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Abstract

Multiple-instance Learning (MIL) is a new paradigm
of supervised learning that deals with the classification of
bags. Each bag is presented as a collection of instances
from which features are extracted. In MIL, we have usu-
ally confronted with a large instance space for even mod-
erately sized data sets since each bag may contain many
instances. Hence it is important to design efficient instance
pruning and selection techniques to speed up the learning
process without compromising on the performance. In this
paper, we address the issue of instance selection in multiple
instance learning and propose the IS-MIL, an Instance Se-
lection framework for MIL, to tackle large-scale MIL prob-
lems. IS-MIL is based on an alternative optimisation frame-
work by iteratively repeating the steps of instance selec-
tion/updating and classifier learning, which is guaranteed
to converge. Experimental results demonstrate the utility
and efficiency of the proposed approach compared to the
alternatives.

1. Introduction
Multiple-instance learning (MIL) [9] is a new paradigm

in machine learning that addresses the classification of bags.
In MIL, each bag is a collection of instances with features
associated to the instances. The aim of MIL is to infer bag
level labels based on the assumption that a positive bag con-
tains at least one positive instance, whereas a negative bag
contains negative instances only. MIL has a lot of poten-
tial in many applications in computer vision and pattern
recognition. For instance, in content based image retrieval
(CBIR), each image contains many regions, but only a sub-
set of them are of interest. Here an image is a bag and the
image regions are instances so that the CBIR problem can
be cast in a MIL setting.
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Due to false positives in positive bags, traditional super-
vised classification approaches may not apply to MIL and
alternative algorithms are needed to cope with the new sce-
nario. Previous methods for solving the MIL problem can
be divided into two major categories. The first category is
conformed by algorithms based on generative models such
as axis parallel hyper-rectangles [9], Diverse Density (DD)
[15], DD with Expectation Maximisation (EM-DD) [18].
The second category is comprised of discriminative learn-
ing based algorithms such as mil/MIL Support Vector Ma-
chines (SVM) [2], DD-SVM [6] and MILES [5].

One problem that hinders the wide application of MIL
is the trade-off between efficiency and performance. Gen-
erative methods like DD and EM-DD are quite efficient in
learning, but they are based on a strong assumption that all
true positive instances form a compact cluster in the fea-
ture space. This is, however, not necessarily the case in real
applications, as the distributions of positive instances can
be arbitrary and most likely multi-modal. Hence, learning
a single target distribution to represent positive instances
is inadequate in capturing their distributions. Moreover,
the optimisation of DD and EM-DD comes with no op-
timality guarantee. On the other hand, large margin dis-
criminative methods are much more robust and achieve an
improved performance, especially DD-SVM and MILES.
DD-SVM overcomes the limitation of DD-based genera-
tive approaches by learning multiple target distributions for
positive instances given by the local extrema of the EM-
DD cost function. However, the local extrema are obtained
by applying EM-DD optimisation to all training instances,
which is very time-consuming for large data sets. MILES,
in contrast, does not apply instance selection and use all in-
stances in the training set to construct the feature map. This
gives rise to a very high-dimensional bag-level feature vec-
tor, whose dimensionality is given by the total number of
instances. Feature selection is implicitly done by training a
one-norm SVM that produces a sparse feature map.

Despite effective, MILES does not scale-up to large data
sets due to its high-dimensional feature space, which results
in high complexity for both, the feature computation and the
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SVM optimization. To achieve comparable performance to
MILES with much less complexity, explicit instance prun-
ing and selection is necessary. That is, we require a prin-
cipled way to reduce complexity devoid of clustering or
quantisation procedures. This is an important observation
since clustering and quantisation do not exploit discrimina-
tive information in the instances and may introduce addi-
tional noise in the process or information loss. Moreover,
it is also important that instance selection, as a preprocess-
ing step, should be done efficiently. However, the current
DD-based instance extraction methodologies involve solv-
ing an unconstrained optimisation problem for each possi-
ble evaluation of the target concept. This is impractical for
large-scale data sets.

2. Preliminaries and Algorithm Overview

In this paper, we propose a principled MIL approach for
adaptive instance selection and feature learning called IS-
MIL (Instance Selection for MIL). The proposed algorithm
has three advantages. Firstly and most importantly, it com-
bines instance selection and classifier learning into a unified
alternative optimisation framework with convergence guar-
antee. Secondly, we propose a method for initial instance
selection based on modelling the distributions of negative
instances efficiently. Note that although the idea of mod-
elling negative examples has found application in image
detection [13], it is based on the supervised learning set-
ting and novel in the context of MIL. Thirdly, due to the
reduced complexity of the algorithm for the data sets un-
der study, the resulting classifier yields comparable results
to those yielded by competing SVM-based MIL alternatives
while being much more efficient in training.

To describe the IS-MIL algorithm, we need
to introduce some notation. Denote Btr =
{B+

1 , . . . , B+
m+ , B−

1 , . . . , B−
m−} as the set of bags for

training, where B
+(−)
i denotes the ith bag from the

positive(negative) class and m+(−) denotes the number
of positive(negative) bags. From now on, for the sake of
simplicity, we will omit the +/− sign when there is no
need for disambiguation.

A bag Bi contains ni instances denoted by xi,j for
j = 1, . . . , ni. Without disambiguation, xi,j also de-
notes the feature vector for the instance depending on the
context. Different bags can have different number of in-
stances, hence ni may vary for different i’s. To each in-
stance xi,j also corresponds a label which is not directly
observable. Two assumptions are made about instance-level
labels. First, all instances in each negative bag are negative.
On the other hand, at least one instance in each positive bag
is positive. The purpose is, therefore, to predict the label
value for the novel testing data B = {x1, . . . ,xl}.

With the above ingredients, we can now describe our

4 ECCV-08 submission ID 8888

SVM Model

f(z) =
∑

i wiK(zi, z) + b

!

!

!

"

In
stan

ce
U

p
d
atin

g
(t=

t+
1)

Instance Pruning (t=0)

Feature Mapping

Classifier Training

zi = (s(Bi, x
∗(t)
1 ), . . . , s(Bi, x

∗(t)
m+))

Bag Features

Training Data

Instance Prototypes

x∗(t)i ∈ B+
i , i = 1, . . . ,m+

{B+
1 , . . . , B+

m+ , B−
1 , . . . , B−

m−}

Classification

Testing Data B

!

!

Feature Mapping

zi = (s(B, x∗(t)1 ), . . . , s(B, x∗(t)m ))

∑
i wiK(zi, z) + b→ f(z)

Bag Feature

Classifier Output

Fig. 1. Framework of the proposed algorithm. Left Column: Training Phase; Right
Column: Testing Phase
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Figure 1. Framework of the proposed IS-MIL algorithm. Left Col-
umn: Training Phase; Right Column: Testing Phase

framework for MIL. We focus on the binary case here, as
any multiclass problem can be converted to several binary
problems using the one-against-others strategy.The basic
framework of IS-MIL is illustrated in Figure 1, where each
block represents an object to operate on. Each arrow indi-
cates an operation defined on the objects. In the training
phase, we first perform instance pruning to the training in-
stances. This is achieved by modeling the distributions of
negative instances and picking the least negative instance
from each positive bag. After doing this, we obtain a set
of instance prototypes (IP) representing the true positive in-
stances in positive bags, which we denote x

∗(t)
i . Each of

these is chosen from the corresponding positive bag. We
then construct a bag-level feature map using bag-to-instance
similarities between the training bags and the selected IPs.
In the figure, s(Bi, x

∗(t)
j ) represents the similarity between

bag i and the jth IP. Then, a standard linear SVM classifier
is trained on the bag features and, based on the classifica-
tion results on the training data, we update and reselect the
instance prototypes. This step-sequence is interleaved until
convergence. The above process is reminiscent of EM-like
methods and guaranteed to converge.

In the testing phase, we commence by extracting the fea-
ture vector for the testing bag using the feature mapping
defined over the IPs obtained in the training phase. The
trained SVM classifier is then applied so as to obtain the
classification result.

3. Instance Selection and Feature Learning

3.1. An Alternative Optimisation Framework

In this section, we discuss the details of IS-MIL for joint
instance selection and learning. We cast it in an optimisa-



tion setting with the following cost function

min
w,φ

1
2
||w||2 + C

N∑
i=1

L(zi(φ), yi;w) (1)

L(zi, yi;w) = max(0, 1− yiwT zi) (2)
zi(φ) = [s(Bi,x1,φ1), . . . , s(Bi,xm+,φm+ )](3)

where φ = {φi ∈ {1, . . . , ni}|i = 1, . . . ,m+} is the set
of indices of the IPs selected. Here, zi(φ) is the bag-level
feature vector for the ith bag to which the classifier is ap-
plied. We choose a single IP from each positive bag. The
reason for doing so will become clear shortly. We adopt a
similarity based feature representation scheme here which
represents each zi(φ) based on the similarity between the
bag and all IPs. The cost function in the above equation
is that of the linear SVM in the primal formulation, where
L(zi(φ), yi;w) is the hinge loss function used by the SVM
classifier. Since it is usually more convenient to deal with
the dual SVM formulation, we convert the above primal
form into the following dual form,

min
α,φ

f(α, φ) =
1
2

∑
i,j

αiyizi(φ)T zj(φ)αjyj −
∑

i

αi

s.t.
∑

i

αi = 1 and αi ≥ 0 (4)

where the αi’s are the Lagrangian multipliers corresponding
to the constraints in Equation 1 that arise from relaxing the
hinge loss term 2, zj(φ) is the feature mapping given by
Equation 3. The classifier weight w is then given by the
KKT condition w =

∑
αi>0 αiyizi(φ).

There are two sub-problems mixed in the optimisation
problem in Equation 4, one over continuous variables α
equivalent to the learning of classifier weights w, and the
other over discrete variables φ equivalent to the selection of
instances. This is a difficult optimisation problem overall.
We tackle it via alternative optimisation over the two sets of
variables. This leads to three main components of IS-MIL -
initial instance pruning that corresponds to the initialisation
of φi’s, classifier training that corresponds to minimising
over α by fixing φ, and instance update that corresponds to
minimising over φ while fixing α.

3.2. Initial Instance Pruning

The key challenge for MIL is how to distinguish be-
tween true positive and false positive instances in the pos-
itive bags. Simple aggregation rules, as used in MILSVM
and MI kernel by averaging all instances in the training bag
bias towards negative instances and may potentially lose
discriminatory power, especially for sparse positive bags
where the majority of the instances in the bag are negative.
Also, the true positives may not form a Gaussian distribu-
tion. Therefore MIL based on a single IP selected such as

DD and EM-DD may also fail to model the distributions of
true positives.

The trade-off would be to use a single IP or target from
each positive bag. This includes all potential true positive
instances in the set of IPs, because by the assumption of
MIL, there exists at least one positive instance in positive
bags and negative bags do not contain positive instances.
We do the pruning by directly modelling the distribution
of instances in negative bags, which are supposed to be all
negative, and keeping the single “least negative” instance in
each positive bag. The notion of least negative is recipro-
cal to most positive and measured by the likelihood of the
instance being negative based on the distributions of nega-
tive instances. The set of IPs is formed by those selected
instances in positive bags.

Since negative instances can have very general distri-
butions, we use the following Kernel Density Estimator
(KDE) [10] to model the distributions of negative instances
in the negative bags.

p(x|B−) =
1∑
i n−i

∑
i,j

K(||x− x−i,j ||) (5)

where x−i,j denotes the jth instance from the ith negative
bag. Here, we employ an isotropic Gaussian kernel K and
set the band-width parameter σ2 to the empirical variance
of the training data. Notice the above equation defines a
normalized probability density function (PDF) for the neg-
ative population. The initial value of φi, the index of the IP
selected for the ith bag, is then given by

φi = arg min
i=1,...,ni

p(xi,j |B−) (6)

The major advantage in modeling the negative popula-
tion in this manner resides in the fact that, due to its large
quantity, negative instances usually dominate the joint PDF
in MIL settings. Their distributions can then be modeled
more reliably than true positives making use of KDE. For
computational concerns, we have used a fast implementa-
tion of KDE based on the improved fast Gauss transform
[17], which has been shown to have linear time complexity
with respect to the size of data sets being modeled. The total
number of IPs obtained by the initial pruning step is equal
to the number of positive bags. This compares quite favor-
ably with the number of prototypes used in MILES, which is
given by the number of all training instances. This results in
a much lower-dimensional feature space without much loss
of discriminatory power, as each positive bag is represented
by a corresponding IP. It is also noteworthy that our prun-
ing method selects IPs directly from the training instances.
DD-based methods, in contrast, extract novel instances that
are not in the training set and are better characterised as in-
stance extraction approaches. Compared to instance extrac-
tion approaches, instance selection is much more efficient



as it does not involve solving any optimisation problem and
a larger set of IPs are usually obtained with potentially im-
proved discriminative power. Moreover, since our instance
pruning method is governed by PDFs, it is more robust to
noise corruption and the existence of outliers in the data set.

3.3. Classification

After obtaining the initial set of IPs whose indices are
given by φi’s, we can form the bag-level feature for each
training bag according to Equation 3. The jth feature ele-
ment for the ith training example is given by the similarity
between bag i and the jth IP as defined below

s(Bi,xj,φj
) = max

k=1,...,ni

exp
(
−γd(xi,k,xj,φj )

)
(7)

where d(x,y) is the distance between two instances, γ is
the band-width parameter. The choice of distance measure
is application dependent and the Euclidean distance is used
by default. The above defined similarity measure compares
the jth IP with the most similar instance in bag i or the
closest instance in the bag in the sense of distance. This is
a special case of the Hausdorff distance defined over two
collection of sets, where the second set is a singleton here.
The idea is that the closest instance in each bag to an IP car-
ries the maximum amount of category information, which
is consistent with the assumption of MIL. This similarity
based formulation allows for more flexibility and robust-
ness in feature mapping. Even if the closeness assumption
breaks down for certain prototypes, as long as it is true for
the majority of the prototypes, this feature mapping is still
informative and quite tolerant to possible inaccuracies in-
troduced in the initial pruning stage. This is somewhat ex-
pected since the formulation above is related to majority
voting formulations.

For classification, we apply the standard linear SVM in
Equation 4 to the current feature vectors zi’s and obtain the
classifier weights αi’s which is used later for instance up-
date. Note that the use of linear SVM is sufficient here for
discrimination purpose, since the feature computation de-
fined in Equation 7 is inherently nonlinear. In the single
instance setting, our framework is equivalent to that of a
nonlinear SVM with Gaussian kernel. One disadvantage
with L2 norm is that it delivers less sparse feature weights
as compared to one-norm SVM used in [5] and hence not
suitable for feature selection. This might lead to inferior
results for very high dimensional features. However, since
we already reduce the feature dimension by pruning the in-
stances before training the classifier, it is justified to use L2

SVMs, which can be trained more efficiently.

3.4. Instance Update

With the SVM classifier for the current feature map at
hand, we can substitute it back to the cost function in Equa-

tion 4 to validate and update the currently selected IPs. This
is equivalent to minimising the function with respect to dis-
crete variable set φ using the following coordinate descent
scheme,

φ
(t+1)
1 = arg

n1

min
φ1=1

f(α, {φ1, φ
(t)
2 , . . .}) (8)

. . .

φ
(t+1)
i = arg

ni

min
φi=1

f(α, {. . . , φ(t)
i−1, φi, φ

(t)
i+1, . . .})

. . .

φ
(t+1)
m+ = arg

nm+

min
φm+=1

f(α, {. . . , φ(t)
m+−1, φm+})

where φ
(t)
i and φ

(t+1)
i correspond to the index values of the

old and updated IPs for the ith bag. Since α is unchanged
during the process of updating φ, only the first term on the
RHS of Equation 4 is affected, which is related to the mar-
gin of the SVM. We can easily see that each IP update leads
to a lower cost function value. The order for which the IPs
are updated is not fixed and shuffled randomly across dif-
ferent iterations.

To optimise over each φk for the sub-problem defined
in the above equation, a naive implementation requires an
exhaustive search procedure over all possible values and is
quite costly. By noticing that change of a single φk only
affects the kth column of feature matrix Z, we can develop
an incremental update scheme by recycling the intermedi-
ate results from previous iteration. Specifically, we take the
difference between the cost with new index value φk and
the old cost in the following

δ(φk, φ
(t)
k ) =

∑
αi,αj>0

ti,j(δzi,kδzj,k+δzi,kz
(t)
j,k+z

(t)
i,kδzj,k)

(9)
where ti,j = αiαjyiyj , and δzi,k = zi,k − z

(t)
i,k is the differ-

ence between the old and new feature map for entry (i, k).
zi,k is the new feature map value by using xk,φk

as the new
IP, and zi,k is the old value. It is also worth mention that the
sum is taken over pairs of αi and αj with positive values.
This further reduces the number of operations needed for
each such test. Instance xk,φk

is selected as the new IP iff
φk = arg minφk

δ(φk, φ
(t)
k ) and δ(φk, φ

(t)
k ) < 0.

3.5. Iterative Framework and Algorithm

The above two steps of classifier training and instance
selection can be repeated iteratively in an EM-like alterna-
tive optimisation fashion. Once a classifier is trained, we
can update the instance prototypes and recalculate the fea-
ture mapping. Then a new classifier can be learned from
the updated feature mapping. It is straightforward to see
that each iteration decreases the value of f(α, φ). We can
do this making use of the relations below

f(α(t), φ(t)) ≥ f(α(t+1), φ(t)) ≥ f(α(t+1), φ(t+1)) (10)



where the first inequality corresponds to the classifier up-
dating step and the second arises from instance updating.

Moreover, since φ can only take a finite set of values
due to the discrete nature of the φl variables, this updating
process is guaranteed to converge towards φ

(t+1)
k = φ

(t)
k

for every k. That is, at convergence, the instance proto-
types selected from two adjacent iterations do not change.
The whole process is similar in spirit to the EM algorithm
[8]. Instance selection/updating is akin to the E-step, where
the posterior probabilities (i.e. the values of Equation 8 for
different k’s) are updated by the current model and the hid-
den variable with the largest posterior probability is chosen.
Classifier training can be regarded as the M-step where the
parameters are updated by maximizing the likelihood. The
complete framework for IS-MIL with integrated instance
selection and classifier learning is outlined in Figure 2.

Input: training bags (B+
1 , . . . , B+

m+ , B−
1 , . . . , B−

m−)

• Apply KDE to the negative instances via Equation 5
and select φ(0) via Equation 6

• Form bag-level features via Equations 3 and 7 and train
an SVM classifier (Equation 4) on bag-level features.

• Update φ based on the learned SVM classifier via
Equations 8 and 9

• Repeat the above two steps until convergence

Output: the set of chosen instance prototypes indexed
by φi’s and the SVM classifier f(z) = wT z + b with
w =

∑
i yiαizi.

Figure 2. Summary of the proposed iterative framework for in-
stance selection and classifier learning

3.6. Multiclass MIL

For multiclass MIL problems, we adopt the one-against-
others strategy by applying binary IS-MIL to c binary sub-
problems, where c is the number of classes. Each sub-
problem has the same training data but different labels. The
purpose of the jth sub-problem is to distinguish class j
against all other classes. Thus, c SVM classifiers are ob-
tained with c distinctive feature maps during the training
process. A testing bag is fed to each of the trained clas-
sifiers using the class-specific feature map and assigned to
the class with the largest decision value output by the SVM
classifier. The steps of training and testing for each class are
the same as the binary case, except for initial instance selec-
tion, where KDE is applied in a slightly different manner.
For multiclass instance selection, we rather use the class
conditional distribution of each class to model the negative
distributions for other classes. Denote p(x|Ωk) the class

conditional distribution of training instances from the kth
class obtained from KDE,

r(xi,j) =
p(xi,j |Ωyi)

maxk 6=yi
p(xi,j |Ωk)

(11)

where yi ∈ {1, . . . , c} is the label for bag i. The instance
with the largest likelihood ratio value in the above equa-
tion is selected as the initial prototype for bag i. That is,
φ

(0)
i = arg maxj r(xi,j). The idea here is similar to the

binary case, except in the way the distributions for nega-
tive instances are modeled. We take the maximum over
all other classes for two reasons. Firstly, this is more ef-
ficient than running the density estimator over all instances
from all other classes. As a result, we apply KDE for each
class only once. Secondly, the maximum of class condi-
tional probability is a robust indicator for the discriminabil-
ity. The instance carries more discriminative information if
it has low likelihood for all other classes and a high likeli-
hood for the class it represents.

4. Experimental Results
In this section, we perform several experiments to

demonstrate the utility of IS-MIL, the proposed MIL algo-
rithm based on instance selection. First, we test IS-MIL on
synthetic data to show its power in instance selection and
compare it against EM-DD based instance selection meth-
ods [18, 6]. Next, we apply it to two real-world applications,
namely region-based image classification and object class
categorisation. For region-based image classification, we
compare IS-MIL with MILES [5], the state-of-the-art MIL
technique. For object class categorisation, which is pro-
hibitively large for alternative methods, we have compared
IS-MIL with the state-of-the-art single instance algorithm
for categorization [14, 3]. IS-MIL gains a margin of ad-
vantage in accuracy compared to MILES for region-based
image classification and considerably faster.

We fixed the number of iterations of our algorithm to 5.
The parameter γ in Equation 7 was set to the inverse mean
between pairs of instances and fixed over the iterations, and
the SVM parameter C was chosen via cross validation. For
image classification, we have adopted the optimal parame-
ter setting for MILES as reported in [5].The code has been
implemented in Matlab with optimization routines written
in C++. We used the liblinear package [4] for training lin-
ear SVMs and the commercial MOSEK optimization soft-
ware [1] for solving linear programs resulting in one-norm
SVMs.
Synthetic Data In the first example, we illustrate the
ability of instance selection for IS-MIL with a synthetic data
set shown in Figure 3. We have generated a data-set of
20 positive bags and 20 negative bags. Each bag has 5 in-
stances, and there is only a single positive instance in each



(a) EM-DD (b) EM-DD close-up view (c) IS-MIL

Figure 3. Example of instance selection on synthetic data.

positive bag. The positive instances are randomly drawn
from a mixture of Gaussian (MoG) distribution with two
Gaussian components, as shown in broken magenta curves
in Figure 3(b). The negative instances are drawn from a
different MoG distribution with two Gaussian components
shown in broken cyan curves. Figure 3(a) shows the IPs
extracted by EM-DD. We can see that a large amount of
IPs lie further away from the data distribution. This is due
to the non-convexity of EM-DD cost function, which are
likely to generate outliers with high likelihood value.Figure
3(b) provides a close-up view of the IPs extracted by EM-
DD falling in the range of the data set superimposed on the
training instances. Figure 3(c) shows the IPs selected by
the nonparametric KDE approach of IS-MIL. We can see
that IS-MIL has successfully selected the single positive in-
stance from each positive bag as the initial IP whereas the
initial IPs selected by EM-DD are not as discriminative as
IS-MIL with many miss-hits. Moreover, IS-MIL takes less
than 0.1 second for initial instance selection on this data
set and is much more efficient than EM-DD, which spends
more than 15 seconds and is thus impractical for large-scale
applications.

Region-based Image Classification In the next exper-
iment, we tested IS-MIL with MILES for region based im-
age classification on the COREL image data set. The data
set contains 2000 images taken from 20 different categories,
with 100 images in each category. Each image is segmented
into several regions and features are extracted from each re-
gion. Hence this is a typical MIL problem with images as
bags and region features as instances. Details of segmen-
tation and feature extraction are beyond the scope of this
paper and interested readers are referred to [6, 5] for more
details along with the introduction of the database. Again,
we compared our algorithm with MILES in terms of both
accuracy and efficiency. Two tests have been performed.
The first test uses only the first 10 categories in the data set
for training and testing, while the second test uses the com-
plete data set with all 20 categories. For both tests, we ran-
domly split all images into 50% of training data and the rest
for testing. Training and testing were repeated for 5 differ-
ent random partitions. The results of classification accuracy

Algorithms 1000 Images 2000 Images
IS-MIL 83.8 : [82.8,84.8] 69.3 : [68.3,70.3]
MILES 82.3 : [81.4, 83.2] 68.7 : [67.3, 70.1]

Table 1. Comparison of classification accuracy for the proposed
algorithm with MILES for image categorization.

Algorithms 1000 images 2000 images
IS-MIL 9.7± 1.9 59.0± 5.8

MILES Algorithm 180.3± 10.6 960± 30.5
Table 2. Comparison of training speed for the proposed algorithm
with MILES for image categorization.

Figure 5. IPs selected by IS-MIL for COREL image data.

rates are outlined in Table 1 in terms of mean accuracy and
90% confidence intervals.

From the table, we can see that our algorithm is very
competitive for image categorization tasks, with a margin
of advantage in the accuracy rate compared to MILES. This
is especially encouraging, considering the fact that MILES
is the state-of-the-art method on the COREL image data set.
Also, from the running time comparison results in Table
2, we can see that our algorithm is much more efficient in
training than MILES due to effective instance pruning. No-
tice that the timing results reported in Table 2 are the num-
ber of seconds for the training of all the classes involved.

In Figure 5, we show some results of IPs selection by
IS-MIL. For region-based classification, each IP is a region
with discriminant features pertaining to the class it belongs
to. Figure 5 shows 3 pairs of images, where the first row
shows the original color images, and the bottom row shows
the corresponding segmented images where the region cor-
responding to the selected IP is highlighted in white. It can



(a) COREL (b) Caltech-101

Figure 4. Example images from the two image databases used in the experiment.

be seen that the highlighted regions indeed represent the in-
trinsic features of the class.

Object class categorisation For our last experiment,
we applied our MIL algorithm to object class categorisation
on the Caltech 101 image categorisation database [11]. We
used a subset of the database that contains 102 object cat-
egories including the background category, with 30 images
for each category. Some example images from the database
are shown in Figure 4(b). Each row shows objects from
the same category with huge intra-class variations. The dis-
criminative bags-of-words (BOW) approaches [12, 14] are
used as baseline. They start by extracting and quantising lo-
cal feature descriptors and using a histogram of occurrences
of the codewords from the quantised vocabulary as the im-
age level feature. One problem with these approaches is that
local features are extracted over the full image and thus in-
evitably include noisy features in the background. To tackle
this problem, Bosch et.al. proposed a method for the au-
tomatic extraction of regions of interest (ROI) of the target
objects in the images and use features within the ROI alone
to build frequency histograms [3]. Here we propose an al-
ternative approach based on the IS-MIL algorithm devel-
oped in this paper. We used multiple histograms of feature
descriptors over different local regions of the image to rep-
resent the training images. Each local region represented by
the histogram is a candidate ROI. If the image contains the
target object, then at least one of the candidates will have
high likelihood of being the target. Otherwise, all candidate
histograms will have low similarity with the specified tar-
get. This is a typical multiclass MIL scenario that can be
addressed by our proposed algorithm.

The candidate ROI locations are learned from the anno-
tated ROIs for the training images. This is achieved by clus-
tering on the normalised x-y coordinates of the ground truth.
A vocabulary of 50 ROI vectors is formed after clustering,

Algorithms 15 images 20 images
IS-MIL 60.5 : [59.3,61.7] 63.8 : [63.2,64.4]
BOW 53.5 : [52.6, 54.4] 56.3 : [55.5, 57.1]

BOW+ROI 60.8 : [59.8, 61.8] 64.2 : [62.7, 65.7]
Table 3. Performance comparison of the algorithms for object class
categorisation.

each specifying a candidate location of the ROI. This leads
to over 100, 000 instances and a dense feature matrix plus
overheads occupying half Gigabytes of the memory space
for the MILES approach. On the other hand, IS-MIL can
still be applied in an effective manner. A level-1 spatial his-
togram representation [14] was adopted as the instance level
feature vector. For similarity computation, we used the χ-
squared distance, which has been empirically shown to be
more appropriate for comparing histograms. We tested our
approach with the baseline BOW approach and BOW+ROI
where features are taken over ROIs [3]. Table 3 lists the
classification accuracy averaged over 10 repetitive trials on
different random partitioning of training and testing sets us-
ing 15 and 20 training images respectively.

From the results in Table 3, we can see that MIL outper-
forms the baseline single instance based BOW approach and
achieves a comparable accuracy rate as BOW+ROI, which
is the state-of-the-art technique for categorisation on the
Caltech-101 database using single type of feature. Never-
theless, note that our MIL approach does not perform ex-
plicit ROI detection for training, nor does it require any ROI
information in the testing stage. The annotated ground truth
is only used at the training stage for learning candidate ROI
regions and not needed for testing purposes. However, the
instance prototypes (IP) selected for the training images do
implicitly convey the ROI information. The IPs correspond
to instances carry the discriminant information for the class,
hence are likely to be located at the ROIs. Examples of the



Figure 6. Examples of implicit ROI selection. Blue rectangles indicate the annotated ground truth, red rectangles indicate ROIs automati-
cally selected by the MIL algorithm.

implicitly selected ROIs corresponding to the IPs are shown
in Figure 6, where the ROIs chosen by instance pruning is
depicted in red rectangles, and the ground truth ROIs are
shown by blue rectangles.

Note that the method presented here is quite general.
We could use more sophisticated features to get further
improvement of the results, such as multi-resolution his-
tograms [12]. We could also use a different SVM algorithm
like the one proposed by Crammer and Singer [7] which is
known to be better suited to multiclass classification tasks.
When combined with MILES, it has been shown to outper-
form the original algorithm [16]. Our approach can be ex-
tended to incorporate the multiclass SVM formulation [7]
in a straightforward manner.

5. Conclusions
We proposed IS-MIL, a principled approach for instance

selection in MIL. By combining instance selection with
classifier learning, we have developed an EM-like alter-
native optimization framework for iteratively updating the
classifier, which is guaranteed to convergence. For the
data sets used in our experiments, the proposed approach
achieved classification rates comparable to the state-of-the-
art MIL classifiers while being much more efficient.
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