Constraint Graph Visualization

Anthony Mak

Abstract—This paper presents some ideas for visualizing constraint graphs. The motivation for constraint graph visualization is
for better understanding and debugging of CP (constraint programming) programs. (Constraint graphs also have the potential for
visualizing logic programs such as Prolog programs.) Two important issues in providing good visualization for these types of programs
are to find good visual metaphors for various program elements and to be able to handle large graphs. This paper will present some
metaphors for visualizing the static and dynamic aspects of CP programs. It will also discuss some issues in handling large (constraint)
graphs, such as how to use hierarchical clustering to improve the visualization.

Index Terms—Dynamic graph visualization, online hierarchical clustering, constraint programming.

1 INTRODUCTION

CP (Constraint Programming) visualization is about visualizing the
execution of constraint programs. CP differs from other programming
languages in that they do not specify a sequence of steps to execute but
rather the conditions(constraints) under which a solution must hold.
CP visualization allows users to better understand their constraint pro-
grams and for implementors to better understand their solvers. Visual-
ization can be used for correctness debugging which is about checking
whether one’s program executes unexpectedly, and for performance
debugging which is used for finding performance bottlenecks and op-
timize one’s programs.

One common way to visualize the execution of a CP program is in
form of a search tree in which a node denotes a value has been assigned
to a variable, and a branch points to the variable assigned next by the
solver chronologically. It has the benefit of giving an overall/historical
view of the execution. Another way to represent a search tree is in form
of a treemap. In contrast, an adjacency matrix or co-occurance matrix
give a static view of a problem by displaying the variables and their
current domains in a table. Both tree and matrix representations can
be in 2D or 3D. In order to limit the size of a search tree or a matrix,
a subtree can be represented by a single node with special color e.g.
to represent a subtree with no solution, and use a number instead of
the size of a column to represent domain size in a matrix [4]. Another
common way to represent a CP problem is as a graph, and Muller men-
tioned four different views for visualizing a constraint graph: Propaga-
tor Graph View, Single Propagator Graph View, Variable Graph View
and Single Variable Graph View [14]. There are also other visualiza-
tion methods such as kaleidoscope, multiple attribute pareto and lattice
visualization mentioned in [11].

There are other visualization techniques which may be useful for
CP visualization. The fisheye (or hyperbolic) technique allows large
amount of elements to be displayed in a small screen space while at the
same time focus the user’s attention to the centre of the graph which
can be set to display the most important data at the time. Comic strips
are consecutive frames that are viewed at the same time to facilitate
user understanding of algorithmic steps [3]. Miraftabi attempted to
use agents for increasing user friendliness in program visualization in
his paper [13].

The next section gives a definition for a constraint graph. Section
3 gives a brief description of the G12 platform and describe the rela-
tionship of this work with it. Section 4 will give a brief survey of soft-
wares for constraint programming visualization. Section 6 will talk
about visual metaphors for representing static and dynamic aspects of
a CP program. Section 7 will explore into issues and presents solu-
tions in visualizing large graphs, such as, clustering. Then, we will

o Anthony Mak is with Australian National University and most of the works
in this paper were done when he was a research programmer with
National ICT Australia, E-mail: anthony.mak@iname.com.

give a brief description of the software we have built for visualizing
constraint graphs in section 8.

2 CONSTRAINT GRAPH

A constraint graph is a visualization of a constraint network. A con-
straint network(CN), CN = {Variables, Domains, Constraints}, con-
sists of a set of variables and their associated domains, and a set of
constraints [6]. Each constraint is a relation defined on a subset of the
variables. A constraint graph can help better understand the underly-
ing constraint problem by visualizing its structure, for example, to see
the symmetries of a problem. A constraint graph can also help per-
formance debugging by visualizing a CP solver’s dynamics through
animations on the graph.

The two main elements in a constraint graph visualization are vari-
ables and constraints, and each can either be represented as a node or
an edge depending on the views (see Figure 2). A constraint graph can
be used to visualize a logic problem, a constraint programming prob-
lem, a SAT (propositional satisfiability) problem, or any relationship
between a set of entities (any relation you can imagine!).

3 THE G12 PLATFORM

G12 [10] is a software platform being developed for solving large scale
industrial combinatorial optimisation problems using constraint pro-
gramming. It will be used to enable industries to exploit resources
more efficiently; to support more efficient management of complex
private and public utilities such as transportation, communication,
power and water; and to support optimal and justifiable strategic de-
cision making and investment. The project is split into four threads:
building an expressive high-level modelling language (Zinc), building
more powerful solving capabilities through various kinds of solvers
hybridizations, a richer control language mapping the problem model
to the underlying solving capabilities(Cadmium), and a richer problem
solving environment.

In order to enable a richer development environment, some visual-
ization tools G12 may include are constraint graph, search tree, algo-
rithm visualization and an algorithm comparison tool.

4 EXISTING SOFTWARE

DPyvis [7] is a software we found that has constraint graph visualiza-
tion. It can display interaction graphs (constraint graphs) and search
trees. It is also possible to do time travelling to display previous graphs
by clicking on the corresponding node on the search tree. Also they
cleverly use edge colors and shapes to represent information about
constraints. However, it visualizes a solver’s operations in steps not in
real time. Also, it is used for visualizing SAT problems not CP prob-
lems therefore it can only visualize variables with domain of size 2.
There are other well known tools for CP visualization even though they
do not not have constraint graph visualization. Eclipse is a constraint
programming platform that provides many visualization tools. With
the toolkit, it can display a search tree and various ways of variable

ZINC
Declarative Modelling Language
- Dala Structures: arrays, sets,
sequences. extensible
- Looping: forall, sum
- Predicates and Functions
- Relfication

CADMIUM

: | search Language

- labelling strategies
- reflection

- hybrid approaches

Visualization
- Search tree
- Active constraints
- Constraint graph

Richer Modelling

CADMIUM
Mapping Language
- 10 solvers
- solver coordination

Richer Environment
. Richer Solving 1

MERCURY
Solver extensions

Richer Mapping -
PRing - solver specification
language
- specilic solvers R amowgge _____ _
— = L ——"| information
press Current Mercury

Solver mMP

Fig. 1. The G12 Constraint Programming Platform

visualization in the form of gantt chart, matrix and desktop metaphors.
CLPGUI [9] is developed by INRIA and has search tree visualization
and finite domain variables views in 2D and 3D. Interestingly, it uses
annotations to specify not only what parts of a program to visualize but
also to set up the gui controls. Oz Explorer [19] is the visualization
package that comes with the Mozart constraint programming platform.
It has search tree visualization. What is unique about it is that this vi-
sualization tool can support user guided search, and it makes use of re-
computation distance to trade space for time to reduce memory usage.
The VIFID/TRIFID [5] tools have some novel ways of representing
domain sizes and evolution of finite domain variables and on how to
abstract variable values and constraints. ILOG has some visualiza-
tion APIs however they are mainly graphic APIs for drawing general
graphics not particularly for visualizing logic or constraint programs.

5 DESIGN CRITERIA

We follow the following guidelines when developing our software:

Specific to constraint problem

Scalable

Intelligent

Generic

Variety of views/metaphors

Use state of art tools, methodology and framework
2D

Nownkwh -

We decided to make the software specific to visualizing constraint
problem. Although it is possible to create a general visualization plat-
form, but it is better to do a few things well rather than a tool that can
do many things but not so well. Secondly, it is very important for the
tool to be highly scalable because often there are many great visual-
ization tools out there but when swarmed with large amount of data
their performances suffer to an unusable state. We want the visual-
ization tool to be intelligent, for example by using machine learning
techniques for clustering and layout, and agent to help navigation on
the graph and GUI. Although this may sound ambitious, it is impor-
tant because visualization is about revealing information to users but
it does not help to swarm users with too much graphical information
and users often do not know what they should look for when diag-
nosing a problem. Al techniques have the potential to adapt to users’
needs and filter out all but relevant visual events. The software needs
to be generic because we do not want it to be usable only with our CP
solvers and it should be simple for the open communities to integrate
with their systems. The software needs to provide a variety of views
and visual metaphors because multiple metaphors of the same data re-
veal extra information about the data to the user and these extra views
may allow the users to spot significant events and patterns in the prob-
lem. We decided to visualize a constraint graph as a 2D but not a 3D
graph because although a 3D graph allows us to do rotation and other
interesting manipulations in 3D, a 3D visualization is only necessary

if there is a 3rd dimension in the data we are trying to visualize. Also,
using 2D allows us to scale up our application to much larger datasets
so more nodes can be visualized on the graph.

6 GRAPHIC METAPHORS FOR CP ELEMENTS

In order for the visualization to reveal useful information to the user,
there need to be good mappings (metaphors) from what one is trying
to visualize (the problem data) to how one is going to visualize (the
visual elements). There are two aspects of a constraint problem that
we would like to visualize: the static part which includes visualizing
the structure of the problem and the types of the elements in a problem,
and the dynamic part which is about visualizing how the problem is
changed as it is being solved by a constraint solver.

6.1 Visualizing Structure
6.1.1 Views

Some common views are variable view, constraint view, bipartite view
and hyperplane view.

Constraint View

Camcy ¢ Cen

Variable View

C=D

Hyperplane View
Bipartite View

—=

Fig. 2. Different ways of displaying a constraint graph

In variable view, a variable appears as a node on the graph and an
edge joins two nodes if there exists a constraint between them. In
constraint view, a constraint appears as a node, and an edge joins two
nodes if the constraints they represent have a common variable. In bi-
partite view, both variables and constraints appear as nodes and a vari-
able node is joined with a constraint node if the constraint contains the
variable. Note there can never be edges between two variable nodes
or two constraint nodes. In hyperplane view, a variable appears as a
node, and variables that are common to a constraint will be covered
by a plane. The other elements in a constraint graph are the domains
of each of the variables. The dynamic aspects of a constraint graph
are due to propagation, backtracking, variable satisfaction and domain
reduction inside a solver which causes the graph to change.

6.1.2 Visualizing variables and constraints

The two main elements in a constraint graph are nodes and edges.
Nodes can have different sizes and colors, and edges can have differ-
ent length, thickness and colors. Thus we can use them to represent
different aspects of variables and constraints and here is one way to do
it:

e Node Size: It can be used to represent variables’ domain sizes
in which a larger node represents a variable with larger domain
size.

e Node Color: It can be used to represent whatever property or
type a variable (or constraint) has.

e Edge Thickness: It can be used to represent how constrained
two variables are. For example, the more constraints there are
between two variables, the thicker is the edge between them.

e Edge Color: It can be used to represent the type of a constraint.

6.2 Visualizing Change
6.2.1

As a problem is being solved by a solver, the corresponding constraint
graph which represents the problem can also be changed. A variable
can be assigned or satisfied. The domain of a variable can be reduced
due to propagating constraints. And also a solver can backtrack which
can lead to parts of the problem become unsolved again. The most
straightforward presentations of these dynamics are to remove a node
(and the connecting edges) when the variable it represents is satisfied,
reduces the size of a node when the variable domain size reduces, and
to add the corresponding nodes and edges back into the graph and
redraw when the solver backtracks.

Assignment, Domain Change and Backirack

6.2.2 Propagation

We think the best way to visualize constraint propagation is to use an-
imation. As a result of propagation, variables can become satisfied
which will result in the corresponding nodes being deleted from the
graph, and in other cases the domains of variables can be changed
which will result in the corresponding nodes’ sizes being changed.
Therefore, in order to visualize this propagation effect using anima-
tion, a node could ”blink” before it is removed or its size changed.

7 VISUALIZING LARGE GRAPHS

In general, graph layout is a NP-complete problem and has exponen-
tial complexity. For online visualization where the graph can change,
it can become very computationally expensive if updates of the visual-
ization is required often. Also memory requirement can be a problem
(although to a lesser extend) because each node may require additional
bookkeeping information. When the number of elements on screen is
more than one thousand, there may be problem fitting all elements on
the screen. And when a lot of nodes are displayed simultaneously it
will become very difficult to comprehend the graph because of a lot of
node overlappings and edge crossings. Therefore, the key issues seem
to be using an efficient layout algorithm and reducing the number of
elements on screen if we want to display large graph effectively. In
[16] Novak gives a good description of the various aspects of visual-
izing a large graph.

7.1 Navigation

For large graphs, navigation can be problematic since there can be
more nodes than could be fitted into a screen. The common ways
to handle this problem are to make use of scrollbars, zooming or an
overview pane. An overview pane is a scaled down version of the
whole graph, and the user can jump to a particular position on the
main graph by clicking on a corresponding location on the overview
pane.

7.2 Filtering

There are many motivations to perform filtering on a graph. When
there are too many elements on screen, it will be computationally ex-
pensive and thus takes a long time to redraw a graph. Of equal im-
portance, it will cause much edge crossings and reduces human com-
prehension of a graph. Another reason for filtering maybe simply the
user wants to focus on one type of nodes on the graph. For example, a
graph can be filtered based on the attribute value of a node, such as, the
subproblem that the variable it represents belong to. Or to hide some
of the edges base on some criteria, for example, do not display edges
that represent global constraints because they connect all the nodes.
Another approach is not to display the whole problem initially but to
grow the graph. This mean to show only the parts of the problem that
has been processed (by the CP solver).

7.3 Abstraction

Graph abstraction can reduce the number of nodes on screen but also
allow the user to view a problem at different levels of detail. For exam-
ple, there can be an abtraction level where each node in the constraint
graph represents an element at the CP modelling language level, and
another abstraction where each node represents a variable in a solver as
the original high level CP representation is grounded to a lower solver
specific problem representation in order for the solver to be able to
understand the problem.

Modelling language level:

Solver variable level:

Fig. 3. Different levels of graph abstraction

7.4 Incremental Update

For a dynamic graph where nodes and edges can be added and deleted
over time, it is necessary to update the visualization periodically. How-
ever, calculating the layout for the whole graph every time will be com-
putationally expensive. In this case it is better to use a layout algorithm
which supports incremental update. In particular force-directed layout
algorithms are suitable for this purpose. (Although we found edge
crossing is problematic in force-directed algorithms and may explore
other layout algorithms in the future.) For online visualization, new
graph data can come continuously and we found it is best to freeze
the thread for layout each time before a batch input of graph data for
performance reason.

7.4.1

Force-directed layouts work by using repulsion and attraction forces.
Nodes that are highly connected are attracted to each other. And nodes
exert repulsion forces on each other when they are close. The forces
affect the layout incrementally such that at each timestep each node
moves a little in a direction depending upon the sum of the attrac-
tive and repulsive forces exerted on it from its neighbours. Because
of this incremental aspect and also the fact that when new nodes are
added to a graph the positions of the existing nodes do not have to be
recalculated, force-directed layout algorithms are suitable for online
visualization. By default new nodes are added in random positions in
force-directed algorithms, however this is not suitable for online vi-
sualization since new nodes can be added continuously. It will take a
long time for new nodes to travel to their optimal/stable positions and
also the large displacements as they move to their optimal positions
will cause much visual disruptions. In order to remove visual disrup-
tions, the idea is to position each variable or constraint node close to
their neighbours initially. Algorithm 1 and 2 show how to do this in
the variable view and constraint view.

Force-Directed Layout

Algorithm 1 Initial position for new (variable) node v

Require: At least one constraint that contains the variable v
Ensure: (x,y) position for new node
if no constraint exists which contains v then
wait until at least 1 such constraint is added to graph
end if
for all constraint ¢i which contains v do
for all variable vi in ci do
SUMX <= sumx + vi.x_position
sumy <= sumy + vi.y_position
Increment num_of nodes by 1
end for
end for
return (sumx/num_of nodes,sumy/num_of nodes)

Algorithm 2 Initial position for new (constraint) node ¢

Require: No precondition
Ensure: (x,y) position for new node
for all variable vi in ¢ do
for all constraint ¢i which contains vi do
SUmx <= sumx + ci.x_position
sumy <= sumy + ci.y_position
Increment num_of _nodes by 1
end for
end for
if num_of _nodes > 0 then
return (sumx/num-of _nodes,sumy/num_of nodes)
else
return random position {no neighbouring node}
end if

7.5 Clustering

There can be 2 types of clustering: placing nodes that are similar (ac-
cording to some measures) in close euclidean distance; replacing each
set of nodes that are similar or close with a single node on the graph.
The first type can be used to reveal more structures in the graph. The
second type has the benefits of reducing the number of nodes on the
screen thus increasing human comprehension of the graph and also re-
duces cpu time for rendering. A requirement for the clustering to be
used in our tool is that the clusters need to be updated dynamically
because the underlying graph can change over time.

7.5.1

The original motivation for using clustering in constraint graph vi-
sualization was to reduce the number of nodes on screen since a CP
problem can contain a huge number of variables and constraints which
could be hard for a human to comprehend. The idea is to group the
nodes into different subsets by some criteria using some form of ma-
chine learning algorithm and then replace each subset with a single
node on the graph. We have explored the k-mean and hierarchical
clustering algorithms, and the later seems to be more suitable since it
can better utilize the structural information in a constraint graph. In
the basic hierarchical clustering algorithm, all nodes are set as single-
ton clusters initially. At each step, the two closest clusters are joined
into a cluster which is represented by a subtree having the two clusters
as its children. This process repeats until all the clusters are joined to
form a single tree. The root represents a cluster that contains all the
nodes whereas the leaf nodes represent all the nodes as individual un-
clustered nodes. In between the two levels, we can get different gran-
ularities of clusters. However, the basic algorithm is not incremental
since it assumes all the nodes are already present when performing the
clustering. Also, it is not an online method since it cannot update the
clusters when subsequently nodes are deleted in a later stage in time.
For our purpose, we need an incremental/online clustering algo-
rithm because re-applying the hierarchical clustering algorithm to the
whole graph whenever a change occurs would be very expensive com-
putationally. In the paper [2], the algorithm can cluster incrementally
without recalculating the whole dendrogram each time a node is added.
When a node is added to the dendrogram, the parts of the dendrogram
that are affected will be cut and the naive hierarchical clustering algo-
rithm will be applied until all the nodes are connected as a single tree
again(we call this process Repair). Two clusters can be affected be-
cause sometimes after adding a node, the distance between them can
become shorter or longer. Although the paper does not mention node
deletion, we believe it can be treated in a similar way by first remov-
ing the node from the dendrogram and investigating which parts of it
are affected and then repair the dendrogram as mentioned previously.
The main bottleneck of hierarchical clustering algorithms is finding
the closest clusters, Conga Line [8] is an efficient method to solve
this problem. We will use the Basic Conga Line algorithm instead of
the FastPair method, because although FastPair is faster in experimen-
tal results it does not merge its data structures as the number grows

Generic Clustering using a Machine Learning Approach

and this may not be suitable for dynamic graphs where nodes can be
deleted continuously.

The distance function we use assumes an infinite/undefined value
if there is no edge between 2 vertices, otherwise it is given in the fol-
lowing formula where s is the strength of the edge and ¢/ and ¢2 are
the connectivities (in-degree and out-degree) of the two vertices. This
formula has been provided by Olivier Buffet.

1

d= sX (cl4¢2)

Algorithm 3 An Online Hierarchical Clustering Algorithm for Graph
Clustering

Require: Graph data
Ensure: A dendrogram (contains clustering information) being main-
tained dynamically

loop
(Add or delete a node)
if initial clustering has not been performed then
if NoOfNodes > N then
Per formlnitialClustering
end if
else
if node added then
NoOfClusters+ =1
end if

Update Conga Line data structure
Mark the node as added or deleted
if NoOfClusters > N then
for all nodes vi in the deleted list do
Remove vi from dendrogram
Repair (see 7.5.1)
end for
for all nodes vj in the added list do
Add node vj to dendrogram (using Conga Line to find
closest cluster to vj)
Repair (see 7.5.1)
end for
(Update clusters visually using dendrogram)
end if
end if
end loop
PerformInitial Clustering:
- Initialize Conga Line data structure
- Apply basic hierarchical clustering (using Conga line to find clos-
est clusters at each step and using equation A for distance function)
- (Update clusters visually using dendrogram)

7.5.2 Using Information inside the Problem

Very similar for the purpose of abstraction, we can utilize the infor-
mation about which array, predicate, function or quantifier a variable
belongs to in a problem for enhancing the clustering. For example,
we can place the variables which are in the same array in the original
(Zinc) problem close to each other in the visualization, or to replace all
the nodes that represent those variables by a single node in the graph
(see Figure 3). We plan to explore this area in the future by finding out
what are the best mappings from constructs in the modelling language
level to a cluster.

8 IMPLEMENTATION

One of the earliest design decisions was whether to use 2D or 3D to
visualize a constraint graph. We developed a prototype in 3D because
we thought as computers become more powerful CPU bottleneck will
not be a problem, and the visualization in 3D does look aesthetically
pleasing. However, in the end we decided to use 2D because it allows
us to scale up the application to visualize more elements simultane-
ously and 3D is only meaningful if there are three dimensions in the

data to visualize. We use a Java visualization API called Jung be-
cause it is open source and supports incremental update. Incremental
update means the visualization does not redraw the whole graph ev-
ery time it is modified. Because we want to dynamically visualize
data from a solver in real time, it is important to update incrementally
for efficiency. In the current version of our software, we use a simple
force directed layout because force directed layout algorithms are suit-
able for handling dynamically changing data. Also for efficiency, the
viewer uses a threaded design and uses different threads for different
tasks such as rendering and command parsing.

Figure 5 shows the Constraint Graph Viewer visualizing the hgen8
problem created by Edward Hirsch in Variable View dynamically .
This problem has been chosen because it was the smallest unsolved
problem in the 2002 SAT competition. Because the G12 platform
is still under development, we tested our concepts by integrating the
Dew_Satz [1] SAT solver with the viewer by modifying the solver to
output the commands required by the viewer. Figure 6 and figure 7
show the viewer in Constraint View and Bipartite View respectively. It
is possible to change between these views by clicking the View button.
Node size can represent domain size or change frequency (such as how
often the domains has been changed or backtrack frequency). In these
examples, larger node sizes represent more backtracking happened on
those variables.

8.1 On/Offline Visualizations

Graph visualization can have 3 types depending on the responsiveness
of the visualization. In our tool, we will use online visualization and
perhaps in the future allow interactivity as well.

o Offline Mode: The graph is only visualized after all the data has
been computed.

e Online Mode: Nodes and edges are added incrementally.

e Interactive Online Mode: It is the same as Online Mode but inter-
actions and modifications via the visualization will also change
the states of the corresponding program.

8.2 Architecture

(Controller) !

(Model) :

stdio
—>
or
socket
—_— >

used by

Fig. 4. Architecture of Constraint Graph Viewer

We decided to adopt a MVC(model-view-controller) design in
the beginning and the API contains two main classes: Constraint-
Graph(model) and Visualizer(view). The idea is to hide complexity
from the application programmer, who wants to use the API to vi-
sualizer a constraint graph in their own programs, by requiring the
programmer only to modify a ConstraintGraph object and then a Visu-
alizer object that is linked to it will automatically perform the layouts
and renderings. The controller component in our case is simply a main
program written by the application programmer who is responsible for
parsing input commands and subsequently initiating the Constraint-
Graph and Visualizer objects. A MVC design will also facilitate the
case when we choose to have multiple models and views in the future,
for example, a tree view, a graph view and data models in the format
of a graph or some other formats. Figure 4 shows the main classes in
the APIL.

8.3 Command Syntax

The constraint graph viewer takes input commands as plain text ei-
ther from the standard input or from a network socket. It is important
to note that before a constraint is added to the graph all the variables
it refers to should already have been added, otherwise the command
for adding that constraint will be ignored. To visualize a graph, apply
a mix sequence of commands to add variables and constraints. For
the ADD VAR command, it is optional to provide a description for
the variable(var_desc) and the domain size in integer. For the ADD
CON command, it is optional to provide the constraint’s description
and id and when an id is not provide the constraint will automatically
be assigned as "CONX” where X starts from 0. The SLEEP com-
mand will tell the system not to process new commands for n seconds
(new commands will be queued temporarily). Because the viewer is
designed for online visualization, commands for adding and deleting
variables and constraints can be sent to it continuously and it will up-
date the rendering with the new data periodically. The visualization
can update anywhere in between a sequence of add and delete state-
ments, however, for some problems this would cause the viewer to
visualize the problem in an inconsistent state. In such cases, one can
encapsulate the ADD and DEL commands between a pair of BATCH-
BEGIN and BATCHEND commands such that the graph data object
will still be updated but the visualization will only be updated after the
BATCHEND command. It is possible to have space inside an id or
description by enclosing it with a pair of double quotes(”).

e Add a variable: ADD VAR var_id var_desc (domain __size)

e Delete a variable: DEL VAR var_id

e Add a constraint: ADD CON con_id con_desc [var_idl var_id2
]

Delete a constraint: DEL CON con_id

Change domain size: CHG DOMAIN var_id (integer)

Sleep (and do not update graph with new data): SLEEP seconds

Batch update: BATCHBEGIN, BATCHEND

(0] G12 Constraint Graph Viewer —ox

| Freeze || Hhige Laber |[variables view ||| sewings |

Fig. 5. Constraint Graph Viewer (Variable View)

9 AGENT

When a CP solver is solving a large and complex problem, it can often
take a long time to solve and can generate enormous amounts of data.
Because of these two reasons, it is often difficult for the person solving
a problem to comprehend what are the important, relevant and unusual
events. Also because of the large size of data, navigating through the
graph may be difficult. Agent technology has a definite possibility to
help solving these problems by filtering out irrelevant data and help
with navigation on the GUI. As a CP solver is running there are many
low level events occurring that can cause the graph to change and users

[Lrreeze | e Lver | ORUSIRGER]] |_sexurss |

Num Vars=49 Nurm Cons=74

0] G12 Constraint Graph Viewer: -ox

Fig. 6. Constraint View

| Freeze |[Hige Laber | [Binartite view [~|[sewings |

Num Vars=40 Nurn Cons=55

[m] G12 Constraint Graph Viewer: —ox

Fig. 7. Bipartite View

can perform high level actions to change the view of the graph in order
to find what interests them. One idea is for the agent (see Figure 8) to
automatically filter out irrelevant information and to learn the mapping
between low level events and high level actions, so that these actions
may be done automatically in order to maximize the amount of useful
information about the problem revealed to the user.

10 FUTURE DIRECTIONS

Having explored some basic ideas for graph visualization for con-
straint programming, we would like to do more experimentation and
perhaps implement the following features. One idea is to use informa-
tion inside a CP problem to improve on the layout of a graph such that
the graph can reveal more useful information to the user. Currently, we
use a simple force directed layout algorithm (spring layout), but there
may be more modern algorithms that can both improve on the render-
ing speed and the aesthetics of the graph such as the conjugate gradient
method. In our first attempt, we designed a data mining method for hi-
erarchical clustering which we plan to incorporate in next version of
our tool. We also wish to explore other machine learning methods for
clustering and for user interfacing since they may generate interesting
results. Few visualization packages make use of agent technologies,
thus it could be interesting to implement an agent as described in the
previous section to see what kinds of improvements it can bring in
terms of user-friendliness and revealing more relevant and less irrele-
vant information to the users. We may also explore interactive online
visulization if such needs arise in the future.

high level user actions:
change viewport

change metaphor

change clustering/filtering
paramsetc

decision decision decision

low level events:
varX instantiated
clauseY subsumed
backtracking

-ete

event event event

Fig. 8. Using agent to assist visualization

11 CONCLUSION

In this paper, we have explored some graphical metaphors for visu-
alizing a constraint graph and also about using clustering to enhance
the visualization. A tool was produced which implements the basic
features mentioned in this paper. Although this paper and the tool is
centered on visualizing CP programs, the ideas can equally be applica-
ble on visualizing logic programs, SAT programs and any relationship
about anything imaginable.

ACKNOWLEDGEMENTS

I wish to thank Olivier Buffet for his advice on how to use machine
learning for graph clustering and providing the initial code for hierar-
chical clustering. I would also like to thank Andrew Slater for pro-
viding continuous advice on software design and the G12 platform.
Anbulagan helped me to integrate the visualization tool to his SAT
solver Dew_Satz and Mark Brown provided help for an initial integra-
tion into the G12 platform. I would also like to thank Tim Dwyer for
giving me a lot of advice on various layout algorithms and graphical
metaphors.

REFERENCES

[1] Anbulagan and J. Slaney. Lookahead saturation with restriction for sat.
In CP, pages 727-731, 2005.

[2] A.E. Arnaud Ribert and Y. Lecourtier. An incremental hierarchical clus-
tering. Vision Interface, 1999.

[3] H.Biermann and R. Cole. Comic strips for algorithm visualization. Tech-
nical Report TR1999-778, 16, 1999.

[4] M. Carro and M. Hermenegildo. Some design issues in the visualiza-
tion of constraint logic program execution. Technical Report CLIP1/97.1,
1997.

[5] M. Carro and M. V. Hermenegildo. Tools for constraint visualisation: The
VIFID/TRIFID tool. In Analysis and Visualization Tools for Constraint
Programming, pages 253-272, 2000.

[6] R. Dechter. Constraint Networks. In S. C. Shapiro, editor, Encyclope-
dia of Artificial Intelligence, volume 1. Addison-Wesley Publishing Com-
pany, 1992.

[7]1 E.-M. Dieringer and C. Sinz. DPvis - a tool to visualize the structure
of SAT instances. SAT 2005 : international conference on theory and
applications of satisfiability testing, 2005.

[8] D. Eppstein. Fast hierarchical clustering and other applications of dy-
namic closest pairs. In SODA: ACM-SIAM Symposium on Discrete Algo-
rithms (A Conference on Theoretical and Experimental Analysis of Dis-
crete Algorithms), 1998.

[9] R. C. Francois Fages, Sylvain Soliman. CLPGUI: a generic graphical
user interface for constraint logic programming, 2004.

[10] G12 Official Website - http://www.g12.cs.mu.oz.au/.

[11] D. Lalanne and P. Pu. Interactive problem solving via algorithm visual-
ization, 2000.

[12] M. S. Marshall, I. Herman, and G. Melancon. An object-oriented design
for graph visualization. Software - Practice and Experience, 31(8):739—
756, 2001.

[13] R. Miraftabi. Intelligent agents in program visualizations: A case study
with seal, 2001.

[14] T. Miiller. Practical investigation of constraints with graph views. Pro-
ceedings of the International Workshop on Implementation of Declarative
Languages, 1999.

[15]
[16]
[17]

(18]

[19]

P. Mutzel and P. Eades. Graphs in software visualization - introduction.
In Software Visualization, pages 285-294, 2001.

0. Novék. Visualization of large graphs. Master’s thesis, Czech Technical
University in Prague, 2002.

G. Roessling. ANIMAL-FARM: An Extensible Framework for Algorithm
Visualization. PhD thesis.

R. Sablowski and A. Frick. Automatic graph clustering. In Proc.
Graph Drawing, GD, number 1190, pages 396400, Berlin, Germany,
18-20 1996. Springer-Verlag.

C. Schulte. Oz Explorer: A visual constraint programming tool. In
L. Naish, editor, Proceedings of the Fourteenth International Conference
on Logic Programming, pages 286-300, Leuven, Belgium, 1997. The
MIT Press: Cambridge, MA, USA.

