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Abstract. This work investigates and develops a backtracking algo-
rithm with a novel approach to enumerating and traversing search space.
A basic logical framework inspired by relevant logics is presented, high-
lighting relationships between search and refutation proof construction.
Mechanisation of a relevance aware Davis Putnam Logemann Loveland
procedure is investigated, and this yields an intelligent backtracking al-
gorithm with abilities similar to other mechanisms including extended
freedom in manipulating search space or rearranging refutation proof
construction. Simplicity is achieved by a separation of concerns of the
underlying logic and the construction of a sound and complete algorithm.
The key advantage in the method is that it captures the notion of proof
construction and relevant causality, and empirical analysis shows that
this is an effective approach.

1 Introduction

One of the key techniques for increased performance of search algorithms is
to perform a limited rearrangement of the backtrack order so that unnecessary
parts of the search tree can be eliminated. For the purposes of this paper we shall
classify all of these kinds of approaches as intelligent backtracking techniques.
The essential motivation behind intelligent backtracking techniques is to avoid
unnecessary computation which is often referred to as thrashing [20]. Although
there is no formal definition for thrashing, it can be identified as when a search
algorithm performs the same search computation more than once, or includes
unnecessary, redundant or irrelevant computation. Intelligent backtracking tech-
niques include redundancy detection, backtrack reordering and saving informa-
tion in order to prune the search tree. The success of intelligent backtracking
systems has been demonstrated in various arenas, for example the propositional
satisfiability (SAT) problem solvers zchaff [26], GRASP [22] and relsat [5] suc-
cessfully use combinations of intelligent backtracking techniques.

This paper will discuss some of the problems with classical propositional logic
(CPL) which give rise to the inefficiencies in traditional backtracking methods.
Previous approaches in intelligent backtracking techniques will be reviewed in
this light, along with their motivations and relative abilities to avoid thrashing.
The kinds of problems that motivate intelligent backtracking as opposed to tra-
ditional backtracking methods are not unique to search algorithms. Approaches



in some non-classical logics attempt to eradicate philosophical paradoxes of im-
plication by including the notion of relevance within the logical system, and
some formulations of Natural Deduction in classical logics account for relevancy
in order to construct concise proofs (see [11, 19]). Some of the problems with
classical propositional logic which correspond to the problems of redundancy in
proof search are dealt with in relevant logics. These logics have been intensely
studied for decades and their formalisms and properties are well known. A brief
introduction to the practical mechanics of relevant logics will be described later.

In this paper it is shown that by observing techniques borrowed from rel-
evant logic, and less restricting logical formulations like Natural Deduction, a
simple and effective intelligent backtracking algorithm can be constructed. By
basing the algorithm on a formal system of deduction, deriving the algorithm
and associated mechanics of its reasoning becomes simpler. The work presented
is also influenced by the interests of refutation proof generation, as opposed to
searching for satisfiability (or a counter-model to the desired proof), and in this
sense a backtracking algorithm should aim to reduce the resultant proof size.
The approach described also yields a framework for integrating other adjunct
search techniques. For example, this includes integration of intelligent back-
tracking learning techniques and relaxation methods for clausal propositional
satisfiability. The algorithm presented is as capable as other general intelligent
backtracking mechanisms. This includes a simple and effective method of back-
ward movement in the search space; that is, it allows for proof rearrangement
and backtrack point selection with linear space costs. The key difference between
this and previous investigations is the constructive method focusing on relevance
and causality, yielding an efficient mechanisation that incorporates more com-
plex reasoning in order to more efficiently navigate through search space and
intelligently construct refutation proofs.

2 Preliminaries

This section serves to introduce both the logical foundations for intelligent back-
tracking techniques, and the perspective that the work in this paper takes on
tackling the problem of designing intelligent backtracking algorithms. It also re-
views and describes previous approaches for intelligent backtracking algorithms.

2.1 Search as Proof Construction

A satisfiability search process can also be perceived as a process of proof con-
struction. While the aim of intelligent backtracking is to reduce both thrashing
and search space, it is also presented here as the equivalent process of proof min-
imisation, which has useful applications, for example, in the area of stored proof
verification [27]. The approach of proof construction focuses the investigation of
intelligent backtracking at a purely logical level.

The process of solving a satisfiability problem using a complete method can
be viewed as attempting a proof by refutation, where the satisfiability problem,



in conjunctive normal form (CNF), is assumed to be obtained by negating some
assertion to be proved. A satisfiability solver either finds a model which satis-
fies the CNF formula, or refutes it and thus shows that the original assertion is
actually a theorem. The search method is complete as it is able to find a sat-
isfying assignment if one exists. Otherwise it provides a proof that that there
is no such assignment. The mechanised system that is the focus of this paper
is the Davis-Putnam-Logemann-Loveland algorithm (DPLL)[9] style approach
of proof tree generation which has had great success in solving propositional
satisfiability problems. These systems can be seen as equivalent (with appro-
priate modifications) to similar mechanised (refutation) proof systems such as
Tableaux. More powerful systems (e.g. Hilbert, Frege and Natural Deduction)
are capable of simulating these mechanised systems.

The aim of generating a small proof should also help to find a model (or
satisfying assignment) more efficiently. If less search space is explored then the
time it takes to reach or deduce the model will also be reduced. While it is
often said that intelligent backtracking systems “correct mistakes” made in the
“forward looking” choice ordering procedures, they can also be seen to be pruning
the search space, or in the case of an unsatisfiable problem they optimise the
resultant proof size. This an important process if one wants to generate a succinct
proof that can be verified with a reliable secondary system (e.g. using a HOL based
system, extending work in [17]). This could also be very useful in proof carrying
code.

2.2 One of the problems with classical logic

One of the well recognised dangers of a classical logical system is that from a
contradiction one may deduce anything. The mechanised process of a proof by
refutation is a process of generating contradictions and then deducing something
is inconsistent, thus eliminating (or replacing) one of the assumptions. In a finite
domain search problem (e.g. satisfiability of a formula in propositional logic)
one may derive “anything”, but only from the finite domain. This reduces the
aforementioned danger somewhat, but does not guarantee that the use of reductio
ad absurdum (RAA), a deduction via contradiction, is a useful one. Yet it is this
rule that lies at the heart of many mechanised proof by refutation systems. In
a simple example, the assumptions C,A,B and the formula (B → C) yield
(C ∧C) and thus we can legally conclude A, but this particular conclusion may
not necessarily be useful in constructing a proof. More complex formulae yield
more complex situations. Cancelling assumptions in the order they were made
(chronological backtracking) becomes prone to situations like these. Consider a
situation where the ordered assumptions are A0, A1, . . . , A107 and the formula
contains the implications

A0 → A109, A107 → A109, A107 → A108, A108 → A109

At the bottom of the search tree A107 will be deduced using the first two impli-
cations (by using the assumptions A0 and A107 to produce the deductions A109



and A109, thus inferring contradiction). The last two implications yield another
contradiction, but the backtrack order of eliminating assumptions demands A106

rather than the more expedient A0. With this ordering of assumptions the basic
DPLL algorithm with Unit Propagation will discover this sub-proof 2105 times
before the search returns to the top of the tree and finally deduces A0.

While it is possible that a better branching scheme would avoid such situa-
tions, examples can be easily contrived where a given branching scheme fails. The
situation can be avoided in all cases by merely remembering those assumptions
which led to the contradiction, and only using those as candidates for elimina-
tion. Information about dependence for each deduction is needed so that the set
of assumptions that derive a contradiction can be identified. There are many
names for such a concept: dependencies, conflict sets, uses etc. In this paper we
shall refer to the dependencies of a derivation. Previous intelligent backtracking
techniques have treated a single dependency as being any instance where a vari-
able takes on a value i.e. both assumptions and intermediate derivations. In this
paper a single dependency can only be an assumption. Each deduction, in the
course of a proof, has an associated dependency set – the set of assumptions that
were used to derive it (though for reasons discussed in Section 2.3 a mechanised
proof system may use a multi-set). For example, if we have an assumption A
and a formula that contains (A → B)&(B → C) then the deduction C depends
upon A only and this shall be expressed by C : {A}. Note that assumptions actu-
ally depend on themselves. The elimination of an assumption via RAA (i.e. the
point at which the second path is taken at a backtrack point) is dependent upon
those remaining variables that were used to deduce contradiction. For example,
suppose we deduce the following with its associated dependency set

(X ∧ X) : {A,B,C,E}

then we may choose to negate one of the assumptions, say C, so that

(C) : {A,B,E}

Note that the dependency set labelling system encodes the possible deductions
of implicational formula i.e. implication (→) introduction as defined by the fol-
lowing rule

(→ Intr.)
A : Γ ∪ {X}

(X → A) : Γ
(X /∈ Γ )

This kind of reasoning is not necessary for Davis-Putnam style search algorithms,
but may be useful for extending the capabilities of a relevant proof search algo-
rithm.

We will be primarily concerned with deductions made by methods such as
Unit Propagation. Here all we need to define are the rules for operations for mak-
ing deductions with dependency sets. The Modus Ponens (MPP) rule and the
classically equivalent rule for Disjunctive Syllogism (DS) are defined as follows:

(MPP)
A : Γ1, (A → B) : Γ2

B : Γ1 ∪ Γ2

(DS)
A : Γ1, (A ∨ B) : Γ2

B : Γ1 ∪ Γ2



We can also define a relevant style formulation for RAA which stems from the
Relevant Deduction Theorem from relevant logic (see below and [11]) and the
notation defined above.

(RAA)
⊥ : Γ ∪ {A}

A : Γ
(A /∈ Γ )

For the purposes of satisfiability search, falsehood or ⊥ is represented by the
empty clause, ().

Although these rules are sufficient for the work in this paper, care must be
taken when defining constructive rules for other logical operations, for example
maintaining the correct dependency sets when using Conjunction Introduction
and then Conjunction Elimination. Retaining dependency set information for
each conjunct is a possible solution, however further discourse concerning such
situations is in the realm of sequent calculi and relevant logics and is beyond the
scope of this work.

The Relevance of Relevant Logic. Relevant logics are motivated by the
problems of the paradoxes of material implication found in classical reasoning.
Notably, these non-classical logics are sub-structural as they lack certain struc-
tural rules present in classical logic and are thus considered weaker than classical
logic. It is beyond the scope of this work to review the enormous body of work
on these logics. This section only serves to highlight the mechanics of the for-
mulations of relevant logics, and thus the inspiration of the work in this paper.
Of central importance to relevant reasoning is the Relevant Deduction Theorem
which states that any deduction made is always relevant with respect to the
hypotheses, that is, every hypothesis is actually used to make that deduction.
The reader is referred to work by Anderson et al. [1] and Dunn [11] for a more
comprehensive overview of relevant logic.

The practicalities of a relevant logic require some kind of formulation for rea-
soning relevantly (e.g. Hilbert, Natural Deduction). This idea is not restricted to
relevant logics. It appears, in various forms, in intelligent backtracking schemes.
It is also a common method to keep track of assumptions or hypotheses in (classi-
cal) logic textbooks (e.g. Lemmon [19]), though the original idea appears to date
back as far as work by Gentzen in 1934 (see [11]). The work in this paper is also
influenced by the freer nature of the systems that are used to express relevant
logics (i.e. Natural Deduction). More mechanised tableaux systems have been
formulated for relevant logics, though they are more complex than their clas-
sical tableaux counterparts [24, 25], largely due to the sub-structural nature of
the logics. Alternative algorithmic approaches for non-classical logics have also
been investigated [28]. It is finally noted that mechanised implementations of
relevant logics exist [38, 7, 34], but such approaches would be impractical for the
purposes of propositional satisfiability. The aims of a relevant theorem prover
are far different to the highly tuned nature of solvers for clausal propositional
satisfiability.

While the concept and mechanics of deductions sets have been taken from
Hilbert or Natural Deduction formulations of relevant logics, exposing the re-



lationships of relevant logics to this work are the subject of a separate work.
It can be demonstrated that a fragment of the relevant logic RI is sufficient
to compute propositional satisfiability, requiring only an additional linear space
cost. The effect is that an intelligent backtracking scheme is ensured purely due
to the nature of the logic. Further details can be found in [36].

2.3 An Overview of Intelligent Backtracking Techniques

Intelligent backtracking techniques arise from the observations of thrashing in
traditional backtracking techniques. In terms of refutation proof construction,
an arbitrary mechanical order of assumptions is not necessarily the most efficient
way to construct a proof.

Several methods appear in the literature, many of which are variants of a
few central methods. This section discusses the core approaches for intelligent
backtracking schemes. In introducing some of these algorithms the concept of
dependency sets and relevant deduction is used. Where necessary the appro-
priate distinctions between this and the original approach will be made. The
reader is also referred to Baker’s thesis [3] which chronologically reviews funda-
mental intelligent backtracking techniques and the kinds of thrashing that they
eliminate.

Backjumping Backjumping is the original approach for eliminating redundant
conclusions devised by Gaschnig [12, 13]. This approach tested for redundancy
at the leaves of the search tree. The method was improved by Prosser [30] in
the system he named Conflict Directed Backjumping (CBJ). CBJ performs the
redundancy checks at each backtrack point. This method will be described in
terms of relevant deductions below. Both Gaschnig and Prosser recognised that a
variable may be irrelevant in reaching a contradictory conclusion. The difference
between relevant deduction and their techniques is that there is no distinction
between the deduction of a variable and an assumption. This is the central
difference between the approach presented in this work and all other intelligent
backtracking systems. It should be noted that the earlier algorithms were devised
for constraint satisfaction problems and that no other logical interactions (e.g.
operations like Unit Propagation) were considered as potential additions to the
algorithms. This particular issue will be discussed further below. One further
technical difference with the algorithm presented in this paper is that dynamic
modification of a single copy of the formula is performed, rather than making
copies or copying via the call stack. This is also discussed in detail below. The
backjumping algorithm presented below is, in all other ways, equivalent to the
original formulation (CBJ) by Prosser.

Backjumping search in the tree is executed in the same way as the DPLL
algorithm. The difference is that, since each deduction has an associated set of
assumptions used to derive it, the backtrack action can check to see if a backtrack
point in the search is relevant, and thus can eradicate it by “jumping” over it.
The DPLL procedure is essentially a proof by refutation and the empty clause,



(), denotes contradiction (thus RAA can be applied). The dependency set for
that clause contains all the assumptions that were used to derive it.

Relevant Formulated Backjumping The backjumping algorithm operating
with dependency sets of assumptions is shown in Algorithm 1 and is named
BJDP (). The algorithm is designed for presentation and it is noted that several
aspects would not be so explicit in an efficient machine representation. This is
generally the case for algorithms presented in this paper. The logical notation
used previously is extended in the pseudo code to allow the colon,:, to denote
a type which is a pair of types. This is used to provide a simple notation for
pairing clauses or literals with dependency sets.

This version of the backjumping algorithm receives two parameters. The first
is the formula to be tested which consists of a set of clauses. Each clause has an
associated dependency set and this is represented as C : D, where C is the set
of literals in the clause and D is the set of assumptions used to deduce the state
of that clause. The formula in the pseudo code represents a set of these pairs. In
this algorithm the deductions are performed in the UnitPropagation() routine
which is discussed later. The second parameter to BJDP () is a set of assignments
made which serves to record and perhaps report a satisfying assignment.

In the algorithm presented the parameters are passed by reference. This
means that there is a single copy of the formula and assignment state, and it
is up to the routine to preserve consistency between calls to the routine. Alter-
native implementations or descriptions may use the call-stack or make separate
copies in order to return the formula to its original state [6], i.e. call-by-value,
which is far simpler. The method presented here emulates the call stack and
maintains consistency by “undoing” changes made to the formula and uses the
UnPropagate() routine to execute it. While this method is somewhat more com-
plex, it can be far more efficient, and proves extremely useful for creating the
relevant style backtracking system described in Section 3.

The routine returns a dependency set upon completion. The idea here is that
it reports the assumptions used to refute the search tree created by that call to
BJDP . A special return value SATISFIED signifies that the call identified a
satisfying assignment which is recorded in A. If the given formula is unsatisfiable
it will finally return an empty set.

Lines 1–5 perform a check on the initial formula. If the formula contains an empty
clause then the assumptions used to derive it are returned. If the formula is satisfied
then the special value SATISFIED is returned. For the purposes of this paper the
routine Satisfied(F ) is true when all clauses in formula F are subsumed by the current
assignment state, and the routine Empty(c) is true when there are no literals in the
clause c that can be assigned to make the clause satisfied. These can be performed
using whatever mechanism is appropriate to the implementation.

Lines 6–8 select an assumption and propagate its effect on the formula (and
assignment state). The UnitPropagate() routine receives the assumption chosen and
the corresponding dependency set (i.e. a → a). This assumption branch of the search
tree is executed with a recursive call to BJDP (). The assumptions required to form a
refutation proof from this point are returned to the dependency set D.



Algorithm 1 Using dependency sets with a backjumping algorithm

DependencySet BJDP(Formula F, AssignmentState A)
1: if exists c : D ∈ F such that Empty(c) then

2:
3: return D
4: else if Satisfied(F ) then

5:
6: return SATISFIED
7: end if

8: a← ChooseAssumption(F ) {Select an assumption ’a’}
9: UnitPropagate(a, {a}, F, A)

10: D ← BJDP (F, A)
11: if D 6= SATISFIED then

12: UnPropagate(a, {a}, F, A)
13: if a ∈ D then

14: D
a
← D − {a}

15: UnitPropagate(a, D
a
, F, A)

16: D ← BJDP (F, A)
17: if D 6= SATISFIED then

18: UnPropagate(a, D
a
, F, A)

19: end if

20: end if

21: end if

22:
23: return D



Lines 9–20 check the relevance of the assumption made and perform the clean up

when necessary. If the formula has not been satisfied then the effects of the assumption

a are removed. Here it is deemed unnecessary to perform any extra work when the

formula is satisfied since all that is required is to report this fact and the satisfying

assignment (or counter model in the case of proof search).

The relevance is checked by determining whether a was used in the refutation
proof after it was assumed. If a was not used then it is not necessary to explore
the branch a, since it can be closed with the same proof found under a. If
a was used (was relevant) then the deductive branch a must be explored. This
deduction is dependent on those assumptions required to close the proof beneath
assumption a, hence a : D − {a} so the effects of the deduction are made and
the deduction branch is executed (Lines 12-14). This second recursive call to
BJDP () returns the dependency set for the branching point. Note that the
dependencies for closure under both the assumption and deduction branch are
returned as long the dependencies for a are actually used in the deduction branch.

Relevant Formulated Unit Propagation Unit propagation is central to the
efficiency of DPLL style algorithms. The “relevant” version differs only from the
original by keeping track of the effects of logical operations on the dependency
sets. The corresponding unit propagation procedure, UnitPropagate(), is listed
in Algorithm 2, and this shows how the operations on the dependency sets occur.
For brevity we only discuss the differences between this version of unit propa-
gation and the basic form. As in BJDP () the parameters of the formula and
assignment state are passed by reference.

Subsumption is performed with MarkSubsumed(Clause c) by incrementing
a subsumption count that is associated with each clause. When the count is non-
zero the clause is subsumed. A formula is satisfied when all the clauses it contains
have a non-zero subsumption count. Unit resolution is performed by marking a
literal as inactive in a clause. We consider a clause c (disregarding dependency
sets for the moment) to be partitioned into two distinct subsets: i)Active(c) con-
tains the remaining literals of the clause and ii)Inactive(c) contains those liter-
als eliminated by Unit Resolution. The routine MarkInactive(Literal l, Clause c)
moves the active literal l from the active set to the inactive set for that clause
c. A clause is empty when the active part is empty. The corresponding “undo”
operations for these routines take the same parameters and just reverse the ef-
fects of the “marking”. When a new unit is found it is marked as “the standing
derivation”. The details and reasons for this are discussed below.

The unit propagation scheme discussed here is more than is required for
a simple backjumping algorithm, though the essentials for the simpler version
should be apparent. It uses a single copy of the formula which may then be
efficiently traversed using literal indexing techniques. The extra cost of having
to repair the formula later should not be too great, as one should expect (on
average) that the changes made are only a fraction of the formula itself. Dynamic
modification of the formula also avoids the reliance on the actual depth of the



search tree (call-stack) for the state of the formula. This issue is revisited later
when a general relevant backtracking algorithm is devised.

Algorithm 2 Unit propagation for the backjumping algorithm

UnitPropagate(Literal a, DependencySet D,
Formula F, AssignmentState A)

1: A← {a} ∪A
2: for all c : E ∈ F such that a ∈ c do

3: MarkSubsumed(c : E)
4: end for

5: for all c : E ∈ F such that a ∈ c and Subsumed(c) do

6: MarkInactive(a, c : E)
7: E ← E ∪D
8: end for

9: for all c : E ∈ F such that a ∈ c and Subsumed(c) and Active(c : E) = {x} : E
do

10: MarkAsStandingDerivation(x : E)
11: UnitPropagate(x, E, F, A)
12: end for

Lines 2–4 perform unit subsumption by marking as opposed to deletion.
Lines 5–8 perform unit resolution using the marking technique discussed above.

Syntactically, for CNF formulae, the relevant Modus Ponens is applied in the form of
a disjunctive syllogism. Those assumptions used to derive a (i.e. D) are now included
in the assumptions that yielded c (i.e. E).

Lines 9–12 ensure that new units created as a result of unit resolution are also

propagated. The dependencies of a new assignment are those assumptions which were

used to derive that unit clause. At this point units can only have been created by

the prior step of unit resolution, hence we only consider those clauses which contain

a (which can be indexed). A unit occurs when the active part of a clause, Active(c),

is of size 1. The derivation of this unit, composed of the unit and its dependency

set, is marked as the standing derivation of that unit value. This is used to keep the

dependency sets consistent (see below).

The discussion above shows a method for the dynamic control of the for-
mula’s clauses, but excludes details of using dependency sets. Each time a unit-
resolution is made the resultant clause depends on the union of the dependency
sets of its parent clauses. Undoing this operation is not quite so simple. Consider
the problem where the formula contains

(a ∨ b) : {x, p}, (b ∨ c) : {x}

If a is assumed the result is

(b) : {x, p, a}, therefore (c) : {x, p, a}

but subtraction of the dependency sets when removing the assumption a yields

(a ∨ b) : {x, p, a} − {a}



but since the derivation of b depended on {x, p, a}

(b ∨ c) : {x, p, a} − {x, p, a}

which is wrong as we lose dependency information. The solution is to use a
multi-set so that after assuming a we get

(b) : {x, p, a}, (c) : {x, x, p, a}

and using simple multi-set difference returns the dependency (multi)set to its
original value {x}. In an implementation the multi-set need only store a count
of occurrences for each member. This is a linear cost to the number of variables
in the formula. Note here that the use of a multi-set representation is only nec-
essary at the level of reasoning (i.e. unit propagation), and that at the backtrack
algorithm level we may, for simplicity, convert any derived dependency multi-sets
to simple sets before they are used.

A unit can be considered to be a derivation. For example, if (x) : {a, b, c}
then (a & b & c) → x. It is possible that a unit has more than one deriva-
tion. It is also possible that the undo process discovers an alternate deriva-
tion before it discovers the derivation used by the unit propagation procedure.
Undoing the effects of a derivation must correspond to the original derivation
used. The unit propagation procedure selects the first derivation found. Once
propagated, this unit subsumes all other possible derivations, and therefore a
unit is never derived twice. The first derivation found during unit propaga-
tion is marked as the standing derivation by marking that clause (Algorithm 2
uses MarkAsStandingDerivation()). Once a unit is marked it remains the only
derivation considered for that unit. The undoing process only executes a recursive
UnPropagate() (Algorithm 3) call for a unit that was the standing derivation.
This ensures that the correct dependencies are removed from all clauses affected
by the instantiation of that unit.

The procedure for undoing unit propagation, UnPropagate(), is shown in
Algorithm 3. It reverses the effects of unit propagation. If the assumption being
removed was used in a standing derivation then that derivation will be found in
the traversal of the implications that resulted from that assumption i.e. it is found
during the process of undoing all unit resolutions caused by the assumption.
However, it does not matter if it is traversed in a different order, as long as the
correct dependencies are used when a unit is withdrawn.

Dependency Directed Backtracking Dependency Directed Backtracking is
an intelligent backtracking method which addresses the problem where, in a stan-
dard DPLL style search, a particular contradiction may be discovered over and
over again. This method, due to Stallman and Sussman [37], records informa-
tion about discovered contradictions as an extra clause which is called a no-good.
The set of no-goods is considered to be part of the formula for the remainder of
the search. Again this method makes no distinction between assumptions and
deduced information. For example, using the notation described in this paper,



Algorithm 3 Undoing unit propagation for the backjumping algorithm

UnPropagate(Literal a, DependencySet D,
Formula F, AssignmentState A)

1: for all c : E ∈ F such that a ∈ c and Active(c : E) = {x} : E and (x 6= a)
and IsStandingDerivation(c : E) do

2: UnMarkAsStandingDerivation(x : E)
3: UnPropagate(x, E, F, A)
4: end for

5: A← A− {a}
6: for all c : E ∈ F such that a ∈ c do

7: UnmarkSubsumed(c : E)
8: end for

9: for all c : E ∈ F such that a ∈ c and Subsumed(c) do

10: MarkActive(a, c : E)
11: E ← E −D
12: end for

suppose a contradiction is derived

() : {a, b, c}

then by adding a clause

(a, b, c)

it is guaranteed that the search will not repeat exploring the search space re-
quired to justify that clause.

The drawback to the method is that it may use an exponential amount of
space in recording the no-goods. The search algorithm is required to check more
clauses each time a no-good is added.

The notion of bounding the amount of space used by no-good clauses is
defined in the approach k-order learning, due to Dechter [10]. This method limits
the size of a no-good to some fixed k, and is bounded by a polynomial. Other
methods include the deletion of no-goods which are irrelevant [3, 6]. Bayardo and
Schrag use relevance-bounded learning [4] which, for some fixed k, limits the size
of a no-good to k, but also requires that assignments to variables relevant to
that no-good have changed [6]. This means that the no-good is discarded once
the search leaves the space relevant to that no-good.

Successful implementations of satisfiability solvers that use Dependency Di-
rected Backtracking generally use a learning method to control its behaviour
[40, 22, 6]. It is generally used as an adjunct technique, i.e. in combination with
choice heuristic or other search strategies. In this paper the method of recording
clauses or no-goods is considered to be a useful, but adjunct, technique of intel-
ligent backtracking. The idea of remembering sub-proofs is not excluded by the
framework discussed in this paper, as the use of the Implication Introduction
rule suffices. The real challenge is to identify a good learning technique to keep
the best no-goods, or subproofs, and discard less useful ones. There are other



successful approaches that use unbounded Dependency Directed Backtracking
and these are discussed in Section 2.3.

Dynamic Backtracking Dynamic Backtracking (DB) is another intelligent
backtracking method motivated by the potential problem of losing work when
backtracking over it [14]. Consider the case where backjumping discovers a con-
tradiction deep in the search tree but can jump back over many assumptions
and their related parts of the search space. When they are jumped over they are
lost. Yet this work may be repeated in order to complete the search. Dynamic
Backtracking addresses these issues.

The procedural method of Dynamic Backtracking is iterative, compared to
the usual recursive formulations of backtracking procedures. It utilises a two-
dimensional array of binary no-goods or culprits to guide a systematic search
through a novel construction of the search space. The culprits array represents
the cross product of all values each variable may take. Thus conflicts may be
recorded in a pairwise fashion. The algorithm essentially emulates the call stack
of a traditional backtracking function storing the variable order, then the corre-
sponding dependence information can then be extracted from the culprits array.
This permits intermediate computation to be retained rather than erased upon
backtracking. This method has been shown to be useful on some domains of
constraint satisfaction problems (CSPs) like crossword solving [14]. The method
also allows some freedom of backtrack point choice.

Like the other intelligent backtracking methods discussed previously DB
makes no distinction between assumptions made and implied information. When
recanting an assumption a possible effect is that any implied information is
retained (e.g. new assignments by Unit Propagation). This kind of behaviour
means that the implied information does not have to be recomputed. This may
not always be useful as the search will treat the remaining implied assignments
as assumptions, thereby increasing the search space. Due to this reason, a trans-
lation of this algorithm to the framework of dependency and refutation proof sets
is difficult, and so is omitted. Baker observed the problem of retaining implied
information when experimenting with propositional satisfiability problems using
DB [2, 3]. To solve the problem Baker implements an adjunct erasing routine
to clean up implied units gained via unit propagation. This yielded somewhat
better results for DB when compared to backjumping on hard random 3-SAT
problems [3].

While the general form of DB may be better suited to certain domains of
CSPs, it is an important development as it re-addresses the problem of search
space construction and recognises that seemingly irrelevant but expensive work
may not be irrelevant later in the search. It has also led to some other interesting
methods in the realm of search strategies, as outlined in the next section.

Partial Order Backtracking Systems Partial Order Backtracking (POB)
systems observe and maintain a “partial order” of branching variables when
executing an intelligent backtracking search, giving it the ability to select a



backtrack point from those variables involved in creating a conflict, limited by
the partial order information. This concept appears to have started with work by
Bruynooghe et. al. [8, 33] who develops a traditional backtracking scheme utilis-
ing partial ordering. This is akin to keeping track of dependence, or partitioning
related conflict information. McAllester developed the Partial Order Dynamic
Backtracking (PODB) algorithm [23] which extends DB, an approach which
retains completeness and a polynomial bound on the amount of information
recorded during the search and gives significantly more freedom of movement
during search. The work presented in this paper also takes advantage of the par-
tial order in variable dependencies, though in a distinctly relevant fashion. Due
to the complexities of these approaches a discussion and comparison is delayed
until Section 3.7.

Other Related Work The successes of incomplete or local search methods
have inspired some research into the hybridisation of non-systematic random
exploration search algorithms with the systematic schemes of backtrack pro-
cedures. With a greater degree of freedom backtracking can be “restarted” in
a different region of search space. Incomplete methods exist (e.g. [18]), but a
further challenge has been to devise a complete method.

Ginsberg and McAllester [15] investigate and compare the search behaviours
of both Dynamic Backtracking and Partial Order Dynamic Backtracking with
the stochastic but incomplete search behaviour of the GSAT algorithm [35]. They
also develop an approach that extends the abilities of Partial Order Dynamic
Backtracking which has greater freedom of movement, but requires exponential
space [15].

Richards developed a system which combines the ideas behind randomised
and local search methods with the ideas of no-good recording. The space required
may be exponential but the search is complete [31, 32]. The core idea behind
these methods is this: retain the randomised technique of traversing the search
space, but ensure completeness by recording which areas have been searched.
A no-good can record where search has been done, and processing of the no-
good set (e.g. subsumption) can help to control its size. These kinds of systems
have been shown to be competitive with other complete backtracking methods
[31] by taking advantage of the abilities of random search. Recording clauses to
map the traversal of search space has been shown to be incredibly successful
within the implementation of the satisfiability system zchaff for a wide variety
of practical benchmark problems [26]. Such systems still use traditional search
tree construction methods, but can restart the search and guarantee termination
by recording the space already searched as new clauses.

These approaches are hybrids inspired by non-systematic approaches to search.
While this paper centres around systematic methods of the actual proof tree con-
struction, these hybrid methods are mentioned because of their ability to move
about in the search space. Hybridisation of such techniques with the relevant
reasoning framework is a topic of further work.



3 Relevance for Backtracking

The usefulness of intelligent style backtracking has been shown by several previ-
ous approaches, many of which address different redundancy problems in proof
tree (search space) construction. The methods often differ in nomenclature and
description, but these ultimately serve similar purposes. With a somewhat longer
history, the practical use of relevant logics has required that the mechanisms
that monitor relevance be captured for use within the formal logical systems,
i.e. Hilbert style or Natural Deduction systems. This section describes a “Davis-
Putnam style” algorithm that is motivated by relevant deduction systems, and
yields a relevant backtracking algorithm for CPL. Using a relevant logical system
yields a framework that can be used for many search algorithms. We present a
basic DP based search algorithm which has similar capabilities to its predeces-
sors, and is described with a straightforward logical system, reminiscent of its
relevant logical roots and corresponding formulations. The system presented has
the advantage of simplicity, while its malleability yields an ability to both answer
and ask further questions about the capabilities of intelligent backtracking algo-
rithms. Initially the system, with formulation, is described and its capabilities
noted. A mechanised strategy is demonstrated, and a search algorithm is then
shown.

3.1 Mechanised Relevant Reasoning

In a system of Natural Deduction there is considerably more freedom in con-
structing a proof. This freedom may be desirable for a mechanised proof by
refutation system. In this section we will introduce some basic concepts and
mechanics of freer reasoning.

A Basic Formulation A simple pseudo-relevant system, for refutation proof
or satisfiability checking of CNF formula, and corresponding to DPLL, can be
defined by supplying the following rules:

RAA reductio ad absurdum, the mechanism of refutation.

UR unit resolution, which is the disjunctive syllogism form of MPP.

US unit subsumption, used in order to monitor the state of the formula with
respect to the assignment state of the variables, thus providing a simple
mechanism to detect a counter model or satisfying assignment.

We further define the function

UP(a) which performs all possible applications of UR and US using the (unit)
value a. Furthermore it is recursively applied to any unit values resulting
from those operations. This function corresponds to the Unit Propagation
procedure of a DPLL algorithm.



All of these rules are based on relevant formulations as discussed in Section
2.2. Note that in the following discussion, the concept of refutation proof con-
struction is used, and in this case the “ given formula” will be the negation
of the hypothesis. In terms of satisfiability checking, the process corresponds
to searching for or constructing a proof that the given formula is unsatisfiable,
and thus the refutation system attempts to show that the negation of the given
formula (the hypothesis) is a theorem. The assignment state records the values
assigned to variables during the search process. It also serves as a counter model
or satisfying assignment when the refutation proof fails.

Atomic assumptions can be made, and this will change the assignment state.
Both UR and US are operations on atomic objects (i.e. units) and therefore can
only be invoked when the assignment state changes (e.g. when an assumption
is made or some unit is implied by rule application). Within this system the
following restriction is made:

Restriction 1: On changing the assignment state (e.g. making an as-
sumption) the state of the given formula must be completely consistent
with that change with regard to UR and US. That is, all possible UR
and US operations resulting from the introduction of the assumption (or
deduction) must be made. Enforcing this restriction for an assumption
a corresponds to performing UP(a).

After enforcing this restriction the formula may contain (multiple) contradic-
tions, i.e. empty clauses with associated dependencies. The usage of RAA is
considered later.

Erasing and Consistency In the course of creating a refutation proof with
this system, assumptions are recorded in a list. The list is ordered from first to
last assumption. For example,

T = [a, b, c, d, e]

indicates that 5 assumptions were made, the last being e.
The given formula will be consistent with all the assumptions made so far,

according to Restriction 1. The “list” actually represents proof progress and is
directly analogous to a search tree. However, this will be examined further on.

For simplicity, at this stage in the discussion, only logically consistent for-
mulae are considered, i.e. cases where the formula does not contain any empty
clauses. Now suppose that we decide that one of the assumptions (say b from the
example) was not necessary and we would prefer to remove it altogether. How
can this be achieved without “backtracking”, in reverse chronological order, to
b and starting again? Normally we would have to perform this as the clauses
subsumed by b may be affected by the assumptions made afterwards, both by
US and UR, and Restriction 1 must be enforced. The way to solve this prob-
lem efficiently is to return to the ideas in Section 2.3 so that the assumption
can be immediately undone, yet the formula remains consistent with respect to
Restriction 1.



Consistence with respect to US: First we treat subsumption by marking a
clause as subsumed for every assumption made, regardless of whether it is al-
ready subsumed. Algorithm 2 achieves this by using a subsumption count for
each clause. Thus any clause subsumed by an assumption, or its unit impli-
cants, that is later subsumed by another assignment, remains subsumed when
the subsumption count is decremented.

Consistence with respect to UR: The second problem is to ensure that clauses
that will no longer be subsumed remain consistent with the state of the for-
mula. This can be achieved by applying unit resolution on clauses that have
already been subsumed, thereby keeping them up to date. If we remove the
test Subsumed(c) on line 5 in Algorithm 2 the active and inactive partitions
of the clause reflect the state of the formula, disregarding subsumption. The
corresponding undo operation must also be modified in the same way (line
9 of Algorithm 3). We will call these new algorithms UnitPropagate′() and
UnPropagate′() which include the performance of unit resolution on subsumed
clauses. Note that for a subsumed clause the subsuming variable will always
remain in the active partition of the clause, and will never be resolved away.
Thus the clause will never qualify as a candidate for unit propagation, as it is
subsumed. In terms of cost the revised operations may be slightly more expen-
sive as they will always perform a write (the UR operation) rather than a read
(subsumption check) followed by the possible write to memory.

Undoing unit resolution operations only eliminates derivations, and their
associated dependencies, which relied upon the assumption being removed. It
essentially follows a syntactic trail. It also removes the effects of all the standing
derivations that relied upon it, i.e. all implied units that were found directly
after the assumption, as well as those that were later derived via other assump-
tions (see discussion in Section 2.3). As discussed earlier, it is possible that
an independent derivation of the assumption or any of its implicants exists,
though this unit clause and its dependencies will have been subsumed by the
first derivation. However, this independent derivation may not rely on the as-
sumption being removed. Indeed it is possible that an independent derivation
made by other assumptions later in the list may exist. This is dealt with when
regarding consistence with respect to UP.

Consistence with respect to UP: On undoing the effects of the assumption, the
clauses that were affected by UR and US will be consistent with the assignment
state. However, the possibility of unit clauses from the reinstantiated subsumed
set means that Restriction 1 is broken, since had these unit clauses not been sub-
sumed they would have been propagated when they were derived. The solution
to this problem is to perform a post check for unit clauses that are not subsumed,
and propagate them (as the Standing derivation) along with their dependency
set. Note that there may be more than one derivation for a subsumed unit,
and one may be more optimal than another. Algorithm 4 (UndoAssignment()),
presented below, simply chooses the first derivation found. This becomes the
standing derivation for that unit’s value. The algorithm uses the UnPropagate()



routine as defined in Algorithm 3. Modification of the proof progress list is left
until later.

Algorithm 4 Dynamically undoing an assignment consistently

UndoAssignment(Literal : DependencySet a : D,
Formula F, AssignmentState A)

1: UnPropagate′(a, D, F, A)
2: while there exists c : E ∈ F such that Subsumed(c) and Active(c : E) = {x} : E

do

3: MarkAsStandingDerivation(x : E)
4: UnitPropagate′(x, E, F, A)
5: end while

Using Reductio Along with assumptions, assertions of an assignment via refu-
tation (i.e. uses of RAA) are stored in the list, along with their respective de-
pendency sets. Storing of dependencies for assumptions is trivial (they depend
on themselves) and is omitted in the examples. We now make a second simple
restriction on this refutation system:

Restriction 2: If the given formula is consistent with the assignment
state, and it contains an empty clause, then RAA must be applied. There
is one exception: if the formula contains an empty clause which has no
dependencies (i.e. the case where RAA cannot be applied to refute an
atomic proposition), then this acts as the refutation for the given for-
mula, i.e. the formula has implied contradiction, independent of anything
else.

This restriction maintains logical consistency. Note the following: If an empty
clause is derived then it must be a consequent of the most recent assumption, or a
consequent of the most recent application of RAA. Therefore it will only require
at most one change in the assignment state for that empty clause to return to
logical consistency. For the purposes of the notation we allow the empty clause
(falsehood) to appear temporarily in the list, but given Restriction 2 it must be
acted upon.

An assumption frame is defined as any sequence of contiguous assumptions
in the list, and should formally be considered as a set. Sequences of assumptions
are broken by an instance of RAA in the list (though in the examples below we
break them with instances of contradiction, i.e. pre-RAA, to aid explanation).
Suppose we have the proof progress list T = [a, b, c, d, e] and that a further
assumption of f yields the empty clause () : {a, c, e, f}. This may be represented
(temporarily and for the purposes of explanation) in the proof progress list as

T = [a, b, c, d, e, f, () : {a, c, e, f}]



but Restriction 2 requires some action to be taken. The entire list represents
an assumption frame, ending with the empty clause, or falsehood. Using the
results in the last section we know that we can erase any of the assumptions
we choose and still get a formula consistent with the other assumptions without
backtracking. Therefore we may apply RAA and recant any assumption required
to derive the empty clause. If we choose e, we erase the assumption and assert
e. A third restriction regarding the placement is made:

Restriction 3: Any instance of a derivation via RAA in the proof
progress list must appear after any assumption used to derive it.

The important point here is that swapping elements in the list only needs to
comply with Restriction 3. A hierarchy is beginning to emerge, but this will
be detailed later. Further note that while swapping strategies may make the
list more “readable”, or more efficiently manipulated by a machine (in light of
some set of operations), a second version of some list with assumptions swapped
around (complying with Restriction 3) will still be equivalent, in terms of proof
search state, to the original list.

The example list is now

T = [a, b, c, d, f, e : {a, c, f}]

and this illustrates a simple example of choosing a backtrack point. This ability
is extended later.

Given the notation of the list, clearly the aim of the refutation proof is to
get an empty clause with no dependencies, thus using the notation T = [. . . , () :
{}, . . .] (noting that this contradiction can be moved anywhere in the list). This
can be interpreted as F → () (the given formula F implies falsehood). The
definition of a complete system is delayed until a few more issues are addressed.
Before that, another example is illustrated: Suppose we have a different situation
and the list is

T = [a, b, c, d, e, f, () : {a, c, f}]

The assumptions e and f are interchangeable in the list. Changing their position
does not change the state of the formula, and if one is undone then the state
of the formula is consistent with the remaining assumptions. So, we could have
assumed f before e anyway, and changing them now won’t make any difference
in the greater scheme of things. Suppose that f is chosen as the candidate for
RAA. The ability to swap within the assumption frame allows us to place the
instance of RAA before e, but after f (according to Restriction 3). So the list
becomes

T = [a, b, c, d, f : {a, c}, e]

but we might as well have swapped some of the other irrelevant assumptions
around as well and produced

T = [a, c, f : {a, c}, b, d, e]



since we could have generated the refutation of f by only assuming a and c, and
then made the other (irrelevant) assumptions afterwards. This example shows
that the refutation derivation can be “pushed” over the irrelevant assumptions.
This directly corresponds to the backjumping mechanism, where the backtrack
refutation action happens above irrelevant assumptions by “jumping” over them.
The example also shows that, in contrast to backjumping, the irrelevant assump-
tions are kept. This partially corresponds to the effects of Dynamic Backtracking
which keeps all work not related to the “conflict” variables. The relevant reason-
ing method differs in that it does not keep any information that was implied by
the assumption chosen for refutation, as it would be inconsistent with the no-
tion of relevance used in this system. If f implied some interesting information,
then we can assume those implicants, in their own right, next. The remaining
irrelevant information may be drawn into the proof later via dependencies.

When an assumption is recanted, that is, it is chosen as a candidate for RAA,
the fact that it may have been used in a derivation of some other refutation must
be accounted for. In this case all instances of RAA that depend on the assump-
tion being recanted must be removed during the process of undoing the effects of
that assumption. Erasing an instance of a refutation assignment is simple – it is
erased like any assignment. The removal procedure simply follows the syntactic
trail of the literal in question, and its corresponding dependencies are taken with
it. So during refutation we scan the list, from end to beginning, and remove any
refutation assignments that depend on the assumption about to be removed,
and also undo the assignment itself. This simple procedure, excluding any other
possible proof rearrangements, is outlined in Algorithm 5 (Recant()). Note that
for simplicity the refutation is inserted into the proof progress list at some po-
sition determined by the routine Insert(). For the purposes of consistency this
routine need only comply with Restriction 3, however in Sections 3.3 and 3.4
this is revisited in far more detail.

Algorithm 5 Recanting an assumption

Recant(Literal x, DependencySet D, ProgressList T ,
Formula F, AssignmentState A)

1: for all c : E ∈ T such that x ∈ E do

2: UndoAssignment(c, E, F, A)
3: end for

4: Insert(x : D − {x}, T )
5: UnitPropagate′(x, D − {x}, F, A)

Within the proof progress framework alone, assumptions and indeed refuta-
tions, can be rearranged in the list as long as Restriction 3 is adhered to. For
example,

T = [a, b, c, d : {a, b, c}, e, f, g : {b}]



may be rearranged into

T = [b, g : {b}, a, c, d : {a, b, c}, e, f ]

Although the ordering of assumptions is important, it is only important with
respect to the derivations which relied upon those assumptions, i.e. use of RAA.
Note that the use of rules such as MPP encode the required dependencies so
that, if the rule was used in the course of deriving an instance of RAA, the
assumptions required are passed on.

Rearranging the list can be seen as a consistent method of rearranging the
(partial) proof. Moving instances of RAA to earlier positions in the list is anal-
ogous to “lifting a sub-proof”. Using such a feature should aim to reduce the
resultant proof size, though it may have other applications such as stochastic
proof rearrangement in local search.

3.2 The T Tree

The logical system and formulation so far described contains operations that
directly correspond to a DPLL style search (e.g. UP), but the mechanics of
the formulation have some extended capabilities such as proof rearrangement
and backtrack point choice. The proof progress list is by no means an obscure
abstraction, and the more traditional representation of a search tree can easily be
extracted from it. The assumption entries represent the left going, or assumption
branches, and the instances of refutation represent the right going, or deduction
branches.

An example is shown to illustrate the analogy as well as the concept of rear-
rangement in tree representation. Figure 3.2 shows a rearrangement example that
corresponds to a possible rearrangement strategy that prefers to push smaller
refutation sub-proofs up. A contradiction is identified at the bottom of the left
hand tree, and b is chosen as the assumption to recant. The result is shown in
the right hand tree. The effect of the rearrangement strategy is to keep relevant
assumptions together (in assumption frames) and push the current point in the
proof tree further into search space, a concept dealt with in the next Section.

3.3 Termination and Choice

The sections above have described a system for consistent refutation style reason-
ing for CNF formulae. There may be proof strategies like moving smaller proofs
up higher, but technically this is in the realm of heuristics for backtrack point
choice (logical consistency remains the same wherever a refutation appears in
the list, noting Restriction 2). A complete method of proof construction requires
a strategy or mechanism which guarantees termination. In this section a basic
strategy is shown. The strategy calls for a further restriction on rearrangement
of the proof progress list (or search tree) to guarantee that progress in the search
space is actually being made.



d

c

d̄:fa, b, cg b

ga

b

g

Closed

Closed

Closed

e

f f̄:fa,c,eg f f̄:fa,c,ege

c

a

b̄:fgg
Closed

T=[a,b,c,d̄:fa,b,cg,e,f̄:fa,c,eg,g,():fg,bg]():fg,bg
T’=[g,b̄:fgg,a,c,e,f̄:fa,c,eg]

Rearrange to refute b

Continue...

Fig. 1. The diagrams illustrate the analogy of the search tree to the proof progress list.
At the bottom of the left hand tree a contradiction has been found. The right hand
tree is a rearrangement where the assumption b is refuted by that contradiction.

Consider a function Position(T ) of the proof progress list which returns a
binary number (an integer), or string of 0s and 1s. The total number of digits in
this value is fixed to n, the number of variables in the given formula. The list T is
read from left to right. Each assumption entry produces a 0, and each refutation
entry produces a 1. If the length of T is x, then the remaining n − x digits are
padded with 0s. The function Position(T ) corresponds to calculating the integer
valued position in the search space represented by the analogous search tree of
T (as highlighted in the previous section).

When the search begins Position(T )’s value contains only 0s. This includes
the case where assumptions were made which did not lead to a refutation, i.e. got
us nowhere. In the worst (and highly unlikely) case, the search must terminate
when Position(T )’s value contains only 1s. In this case i) every single assignment
has been made via refutation, ii) there are no assumptions so every dependence
set for the refutations is empty, and finally iii) the assignment state satisfies the
formula if and only if the current state of the formula does not contain an empty
clause.

So, progress in constructing a proof could be measured by comparing Position(T )
to Position(T ′) for a rearrangement represented by T ′. Therefore the following
restriction is made



Termination Strategy In the course of a proof the proof progress list
T may only be rearranged to T ′ if Position(T ′) > Position(T )

What does this mean for our system? It limits the choice of backtrack position.
Some examples show the effects. Note that both lexicographic or integer com-
parisons can be made when determining the validity of a rearrangement. The
following rearrangement,

[a, b, c, f : {a, b, c}, d, e, () : {a, c, e}] to [c, e, a : {c, e}, b, d]

(i.e. 0001 . . . to 001 . . .) is allowed, but

[a, b, f : {a, b}, c, d, e, () : {a, c, d, e}] to [c, d, e, a : {c, d, e}, b]

(i.e. 001 . . . to 0001 . . . ) and

[a, b, c, f : {a, b, c}, d, e, () : {a, b, c, e}] to [b, c, e, a : {b, c, e}, d]

(i.e. 000100 . . . to 00010 . . .) are not. If we define a routine to make a heuristic
selection of the backtrack point (i.e. the assumption to be recanted), it must
return a point which will comply with the Termination Strategy.

A simple approach may be to take a copy of the proof progress list, and
perform a list rearrangement. Nothing is modified except the copy of the progress
list. To test whether refuting a yields a valid backtrack point we perform the
rearrangement and then evaluate Position(Ta) > Position(T ).

Note there is an alternate method that does not require copying the progress
list. This is obtained by observing the pattern of assumptions and refutations
in the proof progress list. Treating the contiguous assumptions as assumption
frames (see Section 3.1) it is possible to show that a new assumption frame (and
the corresponding new refutation) cannot be inserted above an assumption frame
which is smaller (in the number of assumptions it contains). The possibility that
an existing assumption frame may be disrupted if its refutation depends on the
literal about to be recanted must also be taken into account. Suppose we wish
to recant a which will rely on the assumptions in the dependency set D. If we
wish to insert the new assumption frame Aa, corresponding to the refutation
for a, before the assumption frame Ai, then Aa will contain those assumptions
that do not occur in any assumption frame preceding Ai (recalling Restriction
3). Furthermore assume that the refutation corresponding to Ai (the refutation
entry occurring directly after it in the progress list) does not depend on a. Then
the proposed insertion may be performed if |Aa| < |Ai|, since this implies that
Position(Ta) < Position(T ), where Ta is the new arrangement. In other words,
a better position in the search space is obtained when a smaller assumption
frame is inserted prior to a larger one.

3.4 Possible Rearrangement Strategies

The termination strategy defined above limits possible backtrack choices but
also makes it clear how to evaluate which ones are legal. So, a backward choice



heuristic needs to choose a legal point, but how does it discriminate between
these? One possible heuristic would be to consider any literal x that contributes
to a contradiction and recant the literal which gives the greatest Position(Tx),
where Tx is the rearrangement after refuting x. Note there will be at least one of
these, since the minimum case is where the most recent assumption is refuted,
thereby changing the corresponding progress Position() value of 0 to 1. This
heuristic will push smaller proofs up. This method could further stipulate that,
when any refutation is removed because it depends on an assumption about to be
recanted, all assumptions immediately above it (the corresponding assumption
frame) are pushed down the progress list as far as possible (according to Restric-
tion 3). The effect of this is to retain relevancy for assumption frames and their
corresponding refutation, as well as minimising the size of assumption frames.
Note that some of this rearrangement may be carried out during the insertion
of the new refutation in the procedure Recant(). Overall this rearrangement
and backtrack choice strategy cooperates with the termination strategy defined
above to gain as much ground, in terms of the proof tree, as possible. This greedy
and simple heuristic is used later in Section 3.8.

The methods discussed in Section 2.3 are motivated by the ability of ran-
domised incomplete algorithms to move about in search space. Stochastic meth-
ods for forward choice in backtracking algorithms have been shown to be success-
ful in combination with “restarts” (Gomes, Selman, Kautz) [16], so it is not un-
reasonable to suggest that they may also be effective in backward choice. In this
light a relevant backtracking rearrangement may be interpreted as a restricted
partial restart. Prestwich produced a hybrid incomplete algorithm combining
ideas from Dynamic Backtracking and local search or stochastic methods, which
yields promising results by allowing an arbitrary backtrack point to be selected
randomly [29], though the choice of backtrack point was completely unrestricted.
It appears that previous investigations of stochastic approaches suggest that in-
vestigating a randomised and complete backtracking may be fruitful.

Another possibility would be to model the search space and attempt to ap-
proximate the change in this for various backtrack point choices. This technique
has been used successfully to derive forward variable choice heuristics [39, 36]. It
would also be possible to use a lookahead strategy for backtracking, i.e. several
backtrack choices could be evaluated so that a better estimate of the change
in potential search space was found. A truly effective technique would inter-
act with a suitable forward choice mechanism, defining a true proof strategy to
“concentrate” on generating smaller proofs. This relatively complex situation is
relegated to further work.

Algorithmic details for a backward choice function, say ChooseLegalRefuta-
tion(), would depend on the heuristic chosen. For the purposes of this work it
is enough to show that such a routine can choose to make a refutation which
guarantees that the search progresses forward and thus will eventually terminate.
The termination and rearrangement strategies presented have placed restrictions
on the backtrack choice mechanism, and we finally note that different strategies
may result in different restrictions.



3.5 A Relevant Backtracking Algorithm

A pseudo relevant logical system has been defined for refutation style proof, con-
sisting primarily of a unit propagation routine accompanied by the rule RAA.
The relevance was obtained by embedding relevance in the logical system. It was
shown that it is possible to mechanise the unit propagation routine efficiently
so that there was considerably more freedom in proof construction, yet consis-
tency was maintained in accordance with Restriction 1. This was achieved by
inventing techniques that enabled the mechanisation to operate on just a single
copy of the formula. The proof progress list serves as a mechanism to record as-
sumptions and deductions via refutation, but also mimics the traditional search
tree representation of refutation proofs. By extracting the tree structure into
an abstract object the proof process no longer relies on a fixed call-stack based
method of proof tree construction and thus may be controlled by the system. A
mechanisation of refutation was devised in order that relevant style backtracking
could occur, along with the possibility of proof rearrangement. This also leads
to a guarantee of termination, where only rearrangements that move forward in
the search space are allowed. This yields a system of mechanisation where the
proof tree, i.e. the object traditionally defined by a backtracking mechanism, is
abstracted and defined by the way in which we wish to reason, which is relevantly
and as freely as possible.

The mechanised system offers two basic operations, assume and recant, which
are derived from the familiar DPLL style unit propagation and backtracking
method respectively. Keeping in mind the Restrictions defined for the system we
now define an abstracted relevant backtracking routine (ARB()) in Algorithm
6. The algorithm is quite simple, relying on the embedded reasoning and proof
construction process provided by previously defined routines.

Lines 3–12 perform the simple task of either applying a refutation (Restriction 2)
or making an assumption and propagating it (Restriction 1). The loop continues until
a satisfying assignment is found, or until the formula is proved unsatisfiable.

Lines 5–6 enact upon a contradiction by selecting a legal backtrack point and per-
form that refutation. This includes making any rearrangements that may be performed.
Note that the choice of backtrack point is aware of how a refutation rearrangement is
performed in order to determine whether it is legal according to some termination
strategy.

Lines 8–10 perform the familiar process of making an assumption or choice.

Lines 13–17 are responsible for returning the result of the search.

Abstraction of the underlying logic, and mechanised proof construction yields
a very simple system. The places where the algorithm departs from these ab-
stractions and ventures into the realm of heuristics are made obvious. At this
level adjunct methods, such as learning techniques, may also be incorporated.

3.6 Soundness and Completeness

The relevant reasoning system is used to capture a smaller proof or prune the
search space of the classical domain. As outlined in Sections 2.2 and 3.1 the pro-
posed system provides a reasoning framework suitable for satisfiability search



Algorithm 6 An abstracted relevant style backtracking algorithm

AssignmentState ARB(Formula F )
1: AssignmentState A
2: ProgressList T
3: while Satisfied(F ) and () : {} /∈ T do

4: if () : D ∈ F then {Recant}
5: b : D ← ChooseLegalRefutation(T, F, A)
6: Recant(b, D, T, F, A)
7: else {Assume}
8: a← ChooseAssumption(F )
9: Append(a, T )

10: UnitPropagate′(a, {a}, F, A)
11: end if

12: end while

13: if Satisfiable(F ) then

14:
15: return A
16: else

17:
18: return {}
19: end if

for CNF formula in classical propositional logic using a DP style algorithm. The
issue of soundness and completeness for the relevant backtracking algorithm pre-
sented in this work can be shown to rest upon the soundness and completeness of
DP and intelligent backtracking improvements. The details are outlined below.
The argument is that prior algorithms can achieve the same search flexibility
by simply restarting the search with a new forward choice ordering in order to
reach the desired rearranged state. Without proof rearrangement the relevant
framework yields a perfect simulation of Conflict Directed Backjumping - it uses
the dependency set information from a conflict to determine the the most recent
assumption that caused that conflict. By distinguishing assumptions from de-
ductions it can determine the correct backtrack track point instantly, rather than
having to determine at what point a variable involved in a conflict was derived.
While there are a number of possibilities for “book keeping”, the dependency
set approach is tailored for an overall integration of the underlying logic (e.g. as
presented in Section 2.2).

Suppose we use a CBJ algorithm with very basic clause recording facilities.
It allows up to n recorded clauses for a given formula with n variables – given
the variables v1, . . . , vn, a clause is recorded in the i’th recorded clause position
when a backtracking to the variable vi. Note that dependency sets are used to
keep track of the conflicts in terms of assumptions i.e. the direct source of the
conflict is recorded. As a separate computation, but alongside this algorithm
we use the relevant reasoning book keeping process comprising of any further
dependency set calculations and proof/path list maintenance. This resulting al-
gorithm, a combination of the intelligent backtracking search and relevant rea-



soning proof/path list computations, will be referred to as DP∗. In terms of
soundness and completeness, DP∗ is a standard DPLL style algorithm with a
fixed forward choice ordering, conflict directed intelligent backjumping and a
limited clause recording technique, for all of which soundness and completeness
is assumed.

Allow an algorithm execution DP∗1 to start a search on a given formula
F . Every time DP∗1 backtracks (uses RAA) without rearrangement it records
a clause for the variable it backtracks to. At some stage in the search it is
advantageous to perform a rearrangement from the path list P1 which represents
the point in search space DP∗1 is in, to some path list P2. Now a second search
execution, DP∗2, is started. It inherits any recorded knowledge from DP∗1 as
they are just logical consequences of the given formula F . The difference between
DP∗1 and DP∗2 is that the order of choice in the search tree is determined by
P2. Some branches are closed early (refuted) due to the knowledge about the
problem that the execution DP∗1 recorded. In terms of formula and assignment
state DP∗2 can be seen to “catch up” to DP∗1. The number of steps to do this
is just the length of PB since refutation computation is “saved” in the recorded
clauses. The combination of DP∗1 and DP∗2 (and any further DP∗i’s used
for other rearrangements) comprise a simulation of relevant backtracking by
restarting a known sound and complete algorithm. The termination argument
of Section 3.3 still holds as well – the restart enforces a progression in search
space. In the final execution, DP∗end, a solution is discovered or the formula
is found to be unsatisfiable in the usual manner. The simulation is thus sound
and complete, so the original in-situ approach described above is also sound and
complete as long as it maintains the same logical consistency between assignment
and formula as the simulation (see Section 3.1).

3.7 Related Work – Partial Order Backtracking Systems

A discussion and comparison of intelligent backtracking systems taking advan-
tage of a “partial order” for variable conflict analysis, briefly introduced in Sec-
tion 2.3, will now be made. The observation of a partial order in backtracking
search allows a limited rearrangement of earlier choices in order to best choose
a variable to backtrack to. This is achieved by maintaining partial order infor-
mation derived from conflict resolution. There are situations in during search
where some variable ordering would have produced the exactly the same out-
come as another, however committing to the ordering early forces the ordering
of backtracking. The partial ordering information provides a way around this.
Existing POB systems do not reason “irrelevantly”, but they do not distinguish
relevant assumptions, they discover them. This may detract from overall proof
construction strategies.

Bruynooghe’s method of partial order intelligent backtracking [8] uses a
cause-list to keep track of the reasons why a conflict was generated for a par-
ticular assignment. At a basic level the cause starts out as a clause which has
identified a conflict in the assignment. The partial order arises from the ordering



of the assignments of variables involved in a cause-list. The partial order deter-
mines the order of backtracking search and also assures the completeness (and
termination) of the search. McAllester’s Partial-Order Dynamic Backtracking
(PODB) exploits the idea of the partial order and the abilities of the Dynamic
Backtracking algorithm to enable some rearrangement in the order of past as-
signments, whilst retaining intermediate information irrelevant to a backtrack
conflict [23]. To achieve this rearrangement McAllester uses a set of “safety con-
ditions”. Here some condition x < y essentially denotes that the assignment of
x must precede before y. The safety conditions are initially determined from
conflict clauses. Manipulation of variable ordering requires a legal topological
sort of the safety conditions to be found i.e. some complete ordering complying
with the safety conditions. A distinct difference between McAllester’s approach
and other methods is that the algorithm operates on a “total assignment” of the
variables, and maintains a selection of “no-goods” or identified conflicts which
are consistent with that assignment. The search progresses via the selection of
new conflicts, in contrast with other typical backtracking approaches which con-
struct a partial assignment which is consistent with the set of given clauses. This
yields quite a different perspective on choices made during search, both forward
and backward.

Relevant backtracking takes advantage of a partial order concept. It uses it
to simplify the intelligent backtracking mechanism and to allow past variable re-
ordering. The proof progress list provides the equivalent of a relevantly derived
partial order. The elements defining this partial order consist only of assump-
tions or the original causes. This results in providing a more informed collection
of variables when choosing a backtrack point and should represent the overall
strategy taken to construct the proof. Recording assumptions in the progress list
results in succinct reasoning and is a useful way of focusing the process of proof
construction.

What previous partial order backtracking systems lack is the notion of rel-
evant causality. The relevant backtracking mechanism commits to an “assump-
tion” and carries that information through to each conflict. A relevantly derived
conflict records the assumptions used to derive the conflict, not just the variables
in the clause that has become empty. A POB system may, through successive
steps of resolution and backtracking, discover the ultimate cause, but given there
may be many possible paths of inference. For a simplistic example, suppose we
have deduced a from assumptions Γ and x from Σ and the sub-formula contains

(a → b)(x → c)(c → f)(b → f)

On deriving a and x the relevant system immediately discovers the cause lies
in Γ ∪ Σ. A partial order backtracking system, assuming unit propagation is
implemented, finds the cause is from b or c. It then must choose which to refute:
If it chooses b it can resolve back through to a and further on to some element
of Γ . The choice of c leads to an element of Σ. Thus the early choice of conflict
resolution commits the search to a constrained set of ultimate backtrack points,
and there is no way of determining the full set without evaluating all possible



backward resolution paths. The same argument holds for PODB: When it finds a
conflict it recursively resolves the collection of no-goods, but must make a (refu-
tation) variable selection at each step. We note here that it should be possible to
include a mechanism to evaluate all backward resolution paths with polynomial
overhead, but this would require some forethought as to how to construct result-
ing mechanised proofs, making any given algorithm increasingly complex. The
complete recognition of cause and effect within relevant style reasoning means
that conflict resolution is more efficient since it avoids resolution search back to
some cause, but perhaps more importantly it remains focused on the variables
it has selected as assumptions, and the selection of backtrack points is far more
informed.

One important further advantage of using a basis of relevance style logic
means that the reasoning rules corresponding to techniques, such as Unit Prop-
agation, are easily incorporated, whereas it is not immediately obvious how other
POB systems would implement additional rules for reasoning. The addition of
such techniques are clearly crucial to constructing an efficient advanced satisfi-
ability solver.

3.8 Experimental Analysis

The result of using a relevant reasoning scheme was investigated experimen-
tally by comparing traditional backtracking methods with a possible approach
for relevant backtracking. Intelligent backtracking schemes are best known for
their ability to prune search space and to recover from bad choices made during
search. The systems are compared by adding basic choice mechanisms and test-
ing on random 3-SAT problems – a difficult domain for systems based purely
on intelligent backtracking. This provides a relatively simple and unstructured
scenario for comparison and evaluation of a backtracking mechanism’s ability
to prune and recover. The experimental method and the backtracking schemes
implemented are detailed below.

Method Random 3-SAT problems were generated with a clause to variable
ratio of 4.3, which is in the “hard” region for these problems. For each point
200 problems were used. The same set of problems was used at each point for
every backtracking scheme tested. The experiments were carried out a 2.66 GHz
Pentium 4 with 1Gb of memory running a Linux operating system.

Each implementation of a backtracking scheme is implemented in C++ and
is based on the same basic framework. Linear code optimisation for any given
system was not a priority. To evaluate performance the median value of the num-
ber of assumptions (or choices) made during search from a set of random 3-SAT
problems is used. This measurement is applicable for all systems implemented,
and by analogy corresponds to the number of internal nodes in a search tree or
proof. Finally it is noted that all of the intelligent backtracking schemes imple-
mented have some overhead in maintaining dependency information, though in
all these cases it is polynomially bounded and relatively inexpensive to manip-
ulate.



What distinguishes the intelligent backtracking algorithms from the naive
backtracking method is their ability to prune search space and thus visit less
nodes. This comes at the cost of extra computation. The extra cost must be
weighed against the overall effectiveness of the technique. For random 3 SAT
problems it is generally well known that intelligent backtracking algorithms do
not offer a good solution. The experiments presented in this work take advantage
of the proliferation of random 3 SAT problems and use them as a vehicle of
comparison: the naive backtracking algorithm provides a baseline with which
the performance of the other algorithms are compared. The comparison of node
counts to the base line value gives us an idea of how effective a given technique
prunes search space in a difficult scenario.

The most effective method to solve random 3-SAT problems is an advanced
choice heuristic, and the additional presence of intelligent backtracking makes
very little difference to performance. In order to simulate “unknown territory” a
simple fixed branching scheme using a predetermined fixed order of choice, and
a randomised branching scheme, introducing further perturbation to the search,
were used. The use of simple branching schemes accentuates the effect of using
intelligent backtracking schemes and simulates unknown problem domains where
choice mechanisms are not so dramatically effective.

Back Tracking Schemes The backtracking schemes that were used in these
experiments are now described. For simplicity each method is assigned a simple
descriptor which is used in the discussions and tables of results.

BT The traditional backtracking approach – no intelligent backtracking mechanism
is used. This provides a baseline comparison for the effectiveness of pruning and
recovery with the other schemes.

BJ Backjumping or Conflict Directed Backjumping – as described in this work.
UD Dynamic Backtracking with unit propagation enabled – the method as described

by Baker [3] is followed in order to include unit propagation with Dynamic Back-
tracking. Without unit propagation Dynamic Backtracking performs very badly [3].
It is noted that Baker embeds some cases of reasoning within his choice mechanism
to enforce and optimise unit propagation. The final case, where an assumption or
choice is actually made is very basic. In our implementation the choice mecha-
nism is replaced by the one used by all other backtracking mechanisms for an
experiment.

RB Relevant backtracking proof search – this is just one possible relevant search
strategy combining relevant reasoning with proof rearrangement. It cooperates
with the termination strategy to select the refutation (backtrack point) that gives
the furthest progress in completing the search tree. This approach was outlined
in Section 3.4. Although the strategy is basic it should concentrate on generating
smaller proofs.

An implementation of a standard partial order backtracking scheme was not
included due to complexity of the techniques and the lack of any concrete meth-
ods to efficiently implement unit propagation and a cooperating conflict clause
selection mechanism. It is clear that unit propagation is an element crucial to the
efficiency in satisfiability solving, as exampled by Baker’s work with Dynamic
Backtracking. Without it any backtracking scheme fails to perform.



Search Cost Results Table 1 shows the median number of assumptions re-
quired to solve random 3-SAT problems with a clause to variable ratio of 4.3 for
a range of problem sizes. The branching scheme is fixed, and due to the nature of
the problems is essentially random but will always select the next assumption to
be made in a predetermined order. It is clear that, while some irrelevant assump-
tions are being made, there is no hugely significant difference between standard
backtracking (BT) and backjumping (BJ). The nature of the random 3-SAT
problems excludes the kinds of complex problem structures that backjumping
can effectively manoeuvre in. On the other hand, the Dynamic Backtracking with
unit propagation (UD) and the relevant backtracking greedy proof search strat-
egy (RB) have the same capabilities as BJ but perform non-traditional traversal
of the search space and retain information about irrelevant assumptions. This
yields far better results. RB is superior to UD for two reasons: i) it uses relevant
reasoning which highlights the effects of the assumption on the search tree, and
ii) it has a much better ability to rearrange the search order. The actual depth of

Number of Variables BT BJ UD RB

60 535 491 277 288
70 1,701 1,585 786 753
80 3,846 3,643 1,666 1,454
90 9,979 9,115 3,982 2,756
100 24,033 22,216 9,422 7,638
110 71,019 65,242 25,841 16,268
120 178,976 158,631 54,477 39,169
130 372,344 347,102 109,094 69,239
140 856,955 767,362 272,774 160,625

Table 1. Median number of assumptions made during search with a fixed branching
scheme from 200 random 3-SAT problems with a clause to variable ratio of 4.3.

a search (that is the number of assumptions made at any one time) is not great
when compared to the number of variables. By using fixed branching order the
search is limited to seeing only a small fraction of the total number of possible
assumptions. A random branching order will randomly select from the entire set
of unassigned variables. Using such a scheme introduces far more perturbation
in the search process by allowing far more variety in the assumptions made.
While this approach is simple, it is also effective, and search performance has
been shown to be comparable to branching heuristics when used in combination
with intelligent backtracking systems [21]. This second experiment is identical to
the first, but uses a random branching scheme. The results are shown in Table
2. The results are quite different to the first experiment. For BT, BJ and UD
the results are significantly worse. For a fixed branching scheme the sample of
assumptions likely to be made is fixed, and is small since the search depth will
usually be much smaller than the total number of possible assumptions. For a



Number of Variables BT BJ UD RB

60 687 631 342 285
70 2,376 1,821 1,124 710
80 6,204 5,323 3,519 1,349
90 14,378 13,401 8,682 3,222
100 43,755 40,324 28,036 6,472
110 116,985 98,485 83,305 12,402
120 287,638 270,622 213,674 25,254
130 735,298 645,599 654,617 46,831
140 1,930,238 1,686,780 1,672,798 86,004

Table 2. Median number of assumptions made during search with a randomised
branching scheme from 200 random 3-SAT problems with a clause to variable ratio
of 4.3.

given single search execution this small set of assumptions may contain a catas-
trophic choice, but over several problems the number of catastrophic choices is
not huge (i.e. catastrophic assumptions are fairly rare). The random scheme is
likely to see a much larger set of possible assumptions, and hence a given single
search execution is more likely to commit to a catastrophic assumption.

If we compare UD to BJ the results are much worse than when a fixed
assumption order was used. Although UD is better than BJ it is not as significant
as it appears to be in the first experiment. Like BJ and BT, UD is susceptible to
making catastrophic choices, but appears to have further difficulties. Although
UD uses a novel search space traversal, it is still reliant on the assumption order.
The “culprit” information it generates and retains relies on the fact that some
given assumption was made, but may be recorded in terms of deductions not
assumptions. In other words UD cannot distinguish between the effects of the
assumptions that were made at some previous point in the search, and the effects
of assumptions made later. What it lacks is a notion of relevancy. Retaining extra
information that is not directly relevant to the construction of the proof in terms
of assumptions appears to confuse the search space traversal.

We finally note that UD includes a lookahead calculation to test early for
contradiction. This appears to cause the total number of unit propagation calls
to be much higher than expected, though this is not represented in the number
of assumptions made. The total number of assignment state changes correspond
to the number of times that a single call of unit propagation or undo propa-
gation was called, and thus represents how much time is spent performing or
undoing the fundamental unit resolution and unit subsumption operations. In
fact with a random branching scheme UD does worse than BJ when the total
number of changes to the assignment state are compared. A comparison of the
median number of assignment state changes made for the random branching
scheme experiment is shown in Table 3. It may be possible to re-engineer UD
to avoid this problem by reordering the way in which it tests for contradiction,
though a relevant reasoning approach appears to be more useful in the long run.



Number of Variables BT BJ UD RB

60 28,651 23,905 26,403 10,670
70 114,130 83,192 98,267 32,142
80 340,437 272,689 338,542 69,263
90 890,995 771,270 911,872 192,493
100 2,990,584 2,561,763 3,172,613 425,585
110 8,764,323 6,935,415 10,318,457 925,393
120 23,558,846 20,595,409 28,293,207 1,962,900
130 65,778,851 52,901,704 90,117,272 4,003,213
140 183,909,992 148,943,512 248,541,765 7,771,369

Table 3. Median number of assignment state changes made during search with a ran-
domised branching scheme from 200 random 3-SAT problems with a clause to variable
ratio of 4.3.

While Partial Order Dynamic Backtracking was not implemented for the exper-
iments, the relationship with Dynamic Backtracking may have yielded similar
problems, though another issue would have been how to properly incorporate
Unit Propagation.

RB is the clear winner of all the backtracking systems and when combined
with the random branching order exhibits a highly significant difference. More
interestingly it performs better in this situation that with a fixed branching
order. Using relevant reasoning means that knowledge of cause and effect is
acquired. The larger sample set of assumptions can be used to advantage when
selecting a backtrack point – catastrophic assumptions can be identified and
ignored and useful collections of assumptions can be combined to create a smaller
refutation proof. The relevant approach takes advantage of the ongoing search
tree structure in terms of the assumptions made during search and can modify
or correct the structure in order to produce a more succinct proof and reduce
overall search cost.

Search Cost Results in Time Time comparisons can rely on the underlying
implementation and even the operating environment. The backtracking algo-
rithms were designed with simplicity as the primary guiding factor, and the
resulting implementations are quite generic. Each implementation of a search
algorithm was implemented as fairly as possible. Where the basic object frame-
work yielded an obvious redundancy for a particular algorithm the object was
specialised to eliminate the problem. On the other hand there was no real at-
tempt to optimise any particular algorithm, though some generic optimisations
are used across the board (e.g. literal indexing). Any one the algorithms we
implemented could probably be linearly optimised to attain much greater per-
formance in terms of CPU time. Furthermore, a specific implementation for any
of the algorithms may be engineered to be more efficient than the generic design.
These optimisation cases are particularly true of the algorithms that spend more
time processing information at each node of the search tree.



Unsurprisingly the execution times for the algorithms using a fixed branching
scheme, in Table 4, show that the overall cost of intelligent backtracking is
too expensive when compared to the naive backtracking method when solving
random 3-SAT problems. Though the pruning may win out as the problem size
increases, the crossover point may well be past the point of intractability.

Number of Variables BT BJ UD RB

60 30 60 100 80
70 110 190 330 250
80 280 510 880 610
90 810 1,530 2,540 1,650
100 2,240 4,350 7,420 5,140
110 7,260 14,670 23,070 13,870
120 19,690 41,330 58,570 43,180
130 45,810 104,250 128,030 92,950
140 112,960 269,150 374,000 280,360

Table 4. Median execution time in milliseconds of search with a fixed branching scheme
from 200 random 3-SAT problems with a clause to variable ratio of 4.3.

With the addition of perturbation from the random branching scheme the
results are different. They are perhaps more indicative of how an effective in-
telligent backtracking scheme can improve execution time performance. Table 5
shows that relevant backtracking is effective enough to win out over the efficient
but naive backtracking method when the problem size reaches around 100 vari-
ables – this corresponds to the point where BT searches nearly 7 times as many
nodes as RB.

Number of Variables BT BJ UD RB

60 40 70 110 70
70 160 230 470 230
80 470 790 1,800 600
90 1,220 2,340 5,370 1,700
100 4,140 8,160 20,250 4,030
110 12,070 23,410 71,510 10,620
120 32,610 73,040 213,210 25,050
130 92,930 201,330 747,540 57,750
140 257,700 628,120 2,114,270 128,030

Table 5. Median execution time in milliseconds of search with a randomised branching
scheme from 200 random 3-SAT problems with a clause to variable ratio of 4.3.



The naive backtracking algorithm is generally more efficient when compared
to the intelligent backtracking implementations on random 3 SAT problems.
Using a randomised branching order allows the relevant backtracking algorithm
to catch up. In this scenario, for problems sets with around 100 variables or more,
the extra cost of processing performed by RB, even using this implementation,
is far more advantageous in terms of execution time.

4 Conclusions

This work has considered the motivations and logical basis for intelligent back-
tracking schemes. The approaches used to avoid thrashing behaviour have been
investigated through an analogy of relevant proof construction. By borrowing
concepts from deduction systems of relevant logics we reconstructed known tech-
niques and constructed new techniques for intelligent backtracking. Identifying
assumptions as the ultimate causes of conflict, and defining relevant rules for
reasoning, led to logically consistent and efficient constructions of other relevant
reasoning mechanisms, such as unit propagation. The extraction of the concept
of dependencies, due to their incorporation into the underlying logic, produces a
solid foundation for investigation and design of intelligent backtracking methods
and refutation proof construction. The concept of proof tree construction was
also abstracted from its usual representation, and this enabled a mechanisation
where the tree could be rearranged with respect to the relevant assumptions
made during search. The simplicity of the approach allows for efficient search
space traversal, and a framework for developing strategies for search and proof
construction. Experimental analysis showed that these advantages are obtainable
and effective. The performance differences are highly significant when compared
to other backtracking methods.

Further Work It is apparent that the relevant logical framework has much
promise, and is amenable to the addition of further reasoning techniques. There
are several areas that would be interesting and beneficial to investigate, some of
which have been mentioned in this work. Further work includes investigations of
i) alternative rearrangement strategies and planning heuristics, including a com-
plementary forward and backward choice mechanism, ii) extensions integrating
other reasoning techniques such as clause recording, leading to sub-proof repre-
sentation and planning proof structure, and iii) relevant syntactic representations
for mechanising richer logics.
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