
Predictive Toxicology using a Decision-tree Learner

K.S. Ng, J.W. Lloyd and A.W. Slater

Computer Sciences Laboratory,

Research School of Information Sciences and Engineering,

Australian National University

kee@csl.anu.edu.au, jwl@csl.anu.edu.au, Andrew.Slater@csl.anu.edu.au

1 Introduction

This extended abstract outlines a submission to The Predictive Toxicology Challenge for 2000-
2001 [PTC]. The Challenge is to obtain models that predict the outcome of biological tests for
the toxicity of chemicals using information related to chemical structure only.

The models reported here are based on the approach outlined in [BGCL00]. (Much more detail
is given in [BGCL01].) In essence, the learning system is a decision-tree system. However, it is
rather more general than conventional decision-tree learners in that it allows the individuals that
are to be classified to be represented as certain terms in a higher-order logic rather than as simple
feature vectors. The logic allows the use of sets, multisets, lists, graphs and so on, to represent
individuals, thereby capturing complex structural information about the individuals [Llo01]. This
information is highly relevant to the main aim of the Challenge, which is to predict toxicity from
the chemical structure alone. The approach adopted here provides an alternative to the more
usual approach of using first-order logic to capture the structural information.

The next section outlines the approach to knowledge representation. The third section outlines
how predicates are constructed. The last section gives some information about the experiments
performed and contains ROC diagrams for the models for each of the four datasets.

2 Knowledge Representation

We adopt a standard approach to knowledge representation. The basic principle is that an in-
dividual should be represented by a (closed) term. For a complex individual, the term will be
correspondingly complex. Nevertheless, this approach has significant advantages: the representa-
tion is compact, all information about an individual is contained in one place, and the structure
of the term provides strong guidance on the search for a suitable induced definition.

What types are needed to represent individuals? Typically, one needs the following: integers,
floats, characters, strings, and booleans; data constructors; tuples; sets; multisets; lists; trees;
and graphs. The first group are the basic building blocks of terms representing individuals. The
type of integers is denoted by Int, the type of non-negative integers by Nat, the type of booleans
by Bool, and the type of floating-point numbers by Float. Also needed are data constructors
for user-defined types. Tuples are essentially the basis of the attribute-value representation of
individuals, so their utility is clear. Less commonly used elsewhere for representing individuals are
sets and multisets. However, sets, especially, and multisets are basic and extremely useful data
types. Other constructs needed for representing individuals include the standard data types, lists,
trees, and graphs.

We model the chemical molecules as graphs, in which the vertices are atoms and the edges are
bonds. In addition, depending on the experiment, we also include various features provided from
the data engineering phase. These features were taken, after a feature selection phase, from the
set of the Leuven functional groups, the DRAGON features, and the Treymer features. Thus the

1



3 PREDICATE CONSTRUCTION 2

representation of a molecule is a tuple most of whose arguments are features from (one or more of)
the above feature sets with another argument containing the graph representation of the molecule.
We now give the types in the representation and the representation of a typical molecule.

The type of a molecule is Molecule, which is defined by the following type synonym.

Molecule = (Structure, Aro2n, FG1, ... , FG27, Lumo, Homo, Dipole,

Dragon1, ... , Dragon839);

This declaration just states that Molecule is a synonym for the product type on the right hand
side. The types appearing in the right hand side are defined as follows.

Structure = Graph Atom Bond;

Aro2n = Bool;

FG1 = Nat;

...

FG27 = Nat;

Lumo = Float;

Homo = Float;

Dipole = Float;

Structure is the type of the graph representation of the molecule, where Atom is the type of an
atom and Bond is the type of a bond. In more detail, the type Graph Atom Bond is defined as
follows.

Label = Nat;

Graph Atom Bond = ({(Label, Atom)}, {(Label -> Nat, Bond)});

The type Label -> Nat is the type of multisets. Here the multisets are intended to contain just
two items and thus represent unordered pairs (of the atoms joined by a bond). We use <.,.> to
denote an unordered pair. Atom is the type of the elements C, H, Cl, and so on. Bond is the type of
bonds, where - is the constant for a single bond, = for a double bond, # for a triple bond, and ~ for
a resonant bond. Aro2n refers to the boolean feature aro2n in the Leuven set. For i = 1, . . . , 27,
FGi is the type of the ith functional group feature also in the Leuven set. Each FGi is the type
of an integer recording how often a particular functional group occurs in a molecule. Lumo, Homo,
and Dipole are self-explanatory. For i = 1, . . . , 839, Dragoni is the ith DRAGON feature. The
values for each DRAGON feature were discretised into 10 values by ordering the set of values
over all the molecules for that feature and then putting them into 10 equal-sized, ordered buckets
labelled 1 to 10. Thus the constants of type Dragoni, for i = 1, . . . , 839, are 1, . . . , 10. Note
that this representation already reflects some choices about which features may be useful. We
used only lumo, homo, and dipole from the Treymer set of features since, from our experiments,
the others seemed not to be useful. Later we shall see how the number of DRAGON features was
effectively reduced by the choice of rewrites that give rise to predicates.

As an example, here is the representation of the molecule TR002 (Trichloroethylene), which is
also pictured below in Figure 1.

(({(1, C), (2, Cl), (3, C), (4, Cl), (5, Cl), (6, H)},

{(<1,2>,-), (<3,4>,-), (<3,5>,-), (<1,6>,-), (<1,3>,=)}),

False,

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

-0.0779128, -0.238038, 0.83703,

10, 3, 1, ..., 1, 4, 3)

3 Predicate Construction

We now turn to the issue of constructing predicates in order to perform splits during the building
of a decision tree. The problem we face is to induce a suitable definition for the desired target



3 PREDICATE CONSTRUCTION 3

Cl
Cl

Cl

Figure 1: TR002 (Trichloroethylene)

function, assuming that the individuals (the chemical molecules) in the domain of this function are
represented by terms as described above. For this, we need to investigate the detailed structure
of these terms to construct predicates that the molecules may or may not satisfy and also exploit
the type of the terms representing the molecules and the types of the subterms of these terms.
However, even with the strong hints provided by these types, finding a suitable predicate is a
search problem – one must search in a systematic way through a space of potential predicates.
This search space is made up by composing more basic functions into predicates in all possible
ways. So we need to say something about what these more basic functions are and how they are
composed.

First, we deal with composition. This is simply handled by the function ‘.’ having the signature
(R -> S) -> (S -> T) -> (R -> T) and defined by (f.g) x = g (f x), where R, S and T are
types.

Next we turn to the appropriate set of functions. A transformation is a function f having
the signature (R1 -> Bool) -> ... -> (Rk -> Bool) -> S -> T, where R1, . . ., Rk, S and T

are types and k ≥ 0. The idea is that, if ri : Ri -> Bool, i = 1, . . . , k, are predicates, then
(f r1 ... rk) is a function of type S -> T and functions obtained like this can be composed
to obtain a predicate. A special case is when k = 0, in which case the transformation is itself such
a suitable function.

We now introduce some transformations which will be used in the models we construct. Given
several predicates, it is common to want to construct the predicate obtained by forming the
“conjunction” of these predicates. This is achieved via the transformation andN (where N ≥ 2)
having the signature (T -> Bool) ->...-> (T -> Bool) -> T -> Bool and defined by andN

p1 ... pN x = (p1 x) && ... && (pN x). If N is an integer, then (==N) : Int -> Bool

is a transformation, in fact a predicate, defined by (==N) m = m == N. Similarly, one can define
transformations (<N) corresponding to <, (>N) corresponding to >, (/=N) corresponding to /=, and
so on. More generally, if T is a type and C a constant of type T, then we can make a predicate (==C)
on T by defining (==C) x = x == C. Similarly, the predicate (/=C) on T is defined by (/=C) x =

x /= C. For any type T, there is a transformation top : T -> Bool defined by top x = True.
We now discuss three relevant types more systematically, giving various transformations and

predicates defined on them.
The transformations for tuples are the projections projTi : (T1, ..., Tn) -> Ti defined

by projTi (t1, ..., tn) = ti, for i = 1, ..., n.
As an example of predicate construction, suppose C is a constant of type T1. Then, by com-

position, we can construct the predicate projT1.(==C) on individuals of type (T1, ... , Tn).
This predicate is true on an individual of this type iff its first component is C.

In a higher-order logic, a set is identified with a predicate, its characteristic function. Thus
a set whose elements have type T is a function of type T -> Bool. When we wish to informally
make a distinction between sets and predicates (even though mathematically they are identical),
we use the synonym {T} for T -> Bool. Analogously, a multiset whose elements have type T is a
function of type T -> Nat, where the value of the function at some element is the multiplicity of
the element, that is, the number of times it appears in the multiset.

For sets of type {T}, consider the transformation setExists1 : (T -> Bool) -> {T} -> Bool

defined by setExists1 b t = exists \x -> (b x) && x ‘in‘ t. Then, if b is a predicate on



3 PREDICATE CONSTRUCTION 4

the type T, (setExists1 b) is a predicate of type {T} -> Bool that is true of a set iff it has
an element which satisfies the predicate b. One can also define setExists2 which looks for two
elements satisfying given conditions, and so on. Analogously, for multisets, one has msetExists2.

Now consider the transformation

domCard : (T -> Bool) -> {T} -> Nat;

domCard b t = card {x | (b x) && x ‘in‘ t};

where card computes the cardinality of a set. Thus, for each predicate b, the function (domCard b)

: {T} -> Nat computes the cardinality of the subset of elements of the argument that satisfy the
predicate b.

For (undirected) graphs, there is a type constructor Graph such that the type of a graph is
(Graph V E), where V is the type of information in the vertices and E is the type of information
in the edges. To avoid the need for explicit references to the label type, we introduce a type
constructor Vertex such that the type of a vertex is (Vertex V E) and a type constructor Edge
such that the type of an edge is (Edge V E). Here are some transformations on graphs.

vertices : Graph V E -> {Vertex V E};

edges : Graph V E -> {Edge V E};

vertex : Vertex V E -> V;

edge : Edge V E -> E;

connects : Edge V E -> (Vertex V E -> Nat);

The transformation vertices returns the set of vertices of a graph, edges returns the set of edges
of a graph, vertex returns the information at a vertex, edge returns the information on an edge,
and connects returns the (unordered) pair of vertices joined by an edge.

For a particular experiment, the hypothesis language is determined by a corresponding set
of rewrites. The predicates in the heads and bodies of these rewrites are made by composing
transformations from the above collection. This method of using rewrites to generate predicates
is described in detail in [BGCL01].

We now indicate the rewrites for the experiments in this paper. First, here are some relevant
transformations.

projStructure : Molecule -> Structure;

projAro2n : Molecule -> Aro2n;

projFG1 : Molecule -> FG1;

...

projFG27 : Molecule -> FG27;

projLumo : Molecule -> Lumo;

projHomo : Molecule -> Homo;

projDipole : Molecule -> Dipole;

projDragon1 : Molecule -> Dragon1;

...

projDragon839 : Molecule -> Dragon839;

The top-level rewrites for the male rat experiments were as follows.

top >-> projStructure.edges.(and2 top top)

top >-> projStructure.vertices.(domCard top).(<20)

top >-> projStructure.vertices.(domCard top).(>15)

top >-> projAro2n.(==False)

top >-> projAro2n.(==True)

top >-> projFG1.top

...



4 EXPERIMENTAL RESULTS 5

top >-> projFG27.top

top >-> projLumo.(and2 top top)

top >-> projHomo.(and2 top top)

top >-> projDipole.(and2 top top)

top >-> and2 (projDragon18.top) (projDragon277.top)

...

top >-> and2 (projDragon710.top) (projDragon785.top)

The rewrite process for generating predicates (to find a suitable predicate to split a node in the
decision tree) starts with the weakest predicate top (of type Molecule -> Bool). The learner
looks through the set of rewrites to find those whose head matches this top. These are listed
above. The first three project into the graph representation of the molecules and set up conditions
on the atoms and bonds. The next two check whether the aro2n property holds or not. Then
follow the projections into the functional groups. After that there are the projections into the
features lumo, homo, and dipole. The last collection of rewrites set up conjunction conditions on
the DRAGON features. Our experiments indicated that DRAGON features 18, 277, 288, 710, and
785 were the most useful for the male rat dataset, so we restricted the DRAGON projections to
just these features. These were identified by building small decision trees in cross-validations using
just DRAGON features and selecting those that occurred most often near the roots of these trees
(on the assumption that such features should be good discriminators). In general, a rewrite step
involves the replacement of a redex in a predicate by the body of a rewrite whose head matches
the redex to produce a new predicate.

By this process, a large number of predicates was generated. Some of these appear in the
model for male rats given below. This method of generating predicates is flexible and convenient,
and provides precise control over the hypothesis language. Other applications using this approach
are in discussed in [BGCL01].

4 Experimental Results

The learning system used in the experiments is described in [BGCL00] and [BGCL01]. However,
while functionally similar to the system described in [BGCL00], it was completely re-implemented
by one of us (Ng) at the end of 2000 and is now substantially more efficient than the original
system.

We carried out a large number of experiments on the four datasets. The models we submitted
for the Challenge are given in Figures 2, 3, 4 and 5 below. Each point in the figures corre-
sponds to an average (FP, TP) point obtained from a 10-fold cross validation on the training set.
Each diagram has three models that attempt to cover the cost-neutral region in the centre, the
“synthetic-chemist friendly” region in the bottom left-hand corner and the “toxicologist friendly”
region in the top right-hand corner. The cost-sensitive models were obtained by introducing rela-
tive weights for the positive and negative examples in the accuracy heuristic used by the learning
system – points in the “synthetic-chemist friendly” region were obtained by a relatively heavier
weighting for negative examples, whereas points in the “toxicologist friendly” region were obtained
by a relatively heavier weighting for positive examples. Models labelled as “Graph” in the legends
used explicit graph-theoretic structural information from the Structure component of the repre-
sentation, as well as various features from the set of functional groups, the DRAGON features,
and the Treymer features lumo, homo, and dipole. The models labelled as “A-V” (attribute-
value) did not use this explicit structural information (that is, the Structure component of the
representation was dropped).

To give a feeling for the kind of models produced by the learner, the following is the definition
for the function carcinogenic that corresponds to the point labelled � in Figure 2.



4 EXPERIMENTAL RESULTS 6

carcinogenic m =

if and2 (projDragon18.(<7)) (projDragon277.(>1)) m

then if projLumo.(and2 (<=1.617905) (>=-0.004372)) m

then if and2 (projDragon277.(<7)) (projDragon710.(>2)) m

then Negative

else Positive

else if projStructure.edges.(and2

(domCard (and2 (edge.(==~)) connects.(msetExists2

(vertex.(==C)) (vertex.(==C))))).(>9)

(domCard (and2 (edge.(==-)) connects.(msetExists2

(vertex.(==C)) (vertex.(==N))))).(>1)) m

then if projDipole.(and2 (>=2.080337) (<=3.463803)) m

then Negative

else Positive

else if and2 (projDragon288.(<5)) (projDragon785.(<3)) m

then if and2 (projDragon277.(>5)) (projDragon710.(<4) m

then Negative

else Positive

else Negative

else if projDipole.(and2 (>=0.009589) (<=1.012996)) m

then Negative

else if and2 (projDragon18.(>7)) (projDragon288.(<7)) m

then Negative

else Positive;

Translated to structured English, this model is as follows.

if dragon18 < 7 and dragon277 > 1

then if -0.004372 <= lumo <= 1.617905

then if dragon277 < 7 and dragon710 > 2

then negative

else positive

else if the molecule has > 9 resonant bonds each of which connects two carbon atoms

and > 1 single bonds each of which connects a carbon and a nitrogen atom

then if 2.080337 <= dipole <= 3.463803

then negative

else positive

else if dragon288 < 5 and dragon785 < 3

then if dragon277 > 5 and dragon710 < 4

then negative

else positive

else negative

else if 0.009589 <= dipole <= 1.012996

then negative

else if dragon18 > 7 and dragon288 < 7

then negative

else positive

Here are the definitions of the DRAGON descriptors that appear in this definition.

18 nAB number of aromatic bonds constitutional descriptors

277 MATS2e Moran autocorrelation - lag 2 / weighted by atomic Sanderson electronegativities
2D autocorrelations



5 CONCLUSION 7

288 MATS5p Moran autocorrelation - lag 5 / weighted by atomic polarizabilities 2D autocorre-
lations

710 H3e H autocorrelation of lag 3 / weighted by atomic Sanderson electronegativities GETAWAY
descriptors

785 R3v R autocorrelation of lag 3 / weighted by atomic van der Waals volumes GETAWAY
descriptors

A condition such as ‘dragon18 < 7’ means that the value of DRAGON descriptor 18 must be in
the bottom 60% of the set of all values for this descriptor over all molecules in the dataset.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Graph
A−V
Graph

Figure 2: ROC diagram for male rats experiments

5 Conclusion

Our overall conclusion from the experience of trying to find models for predictive toxicology is
unsurprising: it is a very difficult problem and we did poorly. We put this down partly to difficulties
with the dataset, but more with our failure to identify appropriate hypothesis languages. On
the other hand, we are confident that our approach to knowledge representation and predicate
construction is highly suitable for this kind of problem and that, at some time in the future, with
better data and a much better understanding of the concepts required to capture toxicity, we will
succeed in finding good models. We look forward to the next predictive toxicology challenge.

Acknowledgement

We are grateful for expert advice from Dr. Nick Dixon and Professor Rod Rickards of the Research
School of Chemistry, The Australian National University.



5 CONCLUSION 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

A−V
Graph
Graph

Figure 3: ROC diagram for female rats experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Graph
A−V
Graph

Figure 4: ROC diagram for male mice experiments



REFERENCES 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

Graph
A−V
Graph

Figure 5: ROC diagram for female mice experiments

References

[BGCL00] A.F. Bowers, C. Giraud-Carrier, and J.W. Lloyd. Classification of individuals with
complex structure. In P. Langley, editor, Machine Learning: Proceedings of the Seven-
teenth International Conference (ICML2000), pages 81–88. Morgan Kaufmann, 2000.

[BGCL01] A.F. Bowers, C. Giraud-Carrier, and J.W. Lloyd. A knowledge representation frame-
work for inductive learning. Available at http://csl.anu.edu.au/~jwl, 2001.

[Llo01] J.W. Lloyd. Knowledge representation, computation, and learning in higher-order logic.
Available at http://csl.anu.edu.au/~jwl, 2001.

[PTC] Home page of The Predictive Toxicology Challenge for 2000-2001.
http://www.informatik.uni-freiburg.de/~ml/ptc/.


