� ������

By minimising "��� it is possible to find the permutation
that minimises the difference in edge weight between adjacent
nodes in the path, and this in turn sorts the edge weights into
magnitude order. Unfortunately, minimising "��� is potentially
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Fig. 4. Results on noise-free image data for the algorithm of Bichsel and Pentland: reconstructed surfaces (top row); absolute difference between ground
truth and reconstructed surfaces (bottom row)

NP complete due to the combinatorial nature of the discrete
permutation �. To overcome this problem, a relaxed solution
is sought that approximates the structure of "��� using a
vector �# � �#�� #�� ����� of continuous variables #�. Hence,
the penalty function considered is

�"��#� �

�� ��
���

�� ��
���

� ��� ���#� � #��
�

The value of �"��#� does not change a constant amount is
added to each of the components # �. Hence, the minimisation
problem must be subject to constraints on the components of
the vector �#. The constraints are that

�� ��
���

#�� � � and
�� ��
���

#� � � (5)

Atkins, Bowman and Atkinson show that the solution to
this relaxed problem may be obtained from the Laplacian
matrix. Let $ be the diagonal matrix with elements $��� �� ���� �

���� ��� �� equal to the total weight of the edges connected
to the node �. The Laplacian matrix is � � $ � %. If
�� � ��� �� ����� ��� is the all-ones vector, then the solution
to the minimisation problem is the vector

�# � ��� ��


��
�
�
����
��

�

����

�#�� ��#�

� ��� ��


��
�
�
����
��

�

����

�
���

� ��� ���#�� � #�� �
� (6)

When � is positive definite, then the solution is the Fiedler
vector, i.e. the vector associated with the smallest non-zero
eigenvalue of �. In fact, the associated eigenvalue minimises
the Rayleigh quotient

& � �����

��

�#�� ��#�
�#�� �#�

This eigenvalue satisfies the condition

�� ��
���

�
���

� ��� ���#� � #��
� � &

�� ��
���

#��

Unfortunately, the procedure described above does not meet
our requirements for three reasons. First, the penalty function
�"��#�, does not impose edge connectivity constraints on the
ordering computed during the minimisation process. Second,
it implies no directionality in the transition between the nodes.
Third, with our choice of weight function, minimisation of the
penalty will not result in a path that minimises the curvature.
To overcome these shortcomings, we turn our attention instead
to maximising the cost function

�"���#� �

�� ����
���

�� ��
���

�� ��� �� �� ��� �� ���#�� (7)

When we combine the modified cost function with the con-
straints, we have that

�� ����
���

�� ��
���

�� ��� ���� ����� ���#�� � &

�� ����
���

�#���#
�
���� (8)

By introducing the matrix

� �

�
							


� � � � � � � �
� � � � � � � �
� � � � � � � �
...

...
. . .

. . .
. . .

...
� � � � � � � �
� � � � � � � �

�
�������


(9)

we can make the path connectivity requirement more explicit,
and the maximiser of "���#� satisfies the condition

& � ������
��

�#�� ���#�
�#�� ��#�

(10)
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Fig. 5. Surface reconstruction for noisy data: Initial images (top row); needle-maps (second row); reconstructed surfaces (third row); absolute difference
between ground truth and reconstructed surfaces (bottom row).

As a result, the leading eigenvalue &� of the weight matrix
� is the maximiser of the cost function �"���#�. From the
Perron-Frobenius theorem [30], it is known that, maximiser
of this utility function is the leading (left) eigenvector of the
matrix � . Moreover, since � is a real positive definite
symmetric matrix, the associated eigenvector �� is unique.
The Perron-Frobenius theorem ensures that the maximum
eigenvalue &� ! � of � has multiplicity one and, moreover,
the coefficients of the corresponding eigenvector �� are all
positive. As a result the remaining eigenvectors of � have at
least one negative co-efficient and one positive co-efficient.
If � is substochastic, �� is also known to be linearly
independent of the all-ones vector �.

The elements of the leading eigenvector �� of � can be

used to construct an integration path. With our choice of the
weight matrix, the components of �� decrease with increasing
curvature of the seriation path. We commence from the node
associated with the largest component of ��. We then sort
the elements of the leading eigenvector such that they are
both in decreasing magnitude order, and satisfy neighbourhood
connectivity constraints on the pixel lattice. The procedure is
a recursive one that proceeds as follows. At each iteration,
we maintain a list of sites visited. At iteration � let the list
of sites be denoted by 
�. Initially, 
� � �� where �� �
������� �����, i.e. �� is the component of �� with the largest
magnitude. Next, we search through the set of 8-neighbours
of �� to find the pixel associated with the largest remaining
component of ��. If 	�� is the set of 8-neighbours of ��,
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Fig. 6. Results on noisy image data for the algorithm of Bichsel and Pentland: reconstructed surfaces (top row); absolute difference between ground truth
and reconstructed surfaces (bottom row).

the second element in the list is �� � �����������
�����.

The pixel index �� is appended to the list of sites visited and
the result is 
�. In the �th (general) step of the algorithm
we are at the pixel site indexed �� and the list of sites
visited by the path so far is 
�. We search through those
8-neighbours of �� that have not already been traversed by
the path. The set of pixel sites is '� � 
��� � 	�� � � (� 
��.
The next site to be appended to the path list is therefore
���� � ����������

�����. This process is repeated until no
further moves can be made. This occurs when '� � � and
we denote the index of the termination of the path by � . The
integration path � is given by the list of pixel sites 
� .

To conclude this section, we return to the cost function
underpinning the recovery of the integration path, to make
the role of the optimisation process more explicit. When
positioned at the site �, the next pixel visited satisfies the
condition ���� � ����������

�����. Since �� is the leading
eigenvector of � it satisfies the equation ��� � &���, As a
result

���� � ������
����

�
����

� ���)����)�

Substituting for the definition of the weight in terms of the
surface normals from using Equations (4) and (5),

���� � ������
����

�
����

�
���

�
������ ���� ����

��
���)�

When the angle between the surface normals is small, then we
can write

���� � ������
����

�
����

�
�� ����� ���� ����

�
���)�

Hence, the path minimises the change in surface normal
direction, and hence curvature, on the image plane �.

V. EXTRACTING PATCHES

In practice the surface under study may have a patch
structure. The patches may be identified by finding the blocks
of the weight matrix induced under a permutation of the nodes.
We find the blocks by computing the leading eigenvector of
the weight matrix. The algorithm proceeds in an iterative
fashion. The leading eigenvector of the current weight matrix
represents a patch. The nodes with non-zero components in
the leading eigenvector belong to the patch. The nodes are
identified, and are then removed from further consideration
by nulling their associated elements in the weight matrix.
This process is repeated until all the principal patches are
identified. This is the case when only an insignificant number
of unassigned and unconnected nodes remain.

We commence by constructing the thresholded weight ma-
trix � whose elements are defined as follows

�� ��� �� �

�
� if � ��� ��   �
� ��� �� otherwise

(11)

The matrix �� is simply a thresholded version of the weight
matrix � in which the vanishingly small elements are set to
zero.

Our aim is identify groups of surface normals from a
potentially noisy or ambiguous adjacency matrix �� which
correspond to surface patches. Stated formally, suppose that
in an image with an adjacency matrix �� there are ) disjoint
patches. Each such group should appear as a sub-block of the
matrix �� . However, as a consequence of noise or errors in the
shape-from-shading method which delivers the field of surface
normals, these distinct groups or patches may be merged
together. In other words, their corresponding sub-blocks are
no longer disjoint.

Suppose that there are ) distinct surface patches, each
associated with an adjacency matrix * ��� where � is the patch
index. If ' represents a noise matrix, then the relationship
between the observed weight matrix �� and the underlying
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Fig. 7. Plot of the error percentage as a function of the variance for the four synthetic basic shapes.

block-structured weight matrix is �� � * � ' where * �
�*��� , � is a permutation matrix and

*� �

�
�����
*��� � � � � �

� *��� . . .
...

...
. . .

. . . �

� � � � � *���

�
����� (12)

is a block diagonal matrix in which * ��� is the sub-block
corresponding to the patch indexed �.

To recover the matrix *, we turn to the eigenvector expan-
sion of the matrix �� and write

�� � &����
�
� �

�� ��
���

&�����
�
� (13)

To identify the patches, we use the following iterative
procedure. We initialise the algorithm by letting �� ��� � �� .
Further suppose that &���� is the leading eigenvalue and �����

is the corresponding leading eigenvector of �� ���. The matrix
*��� � &

���
� �

���
� �

����
� represents the first block of �� , i.e.

the most significant surface patch. The nodes with non-zero
entries belong to the patch. These nodes may be identified and
removed from further consideration. To do this we compute
the residual weight matrix �� ��� � �� ��� �*��� in which the
elements of the first patch are nulled. The leading eigenvector
�
���
� of the residual weight matrix �� ��� is used to compute the

second block *��� � &
���
� �

���
� �

����
� . The process is repeated

iteratively to identify all of the principal blocks of �� . At iter-
ation +, ����� is the leading eigenvector of the residual weight
matrix �� ���, and the +�� block is *��� � &

���
� �

���
� �

����
� . The

patch indexed � is the set of nodes for which the components
of the leading eigenvector ����� are non-zero. Hence, the index-
set for the +�� patch is �� � 
������� ��� �� ��. It is important
to stress that the patches are non-overlapping, i.e. the inner
product of the block eigenvectors for different patches is zero
�
���
� ��

���
� � �, where + �� �.

The process of patch extraction is iterated until the associ-
ated regions are of insignificant size. In practice, this is the

case when the number of pixels associated with a path is less
than 5.

VI. HEIGHT RECOVERY

Our surface height recovery algorithm proceeds along the
sequence of pixel sites defined by the order of the coefficients
of the scaled leading eigenvector associated with the separate
patches. For the +�� patch, the path is �� � ���� � �

�
� � �

�
� � �����

where the order is established using the method outlined in
Section 4. As we move from pixel-site to pixel-site defined
by this path we increment the surface height-function. In this
section, we describe the trigonometry of the height incremen-
tation process.

At step � of the algorithm, we make a transition from the
pixel with path-index ����� to the pixel with path-index � ��.
The distance between the pixel-centres associated with this
transition is

��� �
�
�#�

�
�
�
� #��

���
�� � �,��� � ,������

� (14)

This distance, together with the surface normals
���

�
�

� ���
�
�
�#�� ��

�
�
�,�� ��

�
�
�-��� and ���

�

���
�

���
�

���
�#�� ��

�

���
�,�� ��

�

���
�-��� at the two pixel-sites may

be used to compute the change in surface height associated
with the transition. Assuming that the two pixel sites are
connected by a plane, whose normal is ���

�
�

, we can write
��

�
�
�#��# � #���� ���

�
�
�,��, � ,���� ���

�
�
�-��- � -���� � �.

As a result, the height increment is given by

.�� �
/��
�

�
�#��

���
� #����

�
��

�

���
�#�

��
�

���
�-�

�
��

�
�
�#�

��
�
�
�-�

�
�

�,��
���

� ,����

�
��

�

���
�,�

��
�

���
�-�

�
��

�
�
�,�

��
�
�
�-�

�� (15)

If the height-function is initialised by setting -��� � �, then
the centre-height for the pixel with path-index � ���� is

-��
���

� -��� � .�� (16)
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Once the surface normals that belong to the individual
patches have been integrated together, then we merge them
together to form a global surface. Suppose that �� is the
integrated surface for the +�� patch. We compute the mean
height for the pixels belonging to the boundary for this patch.
We merge the patches together by ensuring that abutting
patches have the same mean boundary height. The geometry
of this procedure is illustrated in Figure 1.

VII. REGION QUADRIC PATCH FITTING AND SURFACE

NORMAL UPDATING

Once the height values are available for each pixel site in
a patch, then we perform smoothing. We do this by fitting a
local bi-quadric function to the height data for the patch sites.
To do this we employ a simple least-squares fitting method.

Suppose that the pixels belonging to the patch indexed +
are denoted by the set ��. We aim to fit the bi-quadric

���#�� ,�� � 0��� � 0���#� 0���,��

0	��#
�
� � 0
��#�,� � 0���,

�
�

(17)

to the height data for the sites in the patch. Let 1 � �
��� #�� ,�� #

�
� � #�,�� ,

�
� �
� be a vector of co-ordinate moments

and let �� � �0���� ������ 0����
� be a vector of parameters. The

least-squares parameter vector for the quadric patch satisfies
the condition

� �
� � �����


��

�
����

�
-� � �

�
� 1�

��
(18)

In matrix form the solution vector is given by � �
� �

�2 �
� 2��

��2 �
� where 2� �

�
����

-�1�1
�
� .

The surface fitting process can be viewed as one of smooth-
ing over the extent of the patches defined by the leading
eigenvectors of the weight matrix. As well as smoothing the
local height estimates, the process also implicitly smooths the
surface normal directions, since these can be computed from
the gradient of the fitted local quadric patch. The estimate of
the unit surface normal at the point �#�� ,�� on the patch + is

��� �
�

��

�
3���#�� ,��

3#�
�
3���#�� ,��

3,�
� �

��
�

�

��

�
0����

�0	��#� � 0
��,�� 0��� � 0
��#� � �0���,�� �

�� (19)

where �� �

��
� � �

��
���
� �������
���

��

�

�
��

���
� �������
���

��

.

It is interesting to note that since

3����#�� ,��

3#�3,�
�
3����#�� ,��

3,�3#�
� 0
�� (20)

the field of smoothed surface normals satisfy the integrability
constraint.

To update the surface normal direction so that they satisfy
the image radiance equation, we rotate them using the matrix

 as described in Section 2. The updated surface normals are
no longer guaranteed to satisfy the integrability constraint, but
fall on the closest location on the appropriate radiance cone.

��� ��� ���
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Fig. 8. Results of the algorithm on the image of Michelangelo’s Moses.

VIII. ALGORITHM DESCRIPTION

Having described the different steps of the surface re-
construction process, in this section we summarise how the
steps are combined together in an algorithm. The sequence of
processing steps is as follows:

� Step 0: An estimate of the light source direction is made
either from the known geometry of the imaging setup or
from the statistics of the image gradient [9]. The surface
normals are placed in their initial positions on the irra-
diance cones. To do this we align them in the directions
of the image gradient. The gradient is computed by first
smoothing the grey-scale image by fitting local quadric
patches to the raw image intensity. The smoothed image
gradient is found from the derivatives of the fitted patch.

� Step 1: From the initial field of surface normals, we
compute the sectional curvatures and hence the weight
matrix. The blocks of the matrix are surface patches. The
leading eigenvector of the weight matrix for each block
is the patch integration path. Using the patch integration
paths, we recover estimates of the surface height.

� Step 2: For the sites in each patch, we fit a quadric
patch to the available height estimates. The fitted surface
patches are used to compute an estimate of the surface
gradient. At each location, the gradient estimate is used
to adjust the position of the surface normals on their
respective irradiance cones.

� Iteration: Steps 1 and 2 are iterated until a stable set of
surface height estimates are located.
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IX. EXPERIMENTS

Our experiments with the new graph-spectral method for
shape-from-shading are divided into two parts. We commence
with a study based on synthetic data which is aimed at
establishing the noise sensitivity and failure modes of the
method. In the second part of the study we focus on the
behaviour of the method when confronted with real world data.
Here we study images of classical statues.

A. Synthetic Data

In this section we provide some experiments on synthetic
data. We commence by turning our attention to the stability
of the recovered surface under varying light source direction.
To this end, we have generated a set of 6 synthetic images
of a Lambertian teapot illuminated with a single light source
positioned in the direction �
� � ���
����� �� ��������

� . For
our experiments, we have varied the angular variable � � in
increments of �� between ���� and ��.

In the top row of Figure 2, we show the images in our
dataset. Here, we have ordered the images, from left-to-right,
in decreasing ��. In the remaining rows, we show two views of
the recovered surfaces for each of the input images. The views
corresponding to different illuminant directions are in good
agreement with one another. This is an important observation
since it indicates that the surface is stable to variations in
the light source direction. Furthermore, despite some errors
across the surface boundaries, the shape of the teapot is well
recovered.

Next, we determine the accuracy of the surface recon-
struction method. To this end we have generated synthetic
surface height data. From the surfaces, we have computed the
field of surface normal directions. A light source direction is
then selected and the surfaces have been rendered using the
Lambertian reflectance process outlined in Section 2. We have
then applied the graph-spectral shape-from-shading method
to the resulting synthetic images. We compare the resulting
height estimates with the height data for the original surfaces.
We also provide a comparative study using the shape-from-
shading height recovery method of Bichsel and Pentland [18]
as an alternative to our graph-spectral shape-from-shading
algorithm. We have chosen the algorithm of Bichsel and
Pentland since, from Zhang et al [7], appears to deliver
reasonable results on a wide variety of images. Moreover,
this shape-from-shading algorithm is local a technique that
implicitly recovers the surface.

In Figure 3 we show the results obtained for a series of
different surfaces. In the first, second and third rows we show
the Lambertian shading, height data and surface normals for
the synthetic surfaces. In the fourth row of the figure we show
the surface reconstructed by applying our shape-from-shading
method to the images in the top row. The bottom row of the
figure shows the absolute error between the ground-truth and
reconstructed surface height. From left-to-right the surfaces
studied are a dome, a sharp ridge, a torus and a volcano.
In all four cases the surface reconstructions are qualitatively
good. For the dome the height errors are greater at the edges
of the surface where the slope is largest. In the case of the

ridge, there are errors at the crest. For the volcano, there
are some problems with the recovery of the correct depth
of the “caldera”, i.e. the depression in the centre. For the
reconstructed surfaces, the mean-squared errors are 5.6% for
the dome, 10.8% for the ridge, 7.8% for the torus and 4.7%
for the volcano. Hence, the method seems to have greater
difficulty for surfaces containing sharp creases.

Next, we compare our results with those for the shape-from-
shading height recovery method of Bichsel and Pentland [18].
In the top row of Figure 4, we show the recovered surface
height while the bottom row shows and the absolute error
between the ground-truth and the reconstructed surface height.
We do not show the needlemaps due to the fact that the Bichsel
and Pentland’s algorithm does not deliver a field of surface
normals at output. From the plots, it is clear that our algorithm
out-performs the one of Bichsel and Pentland. Furthermore, in
contrast with our results, the mean-squared error is 6.1% for
the dome, 11.9% for the ridge, 10.2% for the torus and 26.8%
for the volcano.

We have repeated these experiments under conditions of
controlled noise. To do this we have added random measure-
ment errors to the raw image brightness. The measurement
errors have been sampled from a Gaussian distribution with
zero mean and known variance. In Figure 5 we show the
result of reconstructing the surfaces shown in Figure 2, when
brightness errors have been added. The order of the rows is
the same as Figure 3. The results for the shape-from-shading
height recovery method of Bichsel and Pentland are shown in
Figure 6. The row-order is the same as in Figure 4.

From Figure 5, it is clear that, for all four surfaces, our
algorithm preserves the gross structure of the surfaces under
study. However, the recovered height is clearly noisy. The
height difference plots are relatively unstructured. These are
important observations. They mean that our graph-spectral
method simply transfers errors in surface normal direction into
errors in height, without producing structural noise artifacts. In
contrast, the surfaces recovered by the Bichsel and Pentland’s
algorithm are poorer for all the shapes except the ridge.
Furthermore, the algorithm of Bichsel and Pentland recovers
broken, uneven surfaces due to convex-concavity surface in-
version errors introduced by the noise added to the image
brightness.

To investigate the effect of noise further, in Figure 7 we
plot the mean-squared error for our graph-spectral shape-from-
shading algorithm and the height recovery method of Bichsel
and Pentland. Here, we show the mean-squared error for the
reconstructed surface height as a function of the standard
deviation of the added Gaussian noise. The different curves
are for the different surfaces shown in Figures 3 and 4. From
the plots for the different surfaces shown in Figure 7, it is clear
that, for our algorithm, the mean-squared error grows slowly
with increasing noise standard deviation. The torus and the
volcano give the poorest errors, while the ridge and the dome
give the smallest errors. This is a reflection of the fact that
the torus and the volcano are the more structured surfaces.
There are two features to note from this plot. First, with the
exception of the dome, for each of the shapes the error is
larger than in the case of our graph-spectral method. Second,
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Fig. 9. Results of the algorithm on the image of the Three Graces Relief
fragment.

the rate of increase in error with noise standard deviation is
greater compared to the graph-spectral case.

B. Real World Data

We have experimented with a variety of real world images,
but in this paper we concentrate mainly on images of classical
statues. These objects are predominantly Lambertian, although
there are local specular highlights and local albedo variations.
In principle we can overcome both of these problems. In a
recent paper, we have described a probabilistic method for
specularity removal which uses the Torrance and Sparrow
model to perform Lambertian reflectance correction for shiny
objects [31]. Local albedo changes can be accommodated
using brightness normalisation or histogram equalisation. The
objects studied are a detail of Michaelangelo’s Moses and a
section of the relief “Three Graces”. We have also used an
image of a bust of Beethoven from the University of Central
Florida shape-from-shading data-base [7].

In Figure 8 we show our first sequence of results. The panels
of the figure are organised as follows. In Figure 8a we show
the original image used as input to the shape-from-shading
process. This is a side view of the head of the statue “Moses”.
Figures 8b and c show the arrangements of quadric patches
after one and four iterations of the algorithm. In these images,
the different quadric patches are coded in different colours.
Figures 8 d and e show the initial and final needle maps used
for the purposes of surface integration. Figures 8f and g show
the initial and final reconstructed surfaces. Finally, Figures 8h
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Fig. 10. Results of the algorithm on the image of the Beethoven bust.

and 8i show views of the reconstructed surface from different
viewpoints. Initially, the set of surface patches is fragmented,
lack coherence and do not reproduce the surface detail well.
However, after four iterations the reconstructed surface is more
continuous and the fine detail of the object is well reproduced.
There are a number of features that are worth noting from
the panels of the figure. First, the organisation of the surface
normals and the arrangement of patches both improve as the
algorithm iterates. Second, from the different surface views it
is clear that the surface structure is well reconstructed. For
instance the shape of the nose, particularly in the proximity of
the nostrils, is well reproduced. Moreover, the fine structure
of the beard, the detail in the eye-sockets and the shape of the
cheek bones are all well reconstructed.

In Figure 9, we repeat the sequence of panels for a section
of the relief “The Three Graces”. However, only two of the
subjects of the original sculpture are visible in the section of
image used. The same iterative improvement in the quality
of the surface normals and the patch arrangement is clear. In
this case the algorithm converged after 3 iterations. Moreover,
the detail of the relief is well reproduced. The legs, buttocks
and indentation in the back of the left-hand figure are all well
reconstructed.

Figures 10 shows analogous results for an image of a bust
of Beethoven. Here the path structure is particularly clear and
corresponds well to the topographic structure of the surface.
For instance, the eye sockets correspond to distinct patches.
Both the patch structure and the structure of the needle maps
are improved as the algorithm iterates. Initially, little of the
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surface structure is evident. However, after the algorithm has
converged the structure of the hair and the boundary of the
cheeks have become well defined.

Finally, we have compared our algorithm with two alter-
natives. The first of these is the shape-from-shading height
recovery method of Bichsel and Pentland [18]. The second
method used in our comparison is a purely geometric surface
integration method, which like the technique reported in this
paper takes the needle-maps delivered by the Worthington and
Hancock algorithm as input. This method uses the trapezoid
rule to increment the height from equal height reference
contours. The method was developed in conjunction with a
study of terrain reconstruction using radar shape-from-shading
and a full description can be found in [32]. The results for
these two alternatives are shown in Figures IX-B and IX-B.

For the Bichsel and Pentland method, the overall quality of
surface detail is poorer, and the method is unstable in shadows.
For instance, in the case of the Moses only the chin and mouth
appear to be well reconstructed. The height of the cheek is
overestimated, and convex parts of the surface have become
concave. There are similar problems with convexity-concavity
inversion for the Three Graces. The results obtained by the
geometric surface integration method are better than those
obtained by Bichsel and Pentland and do not suffer so badly
from the problems of surface inversion. Although the detail
is better than that obtained using the Bichsel and Pentland
method, the results delivered by the geometric integration
method do not contain the fine detail delivered by our graph
spectral method. For instance, the hair and fabric details of
Beethoven are not well reproduced and the structures of the
beard of Moses is not well recovered.

X. CONCLUSIONS

In this paper, we have described a graph-spectral algorithm
for shape-from-shading. We constrain the surface normals at
each image location to fall on an irradiance cone whose

Fig. 11. Results for the Bichsel and Pentland’s algorithm.

Fig. 12. Results for the geometric surface integration algorithm.

axis is the light source direction and whose apex angle is
determined by the measured image brightness. The method
uses the eigenvectors of a weight matrix to both locate surface
patches and identify a curvature minimising path for surface
integration, and hence height recovery. By fitting quadric
surfaces to the height data for pixel sites contained within
patches, we perform surface smoothing. We update the surface
normal directions by rotating them so that they point in the
direction of the fitted surface gradient. The surface integration
and surface normal adjustment steps are iterated until stable
height estimates are recovered. The method proves effective
for reconstructing surfaces from single views of 3D objects,
and gives subjectively better results than a number of alterna-
tive shape-from-shading methods.

There are a number of ways in which the reported method
can be further extended and improved. First, we aim to
incorporate constraints provided by the permitted differen-
tial structure of the field of principal curvature directions.
Second, we are extending the Lambertian reflectance model
to accommodate effects such as local specularity, coherent
limb brightening and rough surface scattering. Third, we are
investigating whether the iterative process developed in the
paper can be posed as statistical estimation using the apparatus
of the EM algorithm. This would provide a more principled
basis for the interleaved iterative steps for height recovery and
surface normal adjustment. Work aimed at addressing these
points is underway and will be reported in due course.
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